Segítség az outputok értelmezéséhez

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Segítség az outputok értelmezéséhez"

Átírás

1 Tanulni: , 10.5, Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró statisztikák a numerikus változókra, a leiro.csv fájlba kiíratva. Oszlopai: Valtozo_neve : a változó neve, Elemszam: elemszám (hiányzók nélkül), Hianyzok_szama: hiányzó adatok száma, Atlag: átlag, Standard_hiba: standard hiba, Ki_also: konfidencia intervallum alsó határa, Ki_felso: konfidencia intervallum felső határa, Szoras: szórás, Median: medián, Minimum: minimum, Maximum: maximum, Also_kvartilis: alsó kvartilis (25%-os), Felso_kvartilis: felső kvartilis (75%-os), Terjedelem: az adatok terjelme (maximum-minimum), IQR: Interkvarilis terjedelem (felső kvartilis alsó kvartilis), Osszeg: összeg. Leiro_kategorias: Leíró statisztikák két kategóriás változó kategória-kombinációinak megfelelő bontásban, leiro1.csv fájlba kiíratva. Oszlopok: 1

2 Folytonos_valtozo : a folytonos változó megnevezése, Kategorias_valtozo: a kategóriás változó megnevezése, amely szerinti kategóriákban számolja a program a leíró statisztikákat, Kategoria: a kategóriás változó kategóriája, ugyanazok, mint a Leiro esetén. Leiro_2kategorias: Leíró statisztikák a kategóriás változók kategóriáinak megfelelő bontásban, leiro2.csv fájlba kiíratva. Oszlopok: Folytonos_valtozo : a folytonos változó megnevezése, Kategorias_valtozo1: az egyik kategóriás változó megnevezése, Kategoria1: a Kategorias_valtozo1 kategóriája, Kategorias_valtozo2: a másik kategóriás változó megnevezése, Kategoria2: a Kategorias_valtozo2 kategóriája, ugyanazok, mint a Leiro esetén. Leiro_3kategorias: Leíró statisztikák 3 kategóriás változó kategória-kombinációinak megfelelő bontásban, leiro3.csv fájlba kiíratva. Oszlopok: Folytonos_valtozo : a folytonos változó megnevezése, Kategorias_valtozo1: az egyik kategóriás változó megnevezése, Kategoria1: a Kategorias_valtozo1 kategóriája, Kategorias_valtozo2: a másik kategóriás változó megnevezése, Kategoria2: a Kategorias_valtozo2 kategóriája, Kategorias_valtozo3: a harmadik kategóriás változó megnevezése, Kategoria3: a Kategorias_valtozo3 kategóriája, ugyanazok, mint a Leiro esetén. 2

3 Outlier: Változónkénti kiugró értékek. Az outlier.csv táblázatba az adattábla kiugró értéket tartalmazó sorai kerülnek leszámítva az IDként megjelölt mezőt. Utolsó előtti (valtozo) oszlopába annak a folytonos változónak a megnevezése, amely szerint outlier az eset, a (sorszam) oszlopban az eset adattáblázatbeli sorszáma, az adott változó átlaga, valamint szórása.. Megjegyzés: Outliernek tekintjük az alsó, illetve felső kvartilistől 1.5 interkvartilis terjedelemnyi távolságnál messzebb eső értékeket. Gyakorisagok_kategorias: Gyakoriságok egy kategóriás változó kategóriáinként, a gyak1.csv fájlba kiíratva. Faktor: a kategóriás változó megnevezése, faktor_szint: a kategóriás változó adott szintje (kategóriája), gyakorisag: elemszám kategóriánként. Gyakorisagok_2kategorias: Gyakoriságok kategóriás változó párok kategória kombinációiként, a gyakorisag_2kategorias.csv fájlba kiíratva. faktor1, faktor2: a két kategóriás változó megnevezése, faktor1_szint, faktor2_szint: a kategóriás változók adott szintje (kategóriája), gyakorisag: elemszám az faktorszintek kombinációjában. Fisher: Fisher egzakt tesztek a kategóriás változók függetlenség vizsgálatára. Esélyhányadosok (OR) és konfidencia-intervallumok 2x2-es táblákra a fisher.csv fájlba kiíratva. 3

4 faktor1, faktor2: a két kategóriás változó megnevezése, p_ertek: a teszt eredményeként kapott P-érték. Hagyományosan, ha < 0.05, akkor a két változó között statisztikus összefüggés van a minták alapján. OR: esélyhányados, KI_also: az OR-re vonatkozó konfidencia-intervallum alsó határa, KI_felso: az OR-re vonatkozó konfidencia-intervallum alsó határa. Megyjegyzések: (1) A statisztikai függetlenség azt jelenti, hogy az egyik változó megfigyelése nem szolgál információval a másikra nézve, azaz az egyik változó bármely értéke mellett a másik változónak ugyanaz az eloszlása. (2) P-érték: a tesztstatisztika azon értékinek össz-valószínűsége, amelyek a megfigyeltnél jobban ellentmondanak a H 0 -nak a H 1 javára. Esetünkben a H 0 az hogy a két változó független, a H 1 pedig az, hogy nem független. (3) OR: Az esélyhányados két oddsz hányadosa: azt fejezi ki, hogy egy bizonyos csoportban egy eseménynek pl. megbetegedésnek, halálozásnak hányszor akkora az oddsza, mint a referenciacsoportban. Oddsz: egy esemény esetén hányszor akkora a valószínűsége annak, hogy bekövetkezik, mint annak, hogy nem. Csak olyan kategóriás változókra számolható, amelyeknek két kategóriája van. Ha a változók függetlenek, akkor az elméleti OR=1. (4) Konfidencia-intervallum: egy populációs paraméterre vonatkozó olyan értéktartomány, amelybe az adott megbízhatósággal (általában 95%) beleesik. (5) Az esélyhányados értelmezéséhez célszerű a 2 kategóriás gyakoriságokat is kiíratni! Korrelacio (korr.csv): Korrelációs együtthatók és tesztek (Pearson, Spearman, Kendall) numerikus változópárokra. valtozo1,valtozo2: a két numerikus változó, Pearson_R: Pearson-féle korrelációs együttható, Pearson_KI_also: a Pearson-féle korrelációs együtthatóra vonatkozó konfidenciaintervallum alsó határa, Pearson_KI_felso: a Pearson-féle korrelációs együtthatóra vonatkozó konfidenciaintervallum felső határa, 4

5 Pearson_p_ertek: a Pearson-féle korrelációs együttható nulla voltára vonatkozó teszt eredményeként kapott P-érték. Hagyományosan <0.05 esetén a két változó közötti korrelációs együttható szignifikánsan különbözik 0-tól, azaz a két változó korrelált a minták alapján. Spearman_R: Spearman-féle korrelációs együttható, Spearman_p_ertek: a Spearman-féle korrelációs együttható nulla voltára vonatkozó teszt eredményeként kapott P-érték. (1) A korreláció monoton kapcsolatot jelent két változó között. (2) A lineáris kapcsolat erősségét intervallumskála esetén számszerűen a Pearson-féle korrelációs együtthatóval mérhetjük. (3) Nemlineáris, de monoton kapcsolatok esetén a Spearman-féle rangkorrelációs együtthatót. (4) Mindegyik együttható értéke 1 és +1 közé eshet. A 0 körüli értékek gyenge, a 1-hez közeli értékek erős negatív, az 1-hez közeliek erős pozitív korrelációs kapcsolatokat jeleznek. Hisztogram: Hisztogramok és/vagy simított hisztogramok numerikus változókra. A simított hisztogram jobban közelíti a változó sűrűségfüggvényét, mint a hisztogram. Simított hisztogram esetén az egyedi értékek is megjelennek a vízszintes tengelyen. A parameterek táblázatban adhatjuk meg, hogy milyen típusú hisztogramot szeretnénk. 20-nál kevesebb adat esetén egy egyszerű pontábrát készít a program. (1) Hisztogram: a változó értéktartományát részekre osztjuk, és az egyes részek osztályok gyakoriságait ábrázoljuk megfelelő magasságú oszlopokkal. (2) Ha a változót sokszor megfigyeljük, akkor ott helyezkednek el sűrűbben a megfigyelések, ahol a sűrűségfüggvény értéke nagyobb. (3) Normális eloszlású változó sűrűségfüggvénye haranggörbe (Gauss-görbe) alakú. 5

6 Hisztogram_kategorias: Hisztogramok és/vagy simított hisztogramok numerikus változókra a kategóriás változók kategóriái szerinti bontásban. Boxplot: Boxplotok numerikus változókra. (1) A boxplot a (kiugró értékek elhagyása utáni) minimumot és maximumot, a kvartiliseket (doboz alja és teteje) és a mediánt (középső vastag vonal) ábrázolja. (2) A kiugró értékeket a karikák jelzik. (3) Az adatok középértéke és szóródása mellett az eloszlás szimmetrikus voltát vagy ferdeséget is jól kivehetően mutatja. (4) Több csoport összehasonlítására is alkalmas. Boxplot_kategorias: Boxplotok numerikus változókra a kategoriás változók kategóriáiként. Boxplot_2kategorias: Boxplotok numerikus változókra két kategoriás változó kategória-kombinációiban. Oszlopdiagram: Oszlopdiagramok a kategóriás változókra. Mozaikabra: Mozaikábra kategóriás változópárokra gyakoriságokkal. Megjegyzés: Az ábra úgy készül, hogy először az első változó szerint veszi az összes gyakoriságot, és ezeknek 6

7 arányában állapítja meg vízszintes irányban a téglalapok szélességét. Az egyes oszlopokon belül a másik változó értékeinek megoszlása szerint állítja be a téglalapok magasságát. Interakció: Interakciós ábrák kategóriás változók interakciójának vizsgálatára numerikus változónként. (1) Az interakció jelenléte azt jelenti, hogy az első kategóriás változó kategóriáinak (szintjeinek) hatása a 2. kategóriás változó kategóriáiban különböző. Ha nincs interakció, akkor a két változó hatása additív, együttes hatásuk a külön-külön vett hatások egyszerű összege, nincs közöttük kölcsönhatás. Ilyenkor az ábrán közel párhuzamos vonalakat látunk. (2) Az ábrán a folytonos változó átlagait láthatjuk a kategória-kombinációkban. (3) Az azonos típusú vonalak a 2. változó megfelelő szintjét jelölik. Szorasdiagram: Szórásdiagramok numerikus változópárokra simított trendvonallal. Szorasdiagram_kategorias: Szórásdiagramok numerikus változópárokra a kategoriás változók kategóriáinként simított trendvonallal. 7

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Grafikonok az R-ben március 7.

Grafikonok az R-ben március 7. Normális eloszlás Grafikonok az R-ben 2012. március 7. Vendégelőadás módosított és végleges időpontja 2012. április 10., 3 óra. Új könyv a tankönyvtárban! Dalgaard, Peter (2008). Introductory statistics

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

- BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ. Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011.

- BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ. Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011. - BESZÁMOLÓ - ALKALMAZOTT GEOMATEMATIKA, MODELLEZÉS ÉS SZIMULÁCIÓ C. TANTÁRGYHOZ Készítette: BERTALAN LÁSZLÓ Geográfus MSc. I. évf. DEBRECEN 2011. T A R T A L O M J E G Y Z É K 1. Felhasznált adatok 2.

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Vargha András Károli Gáspár Református Egyetem Budapest

Vargha András Károli Gáspár Református Egyetem Budapest Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2010 Iskolai jelentés 10. évfolyam szövegértés Szövegértési-szövegalkotási kompetenciaterület A fejlesztés célja Kommunikáció-központúság Tevékenység centrikusság Rendszeresség Differenciáltság Partnerség

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Szövegértés. Borsos Miklós Általános Iskola OM azonosító: Telephelyi jelentés Telephely kódja: 003. Általános iskola, 6.

Szövegértés. Borsos Miklós Általános Iskola OM azonosító: Telephelyi jelentés Telephely kódja: 003. Általános iskola, 6. Országos kompetenciamérés 12 1a Átlageredmények A telephelyek átlageredményeinek összehasonlítása Az Önök eredményei a városi általános iskolai telephelyek eredményeihez viszonyítva A szignifikánsan jobban,

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

FIT-jelentés :: Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

FIT-jelentés :: Néri Szent Fülöp Katolikus Általános Iskola 1161 Budapest, Béla u. 23. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Néri Szent Fülöp Katolikus Általános Iskola 1161 Budapest, Béla u. 23. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Néri Szent Fülöp Katolikus Általános Iskola 1161 Budapest, Béla u. 23. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

FIT-jelentés :: VÖRÖSMARTY MIHÁLY GIMNÁZIUM 2030 Érd, Széchenyi tér 1. OM azonosító: Intézményi jelentés. 10.

FIT-jelentés :: VÖRÖSMARTY MIHÁLY GIMNÁZIUM 2030 Érd, Széchenyi tér 1. OM azonosító: Intézményi jelentés. 10. FIT-jelentés :: 2013 VÖRÖSMARTY MIHÁLY GIMNÁZIUM 2030 Érd, Széchenyi tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Vörösmarty Mihály Gimnázium (8 évfolyamos gimnázium) (2030 Érd, Széchenyi tér

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

FIT-jelentés :: Érdi Vörösmarty Mihály Gimnázium 2030 Érd, Széchenyi tér 1. OM azonosító: Intézményi jelentés. 10.

FIT-jelentés :: Érdi Vörösmarty Mihály Gimnázium 2030 Érd, Széchenyi tér 1. OM azonosító: Intézményi jelentés. 10. FIT-jelentés :: 2014 Érdi Vörösmarty Mihály Gimnázium 2030 Érd, Széchenyi tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Érdi Vörösmarty Mihály Gimnázium (8 évfolyamos gimnázium) (2030 Érd, Széchenyi

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3. . El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

FIT-jelentés :: Révai Miklós Gimnázium és Kollégium 9021 Győr, Jókai u. 21. OM azonosító: Intézményi jelentés. 10.

FIT-jelentés :: Révai Miklós Gimnázium és Kollégium 9021 Győr, Jókai u. 21. OM azonosító: Intézményi jelentés. 10. FIT-jelentés :: 2012 Révai Miklós Gimnázium és Kollégium 9021 Győr, Jókai u. 21. Létszámadatok A telephelyek kódtáblázata A 001 - Révai Miklós Gimnázium és Kollégium (6 évfolyamos gimnázium) (9021 Győr,

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2011 Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. Létszámadatok A telephelyek kódtáblázata A 001 - Kós Károly Szakképző Iskola (szakközépiskola) (2030 Érd, Ercsi u. 8.) B 001 - Kós

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

FIT-jelentés :: Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. OM azonosító:

FIT-jelentés :: Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. OM azonosító: FIT-jelentés :: 2012 Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. Létszámadatok A telephelyek kódtáblázata A 001 - Szent Imre Általános Iskola, Gimnázium

Részletesebben

FIT-jelentés :: Klebelsberg Kuno Általános Iskola és Gimnázium 1028 Budapest, Szabadság u. 23. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Klebelsberg Kuno Általános Iskola és Gimnázium 1028 Budapest, Szabadság u. 23. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Klebelsberg Kuno Általános Iskola és Gimnázium 1028 Budapest, Szabadság u. 23. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

FIT-jelentés :: Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: Telephely kódja: 005

FIT-jelentés :: Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. OM azonosító: Telephely kódja: 005 FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Pázmány Péter Utcai Óvoda és Általános Iskola 7634 Pécs, Pázmány Péter u. 27. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

FIT-jelentés :: Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. OM azonosító: Telephely kódja: 004. Telephelyi jelentés

FIT-jelentés :: Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. OM azonosító: Telephely kódja: 004. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

FIT-jelentés :: Ady Endre-Bay Zoltán Középiskola és Kollégium 5720 Sarkad, Vasút u. 2. OM azonosító: Intézményi jelentés. 10.

FIT-jelentés :: Ady Endre-Bay Zoltán Középiskola és Kollégium 5720 Sarkad, Vasút u. 2. OM azonosító: Intézményi jelentés. 10. FIT-jelentés :: 2012 Ady Endre-Bay Zoltán Középiskola és Kollégium 5720 Sarkad, Vasút u. 2. Létszámadatok A telephelyek kódtáblázata A 001 - Ady Endre-Bay Zoltán Középiskola és Kollégium (4 évfolyamos

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2011 Gimnázium, Informatikai, Közgazdasági, Nyomdaipari Szakközépiskola és Szakiskola 3300 Eger, Mátyás Király út 165. Létszámadatok A telephelyek kódtáblázata A 001 - Gimnázium, Informatikai,

Részletesebben

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása

Kompetencia 2012. 6.osztály MATEMATIKA. Az intézmények átlageredményeinek összehasonlítása Kompetencia 2012 6.osztály MATEMATIKA Átlageredmények Az intézmények átlageredményeinek összehasonlítása - a grafikonon a különböző iskolák átlag eredményei követhetők nyomon standardizált képességponthoz

Részletesebben

FIT-jelentés :: Olcsai-Kiss Zoltán Általános Iskola 9900 Körmend, Thököly u. 31. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Olcsai-Kiss Zoltán Általános Iskola 9900 Körmend, Thököly u. 31. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Olcsai-Kiss Zoltán Általános Iskola 9900 Körmend, Thököly u. 31. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek

Részletesebben

FIT-jelentés :: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2015 Xántus János Két Tanítási Nyelvű, Gyakorló Gimnázium és Idegenforgalmi Szakközépiskola, Szakiskola és Szakképző Iskola 1055 Budapest, Markó utca 18-20. Létszámadatok A telephelyek

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

Asszociációs szabályok

Asszociációs szabályok Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában

Részletesebben

FIT-jelentés :: Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. OM azonosító:

FIT-jelentés :: Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. OM azonosító: FIT-jelentés :: 2015 Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. Létszámadatok A telephelyek kódtáblázata A 002 - Szegedi Műszaki Középiskola Csonka

Részletesebben

Bevezetés a statisztikába

Bevezetés a statisztikába Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 9. Bevezetés a statisztikába Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

FIT-jelentés :: Trefort Ágoston Kéttannyelvű Középiskola 1191 Budapest, Kossuth tér 12. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Trefort Ágoston Kéttannyelvű Középiskola 1191 Budapest, Kossuth tér 12. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 10. évfolyam :: Szakközépiskola Trefort Ágoston Kéttannyelvű Középiskola 1191 Budapest, Kossuth tér 12. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek

Részletesebben

Matematikai statisztikai elemzések 3.

Matematikai statisztikai elemzések 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR

Részletesebben

FIT-jelentés :: Hunyadi János Gimnázium és Szakközépiskola 9300 Csorna, Soproni út 97. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Hunyadi János Gimnázium és Szakközépiskola 9300 Csorna, Soproni út 97. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 10. évfolyam :: 4 évfolyamos gimnázium Hunyadi János Gimnázium és Szakközépiskola 9300 Csorna, Soproni út 97. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

SZÓJEGYZÉK. az Országos kompetenciaméréshez

SZÓJEGYZÉK. az Országos kompetenciaméréshez SZÓJEGYZÉK az Országos kompetenciaméréshez 5-ös percentilis Olyan érték, amelynél a megfigyelt értékek 5%-a kisebb, 95%-a pedig nagyobb. 25-ös percentilis Olyan érték, amelynél a megfigyelt értékek 25%-a

Részletesebben

FIT-jelentés :: Széchenyi István Gimnázium és Szakközépiskola 7621 Pécs, Király u. 44. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Széchenyi István Gimnázium és Szakközépiskola 7621 Pécs, Király u. 44. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 10. évfolyam :: Szakközépiskola Széchenyi István Gimnázium és Szakközépiskola 7621 Pécs, Király u. 44. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Intézményi jelentés. 10. évfolyam. Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u OM azonosító:

Intézményi jelentés. 10. évfolyam. Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u OM azonosító: FIT-jelentés :: 2010 Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u. 2-4. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2008 10. évfolyam :: Szakiskola Csonka János Műszaki Szakközépiskola és Szakiskola 6726 Szeged, Temesvári krt. 38. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Nyugat-Magyarországi Egyetem Öveges Kálmán Gyakorló Általános Iskola 9022 Győr, Gárdonyi u. 2-4. Matematika Országos kompetenciamérés 1 1 Átlageredmények

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

FIT-jelentés :: Kossuth Lajos Közgazdasági és Humán Szakközépiskola 2800 Tatabánya, Cseri u. 35. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Kossuth Lajos Közgazdasági és Humán Szakközépiskola 2800 Tatabánya, Cseri u. 35. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2008 10. évfolyam :: Szakközépiskola Kossuth Lajos Közgazdasági és Humán Szakközépiskola 2800 Tatabánya, Cseri u. 35. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

FIT-jelentés :: Vendéglátó, Idegenforgalmi és Kereskedelmi Baptista Középiskola és Szakiskola 1078 Budapest, Hernád utca 3. OM azonosító:

FIT-jelentés :: Vendéglátó, Idegenforgalmi és Kereskedelmi Baptista Középiskola és Szakiskola 1078 Budapest, Hernád utca 3. OM azonosító: FIT-jelentés :: 2015 Vendéglátó, Idegenforgalmi és Kereskedelmi Baptista Középiskola és Szakiskola 1078 Budapest, Hernád utca 3. Létszámadatok A telephelyek kódtáblázata A 001 - Vendéglátó, Idegenforgalmi

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben