Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat"

Átírás

1 Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás Orvosi fizika és statisztika I. előadás

2 Főbb pontok Két diszkrét változó függetlenségének vizsgálata Khi-négyzet próba függetlenségvizsgálatra Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Fisher-féle egzakt teszt függetlenségvizsgálatra Khi-négyzet próba illeszkedésvizsgálatra Orvosi fizika és statisztika I. előadás

3 Bevezetés Klinikai kutatások során gyakran felmerülő kérdés, hogy két diszkrét változó között van-e kapcsolat. Példák: Az influenzás megbetegedések aránya függ-e az oltóanyag típusától? A betegség kimenetele függ-e a kezelés típusától? Van-e kapcsolat a HIV fertőződések és a STD (szexuálisan terjedő betegségek) között? Orvosi fizika és statisztika I. előadás

4 Kontingencia táblázat Egy olyan táblázat, mely a megfigyelt gyakoriságokat tartalmazza, a két változó alapján csoportosítva. Az egyik változó kimenetelei kerülnek a sorokba, a másik váltózóé pedig az oszlopokba. B 1 B 2... B c Sorösszeg A 1 O 11 O O 1c O 1+ A 2 O 21 O O 2c O A r O r1 O r2... O rc O r+ Oszlopösszeg O +1 O O +c n Legyenek a két diszkrét változó (X, Y ) értékei: x 1, x 2,... x r és y 1, y 2,... y c az A 1, A 2,... A r illetve B 1, B 2,... B c kimenetelek esetén. n a megfigyelések száma O i+ = O +j = c j=1 r i=1 O ij az A i, i = 1, 2,..., r esemény gyakorisága (sorösszegek) O ij az B j, j = 1, 2,..., c események gyakorisága (oszlopösszegek) Orvosi fizika és statisztika I. előadás

5 Várt gyakoriságok A relatív gyakorisági eloszlását a sorösszegeknek marginális eloszlásnak hívjuk. Tegyük fel, hogy a két változó független, ekkor az eloszlások minden oszlop esetén azonosak. Minden oszlopra a marginális eloszlást feltételezve, kapjuk a várt gyakoriságokat: E ij = O i+ O +j n várt gyakoriság = sorösszeg oszlopösszeg elemszám Orvosi fizika és statisztika I. előadás

6 Várt gyakoriságok várt gyakoriság = sorösszeg oszlopösszeg elemszám B 1 B 2... B c Sorösszeg A 1 E 11 E E 1c O 1+ A 2 E 21 E E 2c O A r E r1 E r2... E rc O r+ Oszlopösszeg O +1 O O +c n Orvosi fizika és statisztika I. előadás

7 Főbb pontok Két diszkrét változó függetlenségének vizsgálata Khi-négyzet próba függetlenségvizsgálatra Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Fisher-féle egzakt teszt függetlenségvizsgálatra Khi-négyzet próba illeszkedésvizsgálatra Orvosi fizika és statisztika I. előadás

8 Khi-négyzet próba függetlenségvizsgálatra Célja: Annak a vizsgálata, hogy populációban van-e két diszkrét változó közötti kapcsolat. Feltétele: A várt gyakoriságok legfeljebb 20%-a kisebb 5-nél. (Kis táblázat esetén ez azt jelenti, hogy a várt gyakoriságok mindegyike legalább 5.) Orvosi fizika és statisztika I. előadás

9 Khi-négyzet próba függetlenségvizsgálatra Hipotézisek: H0 : a két változó független. P(A i B j ) = P(A i ) P(B j ) H1 : a két változó között van összefüggés. Próbastatisztika: χ 2 = r i=1 j=1 c (O ij E ij ) 2 Ha két változó független, a próbastatisztika χ 2 eloszlást követ (r 1)(c 1) szabadsági fokkal E ij Orvosi fizika és statisztika I. előadás

10 Khi-négyzet eloszlás Ha X 1, X 2... X m független, standard normális eloszlású véletlen változók, akkor X1 2 + X X m 2 = m khi-négyzet (χ 2 ) eloszlást követ m szabadsági fokkal. i=1 X 2 i df=2 df=3 df=5 df= Orvosi fizika és statisztika I. előadás

11 Khi-négyzet eloszlás α α elfogadási tartomány kritikus érték elvetési tartomány Orvosi fizika és statisztika I. előadás

12 Khi-négyzet próba függetlenségvizsgálatra Döntés próbastatisztika alapján: Ha χ 2 < χ 2 table, a null-hipotézist elfogadjuk Ha χ 2 > χ 2 table, a null-hipotézist elvetjük. Döntés p-érték alapján Ha p > α, a null-hipotézist elfogadjuk Ha p < α, a null-hipotézist elvetjük p value χ 2 A nullhipotézist elfogadjuk 2 χ table α A nullhipotézist elvetjük α 2 χ table χ 2 p value Orvosi fizika és statisztika I. előadás

13 Khi-négyzet próba függetlenségvizsgálatra -Példa 1 Van e kapcsolat az influenzás megbetegedések száma és a vakcina típusa között? Influenzás Nem lett influenzás Total Csak szezonális 43 (15.36%) 237 (84.64%) 280 (100%) Csak H1N1 52 (20.80%) 198 (79.20%) 250 (100%) Kombinált 25 (9.26%) 245 (90.74%) 270 (100 %) Total nem influenzás influenzás Orvosi fizikacsak és statisztika szezonális I. Csak előadás H1N Kombinált 13

14 Khi-négyzet próba függetlenségvizsgálatra -Példa 1 Számoljuk ki a várt gyakoriságokat várt gyakoriság = sorösszeg oszlopösszeg elemszám Influenzás Nem lett influenzás Total Csak szezonális Csak H1N1 Kombinált = = = = = = Total Orvosi fizika és statisztika I. előadás

15 Khi-négyzet próba függetlenségvizsgálatra -Példa 1 Minden cella esetén számoljuk ki a reziduálok négyzetét: (O ij E ij ) 2 megfigyelt gyakoriságok: E ij Influenzás Nem lett influenzás Total Csak szezonális Csak H1N Kombinált Total reziduálok négyzete: Influenzás Nem lett influenzás várt gyakoriságok: Csak szezonális Csak H1N1 Kombinált (43 42) 2 = ( ) 2 = ( ) 2 = ( ) 2 = ( ) 2 = ( ) 2 = Influenzás Nem lett influenzás Total Csak szezonális Csak H1N Kombinált Total Adjuk össze a reziduálok négyzeteit, hogy megkapjuk a próbastatisztikát: χ 2 = r c (O ij E ij ) 2 E ij = i=1 j= = Orvosi fizika és statisztika I. előadás

16 Khi-négyzet próba függetlenségvizsgálatra -Példa 1 Adjuk meg a kritikus értéket: α = 0.05, df = (3 1) (2 1) = 2 χ 2 kritikus értékei df χ 2 table = 5.99 Döntés próbastatisztika alapján: > 5.99 (χ 2 > χ 2 table) H 0 -t elvetjük, a influenzás megbetegedések aránya függ a vakcina típusától. Orvosi fizika és statisztika I. előadás

17 Khi-négyzet próba függetlenségvizsgálatra -Példa 1 R-rel számolva: > chi=matrix(c(43,52,25,237,198,245),ncol=2,byrow=false);ch [,1] [,2] [1,] [2,] [3,] > chisq.test(chi) Pearson s Chi-squared test data: chi X-squared = , df = 2, p-value = p = < 0.05, H 0 -t elvetjük. Orvosi fizika és statisztika I. előadás

18 Khi-négyzet próba speciális eset: két dichotóm változó B 1 B 2 Sorösszeg A 1 O 11 = a O 12 = b O 1+ = a + b A 2 O 21 = c O 22 = d O 2+ = c + d Oszlopösszeg O +1 = a + c O +2 = b + d n = a + b + c + d A próbastatisztika képlete: χ 2 = r c i=1 j=1 (O ij E ij ) 2 E ij = n(ad bc) 2 (a + b)(c + d)(a + c)(b + d) Orvosi fizika és statisztika I. előadás

19 Khi-négyzet próba függetlenségvizsgálatra -Példa 2 Van-e kapcsolat a betegség kimenetele és a kezelés típusa között. megfigyelt gyakoriságok: Beteg Meggyógyult Sorösszeg A kezelés B kezelés Oszlopösszeg várt gyakoriságok: Beteg Meggyógyult Sorösszeg A kezelés gyógyult beteg B kezelés A kezelés B kezelés Oszlopösszeg Teljesül a χ 2 próba feltétele. Orvosi fizika és statisztika I. előadás

20 Khi-négyzet próba függetlenségvizsgálatra Példa 2 H 0 : A kimenetel és a kezelés típusa független H 1 : Van összefüggés a kimenetel és a kezelés típusa között Próbastatisztika: χ 2 = n(ad bc) ( )2 = (a + b)(c + d)(a + c)(b + d) Kritikus érték: χ 2 table = 3.84 df = (2 1)(2 1) = 1 χ 2 kritikus értékek = 0.79 df Döntés: χ 2 < χ 2 table, H 0-t elfogadjuk. A betegség kimenetele független a kezelés típusától. Orvosi fizika és statisztika I. előadás

21 Főbb pontok Két diszkrét változó függetlenségének vizsgálata Khi-négyzet próba függetlenségvizsgálatra Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Fisher-féle egzakt teszt függetlenségvizsgálatra Khi-négyzet próba illeszkedésvizsgálatra Orvosi fizika és statisztika I. előadás

22 Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Abban az esetben, a szabadsági fok 1 (2 2-es táblázat), a khinégyzet próba próbastatisztikája pontosabban számolható, ha különböző korrekciókat alkalmazunk. Az egyik leggyakrabban alkalmazott korrekció,a Yates-féle folytonossági korrekció Ezt a korrekció csak két dichotóm változó közötti kapcsolat elemzése esetén használható. Próbastatisztika Yates-féle korrekcióval: χ 2 = r c i=1 j=1 ( O ij E ij 1 2 )2 E ij = n( ad bc 1 2 n)2 (a + b)(c + d)(a + c)(b + d) Orvosi fizika és statisztika I. előadás

23 Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Példa 2 Van-e kapcsolat a betegség kimenetele és a kezelés típusa között. megfigyelt gyakoriságok: Beteg Meggyógyult Sorösszeg A kezelés B kezelés Oszlopösszeg várt gyakoriságok: Beteg Meggyógyult Sorösszeg A kezelés gyógyult beteg B kezelés A kezelés B kezelés Oszlopösszeg Teljesül a χ 2 próba feltétele. Orvosi fizika és statisztika I. előadás

24 Khi-négyzet próba függetlenségvizsgálatra -Példa 2 Yates korrekcióval H 0 : A kimenetel és a kezelés típusa független H 1 : Van összefüggés a kimenetel és a kezelés típusa között Próbastatisztika: χ 2 = n( ad bc 1 2 n)2 (a + b)(c + d)(a + c)(b + d) = 100 ( ) Kritikus érték: χ 2 table = 3.84 df = (2 1)(2 1) = 1 χ 2 kritikus értékei = df Döntés: χ 2 < χ 2 table, H 0-t elfogadjuk. Orvosi fizika és statisztika I. előadás

25 Khi-négyzet próba függetlenségvizsgálatra -Példa 2 Yates korrekcióval R-rel számolva: > t2=matrix(c(5,8,45,42),ncol=2);t [,1] [,2] [1,] 3 7 [2,] 5 10 > chisq.test(t2) Pearson s Chi-squared test with Yates continuity correction data: t2 X-squared = , df = 1, p-value = p = > 0.05, H 0 -t elfogadjuk. Orvosi fizika és statisztika I. előadás

26 Főbb pontok Két diszkrét változó függetlenségének vizsgálata Khi-négyzet próba függetlenségvizsgálatra Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Fisher-féle egzakt teszt függetlenségvizsgálatra Khi-négyzet próba illeszkedésvizsgálatra Orvosi fizika és statisztika I. előadás

27 Fisher-féle egzakt teszt Fisher-féle egzakt tesztet egy populáción belül két diszkrét változó közötti összefüggés vizsgálatára használjuk Habár gyakorlatban csak kis mintaelemszám esetén használjuk, bármekkora minta esetén is pontos értéket ad Hipotézisek: H0 : a két változó független. H1 : a két változó között van kapcsolat NINCS próbastatisztika, közvetlenül p-értéket számolunk p-érték képlete: p = p i p i a megfigyelt és azon átrendezett gyakorisági táblázatok valószínűsége, melyek legalább annyira eltérők, mint a megfigyelt táblázat. (a + c)!(b + d)!(a + b)!(c + d)! 2 2 táblázat estén a képlete = n!a!b!c!d! Orvosi fizika és statisztika I. előadás

28 Fisher-féle egzakt teszt Példa 3 Van-e kapcsolat a HIV fertőződések és a STD (szexuális úton terjedő betegségek) között? Megfigyelt gyakoriságok: HIV fertőzött Nem HIV fertőzött Total STD Nem STD Total Várt gyakoriságok: HIV fertőzött Nem HIV fertőzött Total STD Nem STD HIV fertozött STD Nem HIV fertozött Nem STD Total A χ 2 próba feltétele NEM teljesül Fisher-féle egzakt teszt H 0 : Nincs kapcsolat a HIV fertőződések és a STD között. H 1 : Van kapcsolat a HIV fertőződések és a STD között. Orvosi fizika és statisztika I. előadás

29 Fisher-féle egzakt teszt Példa 3 megfigyelt gyakoriságok: HIV fertőzött Nem HIV fertőzött Total STD Nem STD Total p 1 = 10! 15! 8! 17! 3! 7! 5! 10! 25! = lehetséges átrendezések: HIV fertőzött Nem HIV fertőzött Total STD Nem STD Total p 2 = 10! 15! 8! 17! 2! 8! 6! 9! 25! = HIV fertőzött Nem HIV fertőzött Total STD Nem STD Total p 3 = 10! 15! 8! 17! 1! 9! 7! 8! 25! = HIV fertőzött Nem HIV fertőzött Total STD Nem STD Total p 4 = 10! 15! 8! 17! 0! 10! 8! 7! 25! = Orvosi fizika és statisztika I. előadás

30 Fisher-féle egzakt teszt Példa 3 Fisher-féle p-érték: p = = H 0 -t elfogadjuk, mert p > α. Nincs kapcsolat a HIV fertőződések és a STD között. Orvosi fizika és statisztika I. előadás

31 Fisher-féle egzakt teszt Példa 3 R-rel számolva: > t=matrix(c(3,5,7,10),ncol=2);t [,1] [,2] [1,] 3 7 [2,] 5 10 > chisq.test(t) Pearson s Chi-squared test with Yates continuity correction data: t X-squared = 0, df = 1, p-value = Warning message: In chisq.test(t) : Chi-squared approximation may be incorrect > fisher.test(t,alternative="less") Fisher s Exact Test for Count Data data: t p-value = alternative hypothesis: true odds ratio is less than 1 95 percent confidence interval: sample estimates: odds ratio p = > 0.05, H 0-t elfogadjuk. Orvosi fizika és statisztika I. előadás

32 Főbb pontok Két diszkrét változó függetlenségének vizsgálata Khi-négyzet próba függetlenségvizsgálatra Khi-négyzet próba függetlenségvizsgálatra Yates korrekcióval Fisher-féle egzakt teszt függetlenségvizsgálatra Khi-négyzet próba illeszkedésvizsgálatra Orvosi fizika és statisztika I. előadás

33 Khi-négyzet próba illeszkedésvizsgálatra Az illeszkedésvizsgálat célja annak a meghatározása, hogy a mintaelemek adott eloszlású populációból származnak-e. H 0 : az X változó eloszlása az adott eloszlás H 1 : az X változó eloszlása nem az adott eloszlás megfigyelt és várt gyakorisági táblázat: A 1 A 2... A c Total Megfigyelt gyakoriságok: O 1 O 2... O c n Várt gyakoriságok: E 1 E 2... E c n Próbastatisztika: χ 2 = (O i E i ) 2 E i df = c 1 (a lehetséges kimenetelek száma-1) χ 2 < χ 2 table, elfogadjuk a null-hipotézist χ 2 > χ 2 table, elvetjük a null-hipotézist Orvosi fizika és statisztika I. előadás

34 Khi-négyzet próba illeszkedésvizsgálatra -Példa 4 Szeretnénk tesztelni, hogy a dobókockánk szabályos-e. dobtunk a dobókockával. 120-szor Total Megfigyelt gyakoriságok: Várt gyakoriságok: H 0 : A kocka szabályos minden kimenetel valószínűsége p i = 1 6 H 1 : A kocka nem szabályos legalább egy kimenetel valószínűsége eltér 1 6 -tól. Orvosi fizika és statisztika I. előadás

35 Khi-négyzet próba illeszkedésvizsgálatra -Példa 4 Próbastatisztika: 6 χ 2 (k i 20) 2 = = 20 i=1 (25 20) 2 + (18 20) 2 + (21 20) 2 + (17 20) 2 + (20 20) 2 + (19 20) 2 = 2 20 df = 6 1 = 5 Kritikus érték (táblázatból): χ 2 table = Döntés: χ 2 < χ 2 table 2 < 11.07, H 0 -t elfogadjuk, nincs elegendő bizonyítékunk arra, hogy azt állítsuk, hogy a kocka nem szabályos. Orvosi fizika és statisztika I. előadás

36 Khi-négyzet próba illeszkedésvizsgálatra -Példa 5 Szeretnénk tesztelni, hogy a dobókockánk szabályos-e. dobtunk a dobókockával. 120-szor Total Megfigyelt gyakoriságok Várt gyakoriságok H 0 : A kocka szabályos minden kimenetel valószínűsége p i = 1 6 H 1 : A kocka nem szabályos legalább egy kimenetel valószínűsége eltér 1 6 -tól. Orvosi fizika és statisztika I. előadás

37 Khi-négyzet próba illeszkedésvizsgálatra -Példa 5 Próbastatisztika: 6 χ 2 (k i 20) 2 = = 20 i=1 (5 20) 2 + (18 20) 2 + (21 20) 2 + (17 20) 2 + (20 20) 2 + (39 20) 2 df = 6 1 = 5 Kritikus érték (táblázatból): χ 2 table = Döntés: χ 2 > χ 2 table 30 > 11.07, H 0 -t elvetjük, a kocka nem szabályos. 20 = 30 Orvosi fizika és statisztika I. előadás

38 Khi-négyzet próba illeszkedésvizsgálatra -Példa 6 Egy adott betegségben szenvedő 200 beteget egy bizonyos szerrel kezeltünk (ami nem közvetlenül kapcsolódik a betegségéhez). A betegség esetén a gyógyulási arány 50%. Szeretnénk vizsgálni, hogy a gyógyult és nem gyógyult betegek aránya azonos-e. Vagyis a kezelés befolyásolja-e a betegségből való felgyógyulást. Gyógyult Nem gyógyult Total Megfigyelt gyakoriságok Várt gyakoriságok H 0 : A kezelés nincs hatással a gyógyulásra p i = 1 2 H 1 : A kezelés hatással van a gyógyulásra legalább az egyik valószínűség eltér 1 2 től. Orvosi fizika és statisztika I. előadás

39 Khi-négyzet próba illeszkedésvizsgálatra -Példa 6 Próbastatisztika: 2 χ 2 (k i 100) 2 = 100 i=1 = ( )2 + (50 100) = 50 df = 2 1 = 1 Kritikus érték (táblázatból): χ 2 table = p < 0.05 Döntés: p < 0.05 (vagy χ 2 > χ 2 table, 50 > 3.841), H 0 -elvetjük, a kezelésnek van hatása a betegségből való felgyógyulásra. Orvosi fizika és statisztika I. előadás

40 Ismétlő kérdések A függetlenségvizsgálat célja, null hipotézise Gyakorisági táblázat Megfigyelt és várható gyakoriságok A khi-négyzet próba feltétele Szabadságfok számítása khi-négyzet próba végrehajtásakor A khi-négyzet próba végrehajtása, döntés táblázat alapján és p-érték alapján 2x2-es táblázatok kiértékelése khi-négyzet próbával Fisher-féle egzakt teszt Az illeszkedésvizsgálat célja, nullhipotézise Orvosi fizika és statisztika I. előadás

41 Köszönöm a figyelmet!! Orvosi fizika és statisztika I. előadás

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

V. Gyakorisági táblázatok elemzése

V. Gyakorisági táblázatok elemzése V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat. khi-(χ 2 )-négyzet próba

A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat. khi-(χ 2 )-négyzet próba A khi-négyzet próba és alkalmazásai: illeszkedésés függetlenségvizsgálat khi-(χ 2 )-négyzet próba Khi-(χ 2 )-négyzet próba A χ 2 -négyzet próbát leggyakrabban a következő problémák megoldásánál alkalmazzák:

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testing) A statisztikának egyik célja lehet a populáció tulajdonságainak, ismeretlen paramétereinek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus

Részletesebben

11.Négymezős táblázatok. Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR)

11.Négymezős táblázatok. Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR) .Négymezős táblázatok Egyezés mérése: kappa statisztika Kockázat becslés: esélyhányados (OR) Kockázat becslés: relatív kockázat (RR) Az egyezés mérése:cohen s Kappa Kappa: az egyezés mérése két nominális

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ2próbával MIRE SZOLGÁL? Illeszkedés-vizsgálat Ryan-Joiner próbával A val.-i vált. eloszlása egy adott

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis.

Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis. Kapcsolat vizsgálat II: kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. ROC analízis. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati

Részletesebben

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében Kiegészítő elemzés A rádió és televízió műsorszórás használatára a 14 éves

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Khi-négyzet próbák. Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Khi-négyzet próbák. Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Khi-négyzet próbák Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Khi-négyzet próba Példa Az elleni oltóanyagok különböző típusainak hatását vizsgálták abból a szempontból, hogy

Részletesebben

BME Nyílt Nap november 21.

BME Nyílt Nap november 21. Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Asszociációs szabályok

Asszociációs szabályok Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21. Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel statisztikai és nyelvi eszközökkel Témalabor 2. beszámoló Témavezet : Vámos Gábor 2009. január 9. Mir l lesz szó? A cél: tesztelni és tanítani 1 A cél: tesztelni és tanítani Eszközök és célok Szókincs

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke)

Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke) Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke) Kétirányú osztályozás (függetlenség és homogenitás) Speciális eset: 2 2-es táblázatok Három-irányú osztályozás 29. lecke Függetlenség-

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA Czenky Márta MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA ABSZTRAKT Saját oktatói gyakorlatunkban a Moodle rendszer használata az évek során kiszorította az elméleti ismeretek számonkérésében a papír

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Biztosítói káradatok matematikai modellezése

Biztosítói káradatok matematikai modellezése Biztosítói káradatok matematikai modellezése Szakdolgozat Készítette: Sebők Tamás Matematika B.Sc., Matematikai elemző szakirány Témavezető: Zempléni András, egyetemi docens Valószínűségelméleti és Statisztika

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

A pont példájának adatai C1 C2 C3 C

A pont példájának adatai C1 C2 C3 C A 3..5 pont példájának adatai C C C3 C4 0.00000 0.00000 0.00000 0.00000 0.00000 0.96 0.003 0.437 0.458 0.7336 0.00785 0.34957 0.565 0.3308 0.0096 0.43840 0.979 0.343 0.0440 0.44699 0.3008 0.370 0.083 0.44986

Részletesebben

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA

Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Biostatisztika Hipotézisvizsgálatok, egy- és kétoldalas próbák, statisztikai hibák, ANOVA Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat

Részletesebben