A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai"

Átírás

1 szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező: - De hisze ez olya, mit egy hipotézisvizsgálat! s F s z F-próba szabadsági fokai Számítógéppel számolva, bármelyik lehet. Táblázatot haszálva, viszot midig a agyobb. (Eek megfelelőe kell a sz.f.- okat figyelembe vei) De melyik variacia legye a számlálóba? dötés. Ha a véletle eltérés valószíűsége kicsi (p a) elvetük a ullhipotézist.. Ha a véletle eltérés valószíűsége agy (p > a) megtartuk a ullhipotézist. F táblázat Számítógép: F-próba

2 Ha a két szórás em azoos! Korrekciók: Ma-Whitey U-próba Példa: hatásos-e a fefáás-csillapító? Doktor úr! Csiálo valamit. Hogya mérhető a hatás? szabadsági fokok korrekcióa. a t-érték korrekcióa. Kísérlet Eredméyek I. csoport: (eset) aszpirit kap II. csoport: (kotroll) placebo-t kap (hatóayag élküli tabletta) érték 3, 4, 4, 4,3 4,5 5, 5,3 5,4 5,5 Ez egy ökéyes, folytoos skála. rag érték 5,6 6, 6, 6,5 7,5 8,3 8,3 8,4 9, rag 0,5, ,5 5,5 7 8

3 ullhipotézis megfogalmazása ragok összege (avagy a kis Gauss esete a taárral) a gyógyszer em hatásos. két csoport azoos populációhoz tartozik. Gyerekek! dátok össze a számokat -től százig. Miért adam össze? Köyebbe is kiszámolható! + 00 = = 0 i i ragok összege agy átalakítás T a ragok összege az I. csoportba, véletle eloszlás eseté a várható értéke: Nullhipotézis: az ettől való eltérés véletle. ( elem, amelyek átlaga = ( + +)/) T z Ha elég agy: s / z változó stadard ormális eloszlású. Kis : egy U-eloszlás íra le a véletle eltérés valószíűségét. s 3

4 Dötés Variacia-aalízis (NOV) kiszámolt z-érték: 3,4. Ez agyobb, mit az,96. Következtetés: a ullhipotézist elvetük. Va külöbség a csoportok között? Nics, az eltérés csak véletle! Ez a ullhipotézis. B Kiszámolt p-érték < 0,%. Következtetés hasoló a fetihez. C Több csoport variacia összetevői Emlékeztető: csoportokat kezelhetük külö-külö és együtt! variacia aráyos az átlagtól való eltérések égyzetösszegével! Csoportátlag: a csoport elemeiből számolt átlag. Nagyátlag: a teles adathalmazból számolt átlag. Ha a csoportok eletőse külöbözek egymástól, a agyátlagtól való átlagos eltérések óval agyobbak, mit a csoporto belül a csoportátlagtól való eltérések! (, xi, x) ( xi x ) ( x x) csoporto belüli (pl. véletle) eltérés x - csoportok közötti külöbség x - agyátlag csoport átlag 4

5 variaciák kiszámolása ullhipotézis égyzetösszeg szab. fok variacia csoportok között ics külöbség. csoportok közötti eltérés csupá a véletle műve. teles SST xi, x N- i, x x csoportok között csoporto belül agyátlag -edik csoportátlag x x SS SS SS SS E T k- N-k SS MS k SSE MSE N k N összes elem száma k csoportok száma Dötés: a csoportok közötti és a csoporto belüli variaciák összehasolítása alapá. Hogya hasolítuk össze? Variaciák összehasolítása? Ilyeről már volt szó! MS F MS Valóba, a kétmitás t-próba esetébe. E dötés. Ha a véletle eltérés valószíűsége kicsi (p(f F krit ) a) elvetük a ullhipotézist.. Ha a véletle eltérés valószíűsége agy (p(f F krit ) > a) megtartuk a ullhipotézist. ( dötés utá, ha szükségesek tartuk, csiálhatuk t-próbákat) 5

6 z NOV feltétele Kruskal-Wallis próba feladat: több egymástól függetle csoport összehasolítása. változó ormális eloszlású legye. szórás a csoportokba azoosak tekithető. Ha a változó em ormális eloszlású! z adatokat a csoportoktól függetleül ragsoroluk! Ragsorolás ullhipotézis. csoport. csoport 3. csoport csoportok között ics külöbség. ragok átlaga közötti eltérés csupá a véletle műve. elem rag ,5 7,5 9 0,5,5 csoport elemszám ragok összege 4 7, ,5 6

7 Milye eloszlást haszáluk? H változó c -eloszlást követ! Ri H 3N N N kkor ö az átalakítás! i i Emlékeztető: c -eloszlás ormális eloszlású változók égyzetösszege eseté lép fel. c -eloszlás szabadsági fokok száma = csoportok száma - N az elemek száma R i a ragok összege az i-edik csoportba i az elemek száma az i-edik csoportba H értéke 0! dötés. Ha a véletle eltérés valószíűsége kicsi (p(c c krit) a) elvetük a ullhipotézist.. Ha a véletle eltérés valószíűsége agy (p(c c krit) > a) megtartuk a ullhipotézist. Példa ÖSSZESÍTÉS Csoportok Darabszám Összeg Átlag Variacia Oszlop ,5 0,9667 Oszlop Oszlop ,8,7 VRINCINLÍZIS Téyezők SS df MS F p-érték F krit. Csoportok között 89, , ,787 0,047 4,56495 Csoporto belül 69,55 9 7,77778 Összese 58, a = 0,05 p = 0,04 Dötés: elvetük a ullhipotézist, a példa alapá a csoportok szigifikása külöbözek egymástól. 7

8 Csoport Elemszám ( i ) 4 7, ,5 Példa Ragok összege (R i ) 7,5 4,97 4 sz.f. = 3 = a = 0,05 p = 0, ,5 3 5 Ri H 3N N N 3 Dötés: N = megtartuk a ullhipotézist, a példa alapá a csoportok em külöbözek egymástól szigifikása. i i NOV a = 0,05 p = 0,04 Dötés: elvetük a ullhipotézist. Hasolítsuk össze!. csoport. csoport 3. csoport !!! Kruskall-Wallis próba a = 0,05 p = 0,083 Dötés: megtartuk a ullhipotézist. Hipotézis vizsgálat? Felállítuk a ullhipotézist. Keresük egy ismert eloszlású változót. z eloszlás alapá kiszámoluk a véletle eltérés valószíűségét. Ha ez kisebb mit a szigifikacia szit elvetük, ellekező esetbe megtartuk a ullhipotézist. Eyi! 8

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű

Részletesebben

ű ű ű Ú ű ű Ó ű Ó Ö

ű ű ű Ú ű ű Ó ű Ó Ö Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó

Részletesebben

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű

Részletesebben

ű ű Ó

ű ű Ó ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú

Részletesebben

Ó

Ó Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü

Részletesebben

Ó Ó ü ú ú

Ó Ó ü ú ú ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS Összefüggésvizsgálat, paraméterbecslés A kísérletek sorá a redszer állapotát ellemző paraméterek kapcsolatát vizsgáluk. A yert adatok alapá felállítuk a redszer matematikai

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között.

Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között. Kotigecia táblák. Khi-égyzet tet 1. Függetleségvizsgálat. Illekedésvizsgálat 3. Homogeitásvizsgálat Példa 1 em ő 8 75 13 Ismétlés: változók, mérési skálák típusai 48 49 97 76 14 jeles (5) jó (4) közepes

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Többszempontos variancia analízis. Statisztika I., 6. alkalom

Többszempontos variancia analízis. Statisztika I., 6. alkalom Többszempontos variancia analízis Statisztika I., 6. alkalom Kétszempontos variancia analízis Ha két független változónk van, mely a csoportosítás alapját képezi, akkor kétszempontos variancia analízisrıl

Részletesebben

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő

Részletesebben

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú

Részletesebben

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á

Részletesebben

Ó Ó ú ú ú ú ú É ú

Ó Ó ú ú ú ú ú É ú É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É

Részletesebben

Ú Ú Ü Ü ű ű ű É Ú É ű

Ú Ú Ü Ü ű ű ű É Ú É ű É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű

Részletesebben

ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú

ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú Ü Ú ű ű Ú ű ű ű ű ű Ú ű Ö ű Ö Ú ű Ö Ó Ó Ü ű ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ö ű ű ű Ú Ö ű Ü Ö Ü ű ű ű ű Ü ű ű Ó Ó Ó Ú Ú Ó Ü ű ÓÓ Ó Ó ÓÓ Ó Ú Ö Ó Ó Ó ű ű ű Ó ű ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű Ö

Részletesebben

ű ú ú ű ú ú ú Ó ú ú ű ú ű ű ű ű ű Ó ű

ű ú ú ű ú ú ú Ó ú ú ű ú ű ű ű ű ű Ó ű ú ú ú ú Ü ú ú ű ú ú ú ú ú ú ű ú ú ű ű ű ű ú ú ű ú ú ú Ó ú ú ű ú ű ű ű ű ű Ó ű ű ű ú ú ú ú ű ú ú ú ű ú ű ű Ü ú ű ú ű ú Ú ű ű ú ű ű ű ű Ú Ó Ú Ó Ü Ő Ó Ú Ó ú Ó Ó Ó Ó ú Ó ű ú ú ú ú ú ű ű ű Ó ú ú ú Ú ű ú ú ú

Részletesebben

ű Ü Ö Ú Ü Ü Ü ű ű Ü Ü ű Ö ű Ú Ú Ú Ó Ó Ó Ü ű Ü Ú ű Ű ű ű Ú Ú ű Ó Ú ű Ú ű ű űű ű ű ű Ú ű ű Ú ű Ü Ú Ú ű ű Ó Ú ű Ú ű ű Ü Ü ű ű Ü ű ű ű Ü Ü ű ű Ö ű Ü Ú Ú Ö Ó Ó Ö ű ű ű Ó ű ű ű Ó Ó Ö Ü Ú Ü Ó Ó Ú Ü Ü Ú Ü Ü

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

ú ő ú Ö ú ú ő ő Ó ő ő ő ő

ú ő ú Ö ú ú ő ő Ó ő ő ő ő ő Ö Ö ő ő ő Ó ő ő ú ú ő ő ő ő ű ő ú Ő ű ő ű ú ú ú ő Í ú ú ő ú Ö ú ú ő ő Ó ő ő ő ő ő ő ú ű ű ú Ö ű ű Ö ú ű ű ű ú Ö ő ű ú ú ú ő ű ű ű ű ű Ö ő ő ő ű ú ű ú ő ú ő ű ő ű ú ő ő Ö ő Ó ű Ó ú ő Ó Ö ú ő ű ű Í Ü

Részletesebben

Ó Ó É ü É ü ü

Ó Ó É ü É ü ü É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó

Részletesebben

Ö ü Ö Ó ő Ö

Ö ü Ö Ó ő Ö Ü ú ő ö Í Ü Ö Ö ő Ű Ö ő Ö ü Ö Ó ő Ö ü ö ű Ö ü ő ö ű ő Ö ü ü Ö ü ő Í ő ö ú ő ü ö ö ő Ö Ő Ó ö ö ü ő ő ő ü ü ö ő ő ö ú ü ü ú ü ű ü ö ö ő ő ő ő ő Ö ü ő ö ő Ö ö ü ö ö ő ú ú ű ö ú ü ő ü ö Í ö Ú ő Ö ő ű ú Í ú

Részletesebben