Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János"

Átírás

1 Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Last Revision Date: November 4, 2006 Version 1.25

2 Table of Contents 1 Nemparaméteres próbák: Bevezetés Nemparaméteres próbák előnyei Nemparaméteres próbák hátrányai Az előjel próba 6 3 A Wilcoxon-féle próbák 14 4 A Wilcoxon-féle rang-összeg próba (Mann- Whitney teszt) 16

3 Table of Contents (cont.) 3 5 A Wilcoxon-féle előjeles rangpróba 21 6 A Kruskal-Wallis teszt 30 7 Összehasonĺıtás 37

4 Section 1: Nemparaméteres próbák: Bevezetés 4 1. Nemparaméteres próbák: Bevezetés Az eddigi statisztikai próbákat (pl. z, t, F ) paraméteres próbáknak hívják. Ezek a vizsgált populáció ismeretlen paramétereire vonatkoznak. A populáció eloszlásáról is feltételezéssel éltünk (normalitás). Mi van akkor, ha a populáció eloszlása nem normális? Ilyen esetek kezelésére szolgálnak a nemparaméteres próbák (nonparametric statistics, vagy distribution-free statistics). Olyan hipotéziseket is vizsgálhatunk segítségükkel, amelyekben nem szerepel a populáció egyik paramétere sem.

5 Section 1: Nemparaméteres próbák: Bevezetés Nemparaméteres próbák előnyei 1. Olyankor is alkalmazhatók egy populáció paramétereire, amikor a populáció eloszlása nem normális. 2. Akkor is használhatók, amikor az adatok kategorikusak vagy ordinálisak. 3. Populáció paramétereket nem tartalmazó hipotézisek vizsgálatára is alkalmasak. 4. A legtöbb esetben a számítások egyszerűbbek, mint a paraméteres próbák esetén. 5. Könnyebben megérthetők.

6 Section 1: Nemparaméteres próbák: Bevezetés Nemparaméteres próbák hátrányai 1. Kevésbé érzékenyek, mint a parametrikus módszerek, ha ez utóbbiak alkalmazási feltételei fennállnak. Nagyobb különbség kell a null hipotézis elutasításához. 2. Kevesebb információt használnak, mint a paraméteres tesztek. 3. Kevésbé hatékonyak, mint paraméteres megfelelőjük, ha ez utóbbiak alkalmazási feltételei fennállnak. Azaz, nagyobb mintára van szükség az információvesztés miatt.

7 Section 2: Az előjel próba 7 Ezek alapján érdemes a paraméteres teszteket alkalmazni, ha a feltételei fennállnak. Ha nem, használjuk a megfelelő nemparaméteres tesztet. 2. Az előjel próba Egy populáció mediánjára vonatkozik. A null hipotézisünk: a medián = m 0. Tekintsük sorra a megfigyeléseinket. Ha egy adat nagyobb, mint m 0, rendeljük hozzá a + előjelet; ha kisebb, a előjelet; ha egyenlő m 0 -lal, akkor 0-t.

8 Section 2: Az előjel próba 8 Ezután összehasonĺıtjuk a + és előjelek számát. Ha igaz a null hipotézis, akkor a + és előjelek száma nagyjából egyenlő. Ha nem igaz a null hipotézis, valamelyik előjelből aránytalanul sok van. A próbastatisztika (megfigyelések száma 25): a + és előjelek száma közül a kisebb Kritikus értékek külön táblázatban. Példa. Egy állateledelt árusító üzlet tulajdonosa úgy gondolja, hogy naponta 40 doboz konzervet ad el. Egy 20 nap eladási adataira vonatkozó véletlen minta a következő:

9 Section 2: Az előjel próba 9 Teszteljük a tulajdonos sejtését α = 0.05 szinten. Megoldás. 1. lépés: a hipotézis és az alternatív hipotézis H 0 : medián = 40; H 1 : medián lépés: A kritikus érték meghatározása.

10 Section 2: Az előjel próba 10 Az összes + és előjel száma: n = 18; α = 0.05; kétoldali ellenhipotézis. Kritikus érték: 4 (lásd a következő táblázatot). 3. lépés: A próbastatisztika értékének meghatározása. 3 db +, 15 db, így az érték a kisebbik: lépés: A döntés. Mivel 3 < 4, így elvetjük a null hipotézist.

11 Section 2: Az előjel próba 11

12 Section 2: Az előjel próba 12 A próbastatisztika (megfigyelések száma > 25): z = (X + 0.5) n/2 n/2, ahol X: a + és előjelek száma közül a kisebb, n: a mintanagyság. A kritikus értéket a standard normális eloszlás táblázatából határozzuk meg. Példa. Egy mosógépgyártó azt álĺıtja, hogy gépeinek élettartama legalább 8 év. Egy 50 elemű véletlen mintában 21 olyan gép volt, amely 8 évnél többet

13 Section 2: Az előjel próba 13 bírt ki. α = 0.05 szinten ez elegendő-e a gyártó álĺıtásának elutasításához? Megoldás. 1. hipotézis H 0 : MD 8; H 1 : MD < 8 lépés: a hipotézis és az alternatív 2. lépés: A kritikus érték meghatározása. n = 50, α = 0.05, egyoldali ellenhipotézis, így a kritikus érték lépés: A próbastatisztika értékének meghatározása.

14 Section 2: Az előjel próba 14 z = (X + 0.5) n/2 n/2 = 4. lépés: A döntés. ( ) 50/2 50/2 = Mivel 0.99 > 1.65, ezért nem utasítjuk el a null hipotézist.

15 Section 3: A Wilcoxon-féle próbák A Wilcoxon-féle próbák Az előjelpróba nem veszi figyelembe az adatok nagyságát. 1 vagy 100 ponttal a medián alatt ugyanúgy egy előjelet rendel hozzá egy megfigyeléshez. A Wilcoxon-féle próbák a mediántól való eltérés nagyságát a rang segítségével veszik figyelembe. A Wilcoxon-féle rang-összeg próba független mintákra, a Wilcoxon-féle előjeles rang próba pedig nem független mintákra vonatkozik. Mindkét próba eloszlások összehasonĺıtására szolgál. A paraméteres megfelelőik a z-próba és t-próba független mintákra,

16 Section 3: A Wilcoxon-féle próbák 16 illetve a nem-független mintákra vonatkozó t-próba. Mindkét próbában vesszük a két minta egyesítését, majd rangsoroljuk az adatokat. Ha a null hipotézis (a két populáció azonos eloszlású) igaz, akkor az egyes minták adatait nagyjából azonos módon rangsoroljuk. Vagyis, amikor a rangokat a két mintára külön-külön összeadjuk, akkor e két összeg nagyjából megegyezik. Ha nagy az eltérés a két rangösszeg között, akkor a null hipotézist elvetjük. A rang kiszámítása: az n db adatot növekvő sorrendbe rakjuk. A lekisebbhez az 1, a következőhöz

17 Section 4: A Wilcoxon-féle rang-összeg próba (Mann-Whitney teszt) 17 a 2, stb, a legnagyobbhoz az n számot rendeljük hozzá. Holtverseny esetén a sorszámok átlagát. Példa. Ha az adatok a 3, 6, 6, 8, 10 számok, akkor a 2. és 3. helyen holtverseny van. Tehát mindkét 6-oshoz a (2 + 3)/2 = 2.5 számot rendeljük hozzá. 4. A Wilcoxon-féle rang-összeg próba (Mann- Whitney teszt) Feltevések: a két minta egymástól független; mindkét mintában legalább 10 adat van.

18 Section 4: A Wilcoxon-féle rang-összeg próba (Mann-Whitney teszt) 18 A próbához szükséges formulák: ahol z = R µ R σ R, µ R = n 1(n 1 + n 2 + 1), 2 n1 n 2 (n 1 + n 2 + 1) σ R =, 12 R = a két rang-összeg közül a kisebbik,

19 Section 4: A Wilcoxon-féle rang-összeg próba (Mann-Whitney teszt) 19 n 1 = a kisebbik mintanagyság, n 2 = a nagyobbik mintanagyság, Példa. Két csoport hallgatói biomatematika zárthelyit írtak. Az egyes csoportokhoz tartozó egyes hallgatóknak a következő időre volt szükségük az első feladat megoldásához: A Átlag: B Átlag: α = 0.05 szinten van-e különbség a két csoport

20 Section 4: A Wilcoxon-féle rang-összeg próba (Mann-Whitney teszt) 20 sebessége között? Megoldás: H 0 : van különbség; H 1 : nincs különbség. Kritikus érték: kétoldali ellenhipotézis; a standard normális eloszlás táblázatából a kritikus értékek: 1.96 és (a) Csináljunk egy csoportot az adatokból, és rangsoroljuk ezt a 23 adatot. Idő Csoport B B B B B A B A B A B A Rang

21 Section 4: A Wilcoxon-féle rang-összeg próba (Mann-Whitney teszt) 21 Idő Csoport A B A A B A A A B A A Rang (b) Adjuk össze a kisebb létszámú csoport (B) tagjainak rangjait. Ez 93. (c) Helyettesítsünk be a fenti képletekbe: µ R = n 1(n 1 + n 2 + 1) 11 ( ) = = n1 n 2 (n 1 + n 2 + 1) σ R = = 264 = z = R µ R = = σ R 16.2

22 Section 5: A Wilcoxon-féle előjeles rangpróba 22 Döntés: mivel 2.41 < 1.96, így a null hipotézist elutasítjuk. Tehát van különbség a megoldási idők között a két csoportban. 5. A Wilcoxon-féle előjeles rangpróba Amikor két nem-független mintát vizsgálunk (például ugyanazon egyedeket egy kezelés előtt és után), a páros t-próba helyett alkalmazható az előjeles rangpróba (normalitást nem kell feltennünk). Az eljárást az alábbi példán keresztül mutatjuk be.

23 Section 5: A Wilcoxon-féle előjeles rangpróba 23 Példa. Egy nagy áruház igazgatója szeretné elejét venni az elszaporodott lopásoknak, ezért megnövelte a biztonsági személyzet létszámát. Az ezt megelőző, valamint az ezt követő 7 nap lopási adatait látjuk a következő táblázatban.

24 Section 5: A Wilcoxon-féle előjeles rangpróba 24 Lopások száma Nap Előtte Utána Hétfő 7 5 Kedd 2 3 Szerda 3 4 Csütörtök 6 3 Péntek 5 1 Szombat 8 6 Vasárnap 12 4 Alátámasztják-e a fenti adatok azt, hogy szignifikáns különbség van a szigorítás előtti és utáni lopások

25 Section 5: A Wilcoxon-féle előjeles rangpróba 25 száma között (α = 0.05)? Megoldás. H 0 : Nincs különbség. H 1 : Van különbség. Keressük meg a kritikus értéket a következő speciális táblázatból. Mivel n = 7, α = 0.05, kétoldali ellenhipotézis, a kritikus érték 2.

26 Section 5: A Wilcoxon-féle előjeles rangpróba 26

27 Section 5: A Wilcoxon-féle előjeles rangpróba 27 (a) Készítsük el az alábbi táblázatot: Előtte Utána Előjeles Nap X B X A D = X B X A D Rang rang Hétfő Kedd Szerda Csütörtök Péntek Szombat Vasárnap (b) Számítsuk ki a különbségeket (előtte utána). (c) Vegyük a különbségek abszolútértékét.

28 Section 5: A Wilcoxon-féle előjeles rangpróba 28 (d) Rakjuk növekvő sorrendbe az abszolútértékeket, és számítsuk ki a rangokat. (e) A rangoknak adjunk előjelet a különbségek előjeleinek megfelelően. (f) Számítsuk ki a pozitív, illetve a negatív rangok összegét: pozitív rangok összege: +25 negatív rangok összege: 3 (g) A próbastatisztika értéke e két összeg abszolútértéke közül a kisebbik, azaz w s = 3 Elutasítjuk a nullhipotézist, ha a próbastatisztika

29 Section 5: A Wilcoxon-féle előjeles rangpróba 29 értéke kisebb vagy egyenlő a kritikus értéknél; most 3 > 2, ezért elfogadjuk a nullhipotézist. Vagyis, a biztonsági emberek számának növelése nem csökkentette a lopások számát. Amiért e próba működik: Ha tényleg van csökkenés, akkor a különbségek legtöbbje pozitív; a néhány negatív különbség abszolútértéke viszont valószínűleg kicsi, kisebb a kritikus értéknél. Ha nincs csökkenés, akkor néhány napon pozitív, néhány napon negatív a különbség; a pozitív ran-

30 Section 5: A Wilcoxon-féle előjeles rangpróba 30 gok összege, valamint a negatív rangok összegének abszolútértéke nagyjából egyenlő. A kettő közül a kisebbik várhatóan még mindig nagyobb lesz a kritikus értéknél. Ha n 30, akkor a normális eloszlással közeĺıtjük a Wilcoxon statisztika eloszlását: z = w s n(n+1) 4 n(n+1)(2n+1) 24 ahol n azon párok száma, ahol a különbség nem,

31 Section 6: A Kruskal-Wallis teszt 31 nulla, w s az előjeles rang-összegek abszolútértékei közül a kisebbik. 6. A Kruskal-Wallis teszt Három vagy több átlag összehasonĺıtására szolgál. Persze, az F próba is; de ennek alkalmazásának feltétele, hogy a populációk normális eloszlásúak, és a szórások egyenlők. Ha e feltételek nem teljesülnek, akkor érdemes a Kruskal-Wallis próbát alkalmazni. Minden egyes minta elemszáma legalább 5 kell legyen. Ekkor az eloszlást közeĺıthetjük egy χ 2 eloszlással

32 Section 6: A Kruskal-Wallis teszt 32 (d.f. = k 1, ahol k a csoportok száma). Ez a teszt is rangokat használ. Az összes adatot egyben tekintjük, majd rangsoroljuk ezeket. Ezután a rangokat szétválogatjuk, és az alábbi H formula értékét kiszámítjuk. Ez a rangok szórását közeĺıti. Ha a minták különböző populációkból származnak, akkor a rang-összeg is különböző lesz, és a H érték nagy lesz. Ezért a null hipotézist (az átlagok egyenlők) elutasítjuk, ha a H értéke elég nagy. Ha a minták azonos populációból származnak, a

33 Section 6: A Kruskal-Wallis teszt 33 rang-összegek nagyjából egyenlőek lesznek, és a H érték kicsi lesz. Ekkor a null hipotézist elfogadjuk. Ez mindig jobboldali teszt. A kritikus értékeket a χ 2 eloszlás táblázatából vesszük (d.f. = k 1). A próbastatisztika: H = ( ) 12 R R R2 k 3(N + 1), N(N + 1) n 1 n 2 n k ahol R i az i-edik minta rang-összege, n i az i-edik minta nagysága, N = n 1 + n n k, k = a csoportok száma.

34 Section 6: A Kruskal-Wallis teszt 34 Példa. Háromféle reggeli ital literenkénti káliumtartalmát tesztelték. Az adatok: Van-e elegendő indokunk annak elutasítására, hogy mindegyik fajta ugyanannyi káliumot tartalmaz?

35 Section 6: A Kruskal-Wallis teszt 35 Megoldás. H 0 : nincs eltérés a káliumtartalmak között; H 1 : van eltérés. A kritikus érték: (χ 2 táblázat, d.f. = k 1 = 2). A próbastatisztika értékének kiszámítása: (a) Az összes adatot rendezzük növekvő sorrendbe és határozzuk meg a rangokat:

36 Section 6: A Kruskal-Wallis teszt 36

37 Section 6: A Kruskal-Wallis teszt 37 (b) Mindegyik mintára számítsuk ki a rang-összegeket. A: 15, B: 53, C: 52. (c) Helyettesítsünk be a formulába: H = 9.38 (d) A döntés: mivel a tesztstatisztika értéke nagyobb a kritikus értéknél (9.38 > 5.991), ezért elutasítjuk a null hipotézist. Tehát az egyes italok nem ugyanannyi káliumot tartalmaznak.

38 Section 7: Összehasonĺıtás Összehasonĺıtás Nemparaméteres Paraméteres Feltételek Előjel z vagy t Egy minta Wilcoxon rang-összeg z vagy t Két független minta Wilcoxon előjeles rang t Két összefüggő minta Kruskal-Wallis ANOVA Legalább 3 független minta

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testing) A statisztikának egyik célja lehet a populáció tulajdonságainak, ismeretlen paramétereinek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21. Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

IV. Változók és csoportok összehasonlítása

IV. Változók és csoportok összehasonlítása IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta

Részletesebben

V. Gyakorisági táblázatok elemzése

V. Gyakorisági táblázatok elemzése V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák

Részletesebben

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

KULCSÁR ERIKA 1 KISS MÁRTA-KATALIN 2

KULCSÁR ERIKA 1 KISS MÁRTA-KATALIN 2 KULCSÁR ERIKA 1 KISS MÁRTA-KATALIN 2 Ahogy a nyár közeledik, szinte nem telik el olyan hét, amelyen országos viszonylatban ne lenne valamilyen tábor, szabadegyetem vagy fesztivál: programok sorából lehet

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Baran Sándor. Feladatok a hipotézisvizsgálat

Baran Sándor. Feladatok a hipotézisvizsgálat Baran Sándor Feladatok a hipotézisvizsgálat témaköréből mobidiák könyvtár Baran Sándor Feladatok a hipotézisvizsgálat témaköréből mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Baran Sándor Debreceni

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Baran Sándor. Feladatok a hipotézisvizsgálat

Baran Sándor. Feladatok a hipotézisvizsgálat Baran Sándor Feladatok a hipotézisvizsgálat témaköréből mobidiák könyvtár Baran Sándor Feladatok a hipotézisvizsgálat témaköréből mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Baran Sándor Debreceni

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Túlmunkaidő óra Összesen: Egyéb óra Összesen: Éjszakai pótlékos óra Összesen: 100 % pótlékos óra Összesen: Összesen: Összesen: Összesen: Összesen:

Túlmunkaidő óra Összesen: Egyéb óra Összesen: Éjszakai pótlékos óra Összesen: 100 % pótlékos óra Összesen: Összesen: Összesen: Összesen: Összesen: Jelenléti ív 2013 01 Január munkanap-ünnepnap száma: 23-1 kedd szerda csütörtök péntek szombat vasárnap hétfő kedd szerda csütörtök péntek szombat vasárnap hétfő kedd 184 ## Csuzstatás: 16 17 18 19 20

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Magyarországon a pedagógia csak

Magyarországon a pedagógia csak Nem-paraméteres statisztikai módszerek alkalmazási lehetõségei a pedagógiai kutatásban A társadalomtudományok, így a pedagógia is, igen széles körben használnak matematikai statisztikai módszereket. A

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ2próbával MIRE SZOLGÁL? Illeszkedés-vizsgálat Ryan-Joiner próbával A val.-i vált. eloszlása egy adott

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Adatok statisztikai feldolgozása

Adatok statisztikai feldolgozása Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő 1. 1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő formátumokra is! Sorszám Betét napja Kamatláb Bet. össz. (Ft) Kamat (Ft) Kifiz (Ft) 1. 1997. 08. 14. 12% 100

Részletesebben