STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM."

Átírás

1 STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1

2 mérés: dolgokhoz valamely szabály alapján szám rendelése Pl.: Hozzárendelési szabály: Ha a válaszadó neme férfi, akkor a hozzárendelt kód: 1 Ha a válaszadó neme nı, akkor a hozzárendelt kód: 2 Ha a válaszadó nem jelölte meg a nemét, akkor a hozzárendelt kód: 9 Nemed: X fiú. lány Nemed: X fiú X lány Nemed:. fiú. lány Kód: 1 Kód: 2 Kód: 9 adat: egy dologhoz adott szabály alapján rendelt szám MÉRÉSI SKÁLÁK NEM METRIKUS METRIKUS NOMINÁLIS ORDINÁLIS INTERVALLUM ARÁNY

3 metrikus skála rang skála 3. III 1. I 2. II nominális skála Statisztikai alapkérdések: általános tendenciának, a középértéknek a mérése, a megoszlások kimutatása közép Statisztikai alapkérdések: annak megállapítása, hogy az egyes adatok mennyire térnek el a középértéktıl, azaz a szóródás mérése közép 3

4 Statisztikai alapkérdések: összefüggések vizsgálata Mérés 1. Mérés 2. Statisztikai számítások: LEÍRÓ STATISZTIKA GYAKORISÁG KÖZÉPÉRTÉK SZÓRÓDÁS KORRELÁCIÓ abszolút gyakoriság számtani közép (átlag) szóródási terjedelem korreláció számítás relatív (%-os) gyakoriság módusz interkvartilis félterjedelem kumulatív gyakoriság medián átlagos eltérés kvartilisek variancia szórás relatív szórás Statisztikai számítások: MATEMATIKAI STATISZTIKA Van-e szoros összefüggés? MINTÁK SZÁMA SKÁLATÍPUS INTERVALLUM SKÁLA ORDINÁLIS (RANG) SKÁLA EGY egymintás t-próba Willcoxon-próba χ 2 -próba NOMINÁLIS SKÁLA KETTİ kétmintás t-próba F-próba Welch-próba Mann-Whitney-próba χ 2 -próba TÖBB varianciaanalízis Kruskall-Wallis-próba χ 2 -próba 4

5 Statisztikai számítások: MATEMATIKAI STATISZTIKA Jelentıs-e a különbség? MINTÁK SZÁMA KETTİ KETTİ VAGY TÖBB TÖBB SKÁLATÍPUS INTERVALLUM SKÁLA korrelációanalízis regresszió analízis parciális korreláció, faktoranalízis klaszteranalízis ORDINÁLIS (RANG) SKÁLA rangkorreláció NOMINÁLIS SKÁLA χ 2 -próba módusz medián átlag 5

6 módusz medián átlag minimum terjedelem maximum Szóródás Szóródás: a minta azon tulajdonsága, ahogy annak egyes elemei eltérnek a minta középértékeitıl. Kvartilis: 1. kvartilis Q 1 : 2. kvartilis Q 2 : 3. kvartilis Q 3 :

7 minimum terjedelem=47 maximum módusz medián CILI ÉVA DANI BÉLA ELEK ANNA FERI PONTSZÁMA HELYEZÉSE MEGFELELÉS SZÓRÁS=16,1 KORRELÁCIÓ MATEMATIKA - FIZIKA fizika matematika 7

8 KORRELÁCIÓ MATEMATIKA-TÖRTÉNELEM történelem matematika KORRELÁCIÓ 8

9 MATEMATIKA-RAJZ biológia matematika T-PRÓBA 9

10 MATEMATIKA C osztály FIZIKA A osztály Várható érték 81,2 91,1 Variancia 2096, ,78 Megfigyelések Pearson-féle korreláció 0,984 Feltételezett átlagos eltérés 0 df 14 t érték 4,56 P(T<=t) egyszélő 99,98% 90% t kritikus egyszélő 1,7613 P(T<=t) kétszélő 99,96% t kritikus kétszélő 2,145 Konfidencia intervallum a x f a x f Konfidencia intervallum a x f a x f 10

11 Tesztelemzés Itempontérték-táblázat Item: Személy: k. SCORE Σ = hibás a megoldás m. Σ 1= jó a megoldás Tesztpontértékek eloszlása Eloszlás elhelyezkedése: számtani közép Teszpontértékek ingadozása (variabilitása): szórás (statndard deviancia) vagy variancia Item-mutatók Itemnehézség (p) p = helyes megoldások száma/összes megoldás száma Értéke: 0 p 1 Ha p magas értékő, akkor az item könnyő. Ha p alacsony értékő, akkor az item nehéz. Ha p=0,5, akkor az item maximálisan differenciáló. (Két egyenlı részre osztja a megoldókat.) Ha 0,2 p 0,5, akkor az item a kiválókat választja ki. Ha 0,1 p 0,9, akkor az item az egész tartományban jól differenciál. 11

12 Item-mutatók Elkülönítésmutató r=korreláció (itempontérték;tesztpontérték) Kifejezi, hogy az item mennyire méri azt amit a teszt egésze. (Tartalmi rokonság a validitással, homogenitással.) Item-mutatók Item-reliabilitásindex reliabilitásindex = itemszórás elkülönítésmutató elkülönítésmutató =korreláció (itempontérték;tesztpontérték) Item-mutatók Item determinációs hatása D h = r r = a feladat pontszáma és az összes pontszám korrelációs együtthatója A függı változók független változókra gyakorolt hatása. 12

13 Teszt megbízhatósága Reliabilitás itemszám itemek _ szórásnégyzetének _ összege Cronbachα = (1 ) itemszám 1 teszt szórásnégyzete Mérési hiba S E = S 1 reliabilitás X A mérési hiba százalékosan is kifejezhetı: a mérési hiba értéke osztva az összes pontszámmal, szorozva 100-zal. 13

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány.

ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. ELEMZŐ SZOFTVEREK A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. FELADAT-ITEMELEMZÉS munkalap A munkalapon a feladatok, feladatelemek

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Vargha András Károli Gáspár Református Egyetem Budapest

Vargha András Károli Gáspár Református Egyetem Budapest Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Tartalom Bevezető Kompetencia Kérdőív Eredmény Bemutatkozás A dolgozat keletkezésének körülményei

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

IV. Változók és csoportok összehasonlítása

IV. Változók és csoportok összehasonlítása IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Érettségi feladatok: Statisztika

Érettségi feladatok: Statisztika Érettségi feladatok: Statisztika 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Pszichometria Szemináriumi dolgozat

Pszichometria Szemináriumi dolgozat Pszichometria Szemináriumi dolgozat 2007-2008. tanév szi félév Temperamentum and Personality Questionnaire pszichometriai mutatóinak vizsgálata Készítette: XXX 1 Reliabilitás és validitás A kérd ívek vizsgálatának

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

SZÓJEGYZÉK. az Országos kompetenciaméréshez

SZÓJEGYZÉK. az Országos kompetenciaméréshez SZÓJEGYZÉK az Országos kompetenciaméréshez 5-ös percentilis Olyan érték, amelynél a megfigyelt értékek 5%-a kisebb, 95%-a pedig nagyobb. 25-ös percentilis Olyan érték, amelynél a megfigyelt értékek 25%-a

Részletesebben

Statisztikai programrendszerek. Kis-Tóth Lajos Lengyelné Molnár Tünde Tóthné Parázsó Lenke

Statisztikai programrendszerek. Kis-Tóth Lajos Lengyelné Molnár Tünde Tóthné Parázsó Lenke Statisztikai programrendszerek Kis-Tóth Lajos Lengyelné Molnár Tünde Tóthné Parázsó Lenke MÉDIAINFORMATIKAI KIADVÁNYOK Statisztikai programrendszerek Kis-Tóth Lajos Lengyelné Molnár Tünde Tóthné Parázsó

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Hild József Általános Iskola 1051 Budapest, Nádor u. 12. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Kérdıívek, tesztek I. Kérdıívek

Kérdıívek, tesztek I. Kérdıívek Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Dr. Török Béla Óvoda, Általános Iskola, Speciális Szakiskola, Egységes Gyógypedagógiai Módszertani Intézmény, Diákotthon és Gyermekotthon 1142 Budapest,

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Intézményi jelentés. 6. évfolyam. Bokod-Kecskéd-Szákszend Kistérségi Általános Művelődési Központ 2855 Bokod, Fő utca 27. OM azonosító:

Intézményi jelentés. 6. évfolyam. Bokod-Kecskéd-Szákszend Kistérségi Általános Művelődési Központ 2855 Bokod, Fő utca 27. OM azonosító: FIT-jelentés :: 2010 Bokod-Kecskéd-Szákszend Kistérségi Általános Művelődési Központ 2855 Bokod, Fő utca 27. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FIT-jelentés :: Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. OM azonosító: Intézményi jelentés

FIT-jelentés :: Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. OM azonosító: Intézményi jelentés FIT-jelentés :: 2009 Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Arany János Általános Iskola és Gimnázium (8 évfolyamos

Részletesebben

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI. Tóthné Parázsó Lenke

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI. Tóthné Parázsó Lenke Tóthné Parázsó Lenke MÉDIAINFORMATIKAI KIADVÁNYOK A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI Tóthné Parázsó Lenke Eger, 011 Lektorálta: CleverBoard Interaktív Eszközöket és Megoldásokat Forgalmazó és Szolgáltató

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

V. Gyakorisági táblázatok elemzése

V. Gyakorisági táblázatok elemzése V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák

Részletesebben

FIT-jelentés :: Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Bajza József Általános Iskola 1046 Budapest, Bajza u. 2. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

Intézményi jelentés. 10. évfolyam. Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út OM azonosító:

Intézményi jelentés. 10. évfolyam. Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út OM azonosító: FIT-jelentés :: 2010 Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út 88-90. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043

Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043 370 Statisztika, valószínûség-számítás 1480. a) Nagy országok: Finnország, Olaszország, Nagy-Britannia, Franciaország, Spanyolország, Svédország, Lengyelország, Görögország, Kis országok: Ciprus, Málta,

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2008 10. évfolyam :: Szakiskola Hefele Menyhért Építő- és Faipari Szakképző Iskola 9700 Szombathely, Szent Márton u. 77. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek

Részletesebben

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító

Részletesebben

FIT-jelentés :: Dobos C. József Vendéglátóipari Szakképző Iskola 1134 Budapest, Huba u. 7. OM azonosító: Intézményi jelentés

FIT-jelentés :: Dobos C. József Vendéglátóipari Szakképző Iskola 1134 Budapest, Huba u. 7. OM azonosító: Intézményi jelentés FIT-jelentés :: 2008 Dobos C. József Vendéglátóipari Szakképző Iskola 1134 Budapest, Huba u. 7. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák átlageredményeinek összehasonlítása Matematika

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Kálmán Lajos Óvoda, Általános Iskola és Általános Művelődési Központ Vásárhelyi Pál Általános Iskolája és Alapfokú Művészetoktatási Intézménye 6000

Részletesebben

Többszempontos variancia analízis. Statisztika I., 6. alkalom

Többszempontos variancia analízis. Statisztika I., 6. alkalom Többszempontos variancia analízis Statisztika I., 6. alkalom Kétszempontos variancia analízis Ha két független változónk van, mely a csoportosítás alapját képezi, akkor kétszempontos variancia analízisrıl

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI. T. Parázsó Lenke

PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI. T. Parázsó Lenke PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI T. Parázsó Lenke Kutatás fogalma A kutatás alatt értendő valamilyen tudatosult igény, probléma megoldására irányuló megoldási folyamat, melynek során a jelenséget

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

FIT-jelentés :: Vendéglátó, Idegenforgalmi és Kereskedelmi Középiskola és Szakiskola 1078 Budapest, Hernád u. 3. OM azonosító:

FIT-jelentés :: Vendéglátó, Idegenforgalmi és Kereskedelmi Középiskola és Szakiskola 1078 Budapest, Hernád u. 3. OM azonosító: FIT-jelentés :: 2012 Vendéglátó, Idegenforgalmi és Kereskedelmi Középiskola és Szakiskola 1078 Budapest, Hernád u. 3. Létszámadatok A telephelyek kódtáblázata A 001 - Vendéglátó, Idegenforgalmi és Kereskedelmi

Részletesebben

FIT-jelentés :: Gábor Áron Általános Iskola 1196 Budapest, Nádasdy utca 98. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Gábor Áron Általános Iskola 1196 Budapest, Nádasdy utca 98. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2008 Gábor Áron Általános Iskola 1196 Budapest, Nádasdy utca 98. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák átlageredményeinek összehasonlítása Matematika A szignifikánsan

Részletesebben

FIT-jelentés :: KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2013 KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. Létszámadatok A telephelyek kódtáblázata A 001 - Kós Károly Szakképző Iskola (szakközépiskola) (2030 Érd, Ercsi u. 8.) B 001 - Kós

Részletesebben

FIT-jelentés :: Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. OM azonosító: Telephely kódja: 004. Telephelyi jelentés

FIT-jelentés :: Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. OM azonosító: Telephely kódja: 004. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Ölbey Irén Általános Iskola 4495 Döge, Osváth tér 6. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2011 Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. Létszámadatok A telephelyek kódtáblázata A 001 - Kós Károly Szakképző Iskola (szakközépiskola) (2030 Érd, Ercsi u. 8.) B 001 - Kós

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2008 Városmajori Gimnázium, Módszertani Információs Felnőttképzési Továbbképző és Vizsgaközpont 1122 Budapest, Városmajor 71. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2008 10. évfolyam :: Szakiskola Krúdy Gyula Gimnázium, Két Tanítási Nyelvű Középiskola, Idegenforgalmi és Vendéglátóipari Szakképző Iskola 9024 Győr, Örkény I. u. 8. Matematika Országos

Részletesebben