Loss Distribution Approach

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Loss Distribution Approach"

Átírás

1 Modeling operational risk using the Loss Distribution Approach

2 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2

3 Szabályozói környezet A Baseli Bizottság nem határoz meg részletes mennyiségi előírásokat a fejlett mérési módszerre (AMA) vonatkozóan, de előírja, hogy számított tőkekövetelménynek fedezetet kell nyújtania a kis valószínűséggel, de potenciálisan nagy veszteséget okozó bekövetkező eseményekre is! A képzett tőkének egyéves időtávon 99,9 % -os valószínűséggel kell fedezetet nyújtania a működési kockázati veszteségekre. 3

4 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 4

5 LDA megközelítés Éves aggregált veszteségeket (L) kell kezelnünk! 1. Az évek során figyeljük meg L et. => Túl sokáig kellene várnunk egy elfogadható elemszámú minta létrejöttéhez! 2. LDA megközelítés: = N Bontsuk szét L et ( L i = X 1 i ), és modellezzük külön N -et, és X i t, ahol N = az események éves száma (eseményszám, frequency), X i = az egyes események hatása (kár, severity). 5

6 Modellezési struktúra 1. Eseményszám eloszlás és káreloszlás illesztése, paramétereinek becslése. 2. Aggregált eloszlás (L) meghatározása (szimuláció, Panjer rekurzió stb. segítségével) es konfidenciaszinthez tartozó Value at Risk (VaR) meghatározása az aggregált eloszlásból. 6

7 Modellezési struktúra Szakértői becslések Eseményszám Belső adatok eloszlás Káreloszlás Aggregált eloszlás VaR Külső adatok 7

8 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 8

9 Leggyakrabban használt eloszlások: Eseményszám eloszlások Eloszlás Paraméterek P(N=k) E(N) D 2 (N) Binominális n: pozitív egész, 0 p 1. n k p (1 p) k k=0,1,n. n k, np np(1-p) Poisson λ 0 k λ λ e, k=0,1, k! λ λ Negatív binominális r: pozitív, 0 q <1. Γ( r + k ) (1 q) Γ( r) k! k=0,1, r q k, rq 1 q rq ( 1 q) 2 Egyszerű döntési szabály: várható érték és szórásnégyzet összehasonlítása alapján 9

10 Eseményszám eloszlások 10

11 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 11

12 Káreloszlások -Parametrikus megközelítés választása (nincsenek kellően hosszú idősorok, nincsenek extrém esetek) -Alkalmas eloszláscsalád megválasztása (heavy tail, rugalmas kezelhetőség) -Paraméterbecslési módszer megválasztása (kis minta esetén viselkedjen jól, nem feltétlenül az aszimptotikus viselkedése a lényeg) -Paraméterek becslése (általában numerikusan oldható meg) -Illeszkedés vizsgálat (Kolmogorov-Smirnov, Anderson-Darling stb.) 12

13 Káreloszlások Gyakori káreloszlások: Eloszlás Paraméterek Sűrűségfüggvény (x>0) Exponenciális x λ >0 λe λ Lognormális, σ 2 > 0 µ (ln x 2 σx µ ) 1 2σ e 2Π 2 Pareto (európai) c,a > 0 a c c x a+ 1 χ ( x > c) 13

14 Káreloszlások Azonos várható értékű ( E(x)=2 ) eloszlások kis és nagy károk esetén: 14

15 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 15

16 Aggregált eloszlás L = N = i 1 X i -analitikusan ritkán meghatározható -Monte Carlo szimulációkkal vizsgálható 1. Generáljuk egy véletlen számot (n i ) az eseményszám eloszlásból. 2. Generáljunk n i db véletlen számot (X 1, X ni ) a káreloszlásból. 3. Képezzük az L i =X 1 + +X ni összeget lépéseket hajtsuk végre R-szer. 5. Az R elemű mintából határozzuk meg az L eloszlás jellemzőit, köztük annak VaR-ját. 16

17 Aggregált eloszlás Eseményszám eloszlás: Poisson (λ = 10), káreloszlás: Lognormális (µ = 10, σ = 1). R=

18 Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 18

19 További problémák -Feltételes eloszlások (adott küszöb fölötti események gyűjtése) -Minőségi becslések (extrém esetek alábecslése) -Külső adatok (bayesi statisztika) -Infláció 19

20 Referenciák Hasznos irodalom található összegyűjtve az alábbi link alatt: 20

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

A működési kockázatok veszteségeloszlásalapú modellezésének lehetőségei

A működési kockázatok veszteségeloszlásalapú modellezésének lehetőségei 152 HITELINTÉZETI SZEMLE NAGY GÁBOR POVILAITIS KATALIN A működési kockázatok veszteségeloszlásalapú modellezésének lehetőségei Jelen írásunkban összefoglaljuk a működési kockázat veszteségeloszlás-alapú

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Működési kockázatkezelés fejlesztése a CIB Bankban. IT Kockázatkezelési konferencia 2007.09.19. Kállai Zoltán, Mogyorósi Zoltán

Működési kockázatkezelés fejlesztése a CIB Bankban. IT Kockázatkezelési konferencia 2007.09.19. Kállai Zoltán, Mogyorósi Zoltán Működési kockázatkezelés fejlesztése a CIB Bankban IT Kockázatkezelési konferencia 2007.09.19. Kállai Zoltán, Mogyorósi Zoltán 1 A Működési Kockázatkezelés eszköztára Historikus adatok gyűjtése és mennyiségi

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Működési kockázati önértékelések veszteségeloszlás-alapú modellezése

Működési kockázati önértékelések veszteségeloszlás-alapú modellezése 506 HITELINTÉZETI SZEMLE HAJNAL BÉLA KÁLLAI ZOLTÁN NAGY GÁBOR Működési kockázati önértékelések veszteségeloszlás-alapú modellezése Tanulmányunkban a működési kockázatok önértékelésen alapuló modellezését

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Szabályozók, tőkekövetelményszámítási május 3.

Szabályozók, tőkekövetelményszámítási május 3. Szabályozók, tőkekövetelményszámítási modellek 2013. május 3. 1 Miért kell szabályozni a bankokat? Speciális szerepet töltenek be: - Fizetési rendszerek üzemeltetése - Támogatják a gazdaság növekedését

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

DOKTORI (PhD) ÉRTEKEZÉS

DOKTORI (PhD) ÉRTEKEZÉS DOKTORI (PhD) ÉRTEKEZÉS Kockázati mérések és mértékek instabilitása Szerző: Nagy Gábor Témavezető: Dr. Gáll József Mihály Debreceni Egyetem Közgazdaságtudományi Doktori Iskola Versenyképesség, Globalizáció,

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

5. elıadás március 22. Portfólió-optimalizálás

5. elıadás március 22. Portfólió-optimalizálás 5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

A magyar bankszektor mûködési kockázatai a

A magyar bankszektor mûködési kockázatai a A magyar bankszektor mûködési kockázatai a pénzügyi válság tükrében Vaon a pénzügyi válság mekkora hatással lesz a magyar bankok mûködési kockázataira? Cikkemben erre a kérdésre keresem a választ. Megvizsgálom,

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Egyu ttes eloszla sok szerepe a mu ko de si kocka zatokna l

Egyu ttes eloszla sok szerepe a mu ko de si kocka zatokna l EO TVO S LORA ND TUDOMA NYEGYETEM TERME SZETTUDOMA NYI KAR Egyu ttes eloszla sok szerepe a mu ko de si kocka zatokna l I rta: Stark Andra s Biztosı ta s e s pe nzu gyi matematika MSc Te mavezeto k: Medvegyev

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Homolya Dániel: Működési kockázat és intézményméret összefüggése a hazai bankrendszerben*,1

Homolya Dániel: Működési kockázat és intézményméret összefüggése a hazai bankrendszerben*,1 Homolya Dániel: Működési kockázat és intézményméret összefüggése a hazai bankrendszerben*,1 A hitelezési, piaci és likviditási kockázat mellett a bankok számára fontos kihívást jelent működési kockázataik

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

Szám. szim. labor ea. Tőke Csaba U(0,1) GSL. Adott eloszlás. Brown-mozgás. Hivatkozások. BME Fizika Intézet október 7.

Szám. szim. labor ea. Tőke Csaba U(0,1) GSL. Adott eloszlás. Brown-mozgás. Hivatkozások. BME Fizika Intézet október 7. Számítógépes szimulációk 4. Véletlen számok BME Fizika Intézet 2015. október 7. Vázlat Egyenletes eloszlású pszeudovéletlen számok Véletlen számok generálása -lel szerinti véletlen számok generálása Véletlenszám-generátorok

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Basel II, avagy a tőkekövetelmények és azok számítása a pénz- és tőkepiaci szervezeteknél - számítás gyakorlati

Basel II, avagy a tőkekövetelmények és azok számítása a pénz- és tőkepiaci szervezeteknél - számítás gyakorlati Basel II, avagy a tőkekövetelmények és azok számítása a pénz- és tőkepiaci szervezeteknél - számítás gyakorlati példákon Dr. Pálosi-Németh Balázs, Tamás Sándor Budapest, 18 November 2010 A Bank tőkemegfelelésének

Részletesebben

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

ORSA ORSA ORSA. ORSA konzultáció I. pilléres aspektusok. Tatai Ágnes 2011 november 18

ORSA ORSA ORSA. ORSA konzultáció I. pilléres aspektusok. Tatai Ágnes 2011 november 18 ORSA konzultáció I. pilléres aspektusok Tatai Ágnes 2011 november 18 1 Vázlat Mi az ORSA, miért jó ez nekünk? Az ORSA mennyiségi aspektusai tartalékok szavatoló tőkeszükséglet szavatoló tőke Összegzés

Részletesebben

LEGJOBB BECSLÉS Módszerek, egyszerűsítések

LEGJOBB BECSLÉS Módszerek, egyszerűsítések LEGJOBB BECSLÉS Módszerek, egyszerűsítések Tusnády Paula 2010. Június 24. 1 Tartalom Értékelési folyamat lépései Módszerek Arányosság elve Élet ági egyszerűsítések Nem-élet ági egyszerűsítések 2 Értékelési

Részletesebben

VOLATILITÁSI TŐKEPUFFER A SZOLVENCIA II-ES TŐKEKÖVETELMÉNYEK MEGSÉRTÉSÉNEK KIVÉDÉSÉRE ÖSSZEFOGLALÓ SUMMARY

VOLATILITÁSI TŐKEPUFFER A SZOLVENCIA II-ES TŐKEKÖVETELMÉNYEK MEGSÉRTÉSÉNEK KIVÉDÉSÉRE ÖSSZEFOGLALÓ SUMMARY BIZTOSÍTÁS ÉS KOCKÁZAT BIZTOSÍTÁS ÉS KOCKÁZAT VOLATILITÁSI TŐKEPUFFER A SZOLVENCIA II-ES TŐKEKÖVETELMÉNYEK MEGSÉRTÉSÉNEK KIVÉDÉSÉRE Zubor Zoltán (Magyar Nemzeti Bank, vezető aktuárius) zuborz@mnb.hu Jelen

Részletesebben

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5 Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Asszociációs szabályok

Asszociációs szabályok Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában

Részletesebben

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 80 HITELINTÉZETI SZEMLE SOCZÓ CSABA A KOCKÁZTATOTT ÉRTÉKNÉL NAGYOBB VESZTESÉGEK VIZSGÁLATA A tíz gazdaságilag legfejlettebb ország (G-10) 1998-ban [3], míg Magyarország 2000-ben

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

Multinomiális és feltételes logit modellek alkalmazásai

Multinomiális és feltételes logit modellek alkalmazásai Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1 Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

VaR számítási módszerek. Szabó Dávid

VaR számítási módszerek. Szabó Dávid VaR számítási módszerek MSc szakdolgozat Szabó Dávid Biztosítási és pénzügyi matematika MSc Kvantitatív pénzügyek szakirány Témavezet ok: Arató Miklós Medvegyev Péter Eötvös Loránd Tudományegyetem Budapesti

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

Excel segédlet Üzleti statisztika tantárgyhoz

Excel segédlet Üzleti statisztika tantárgyhoz Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

A feltétel nélküli normalitás egyszerû alternatívái a kockáztatott érték számításában

A feltétel nélküli normalitás egyszerû alternatívái a kockáztatott érték számításában Közgazdasági Szemle, XLVII. évf., 000. november (878 898. o.) KÓBOR ÁDÁM A feltétel nélküli normalitás egyszerû alternatívái a kockáztatott érték számításában A piaci kockázatmérés fontosságának a ténye,

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Az új mértékadó árvízszintek meghatározásának módszertani összegzése

Az új mértékadó árvízszintek meghatározásának módszertani összegzése Az új mértékadó árvízszintek meghatározásának módszertani összegzése Szabó János A. HYDROInform Mottó: "The purpose of computation is insight, not numbers" A számítás célja a betekintés, nem számok Richard

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

MŰKÖDÉSI KOCKÁZATKEZELÉS. Veszteség adatbázis kiépítése során felmerülő kérdések

MŰKÖDÉSI KOCKÁZATKEZELÉS. Veszteség adatbázis kiépítése során felmerülő kérdések MŰKÖDÉSI KOCKÁZATKEZELÉS Veszteség adatbázis kiépítése során felmerülő kérdések Tartalom»Módszertani bevezetés»kockázatkezeléshez szükséges információk»esemény kategorizálás 2 Historikus adatokra alkalmazott

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban

Részletesebben

Matematikai statisztikai elemzések 3.

Matematikai statisztikai elemzések 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR

Részletesebben

Egy csodálatos elme modellje

Egy csodálatos elme modellje Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,

Részletesebben

Normalitásvizsgálati módszerek egy dimenzióban

Normalitásvizsgálati módszerek egy dimenzióban Normalitásvizsgálati módszerek egy dimenzióban Szakdolgozat Írta: Takácová Nikoleta Matematika BSc Matematikai elemző szakirány Témavezető: Varga László, egyetemi tanársegéd Valószínűségelméleti és Statisztika

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

AliROOT szimulációk GPU alapokon

AliROOT szimulációk GPU alapokon AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. 2010.

Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. 2010. Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. Fuzzy-alapú döntéstámogató rendszer bevezetése az ELMŰ-ÉMÁSZ ÉMÁSZ-nál 2010. Tartalom - Előzmények - Fuzzy logika - Modell bemutatása - Modell-hitelesítés

Részletesebben

Nagy méretű projektekhez kapcsolódó kockázatok felmérése és kezelése a KKV szektor szemszögéből

Nagy méretű projektekhez kapcsolódó kockázatok felmérése és kezelése a KKV szektor szemszögéből Nagy méretű projektekhez kapcsolódó kockázatok felmérése és kezelése a KKV szektor szemszögéből Dr. Fekete István Budapesti Corvinus Egyetem tudományos munkatárs SzigmaSzervíz Kft. ügyvezető XXIII. Magyar

Részletesebben

CÉGMINŐSÍTÉS TERMÉKISMERTETŐ 2014.

CÉGMINŐSÍTÉS TERMÉKISMERTETŐ 2014. CÉGMINŐSÍTÉS TERMÉKISMERTETŐ 2014. 1. Bevezetés Az elmúlt években a vállalatoknak folyamatosan gondot okoz a késve fizetők számának magas értéke. A fizetési morál jelenlegi állapota a vállalatok több,

Részletesebben

Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27

Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27 Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27 Biztosítástechnikai tartalékok A. Nem-életbiztosítási tartalékok B. Életbiztosítási tartalékok C. Próbaszámolások 2005.04.27 2 A. Nem-életbiztosítási

Részletesebben