A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra"

Átírás

1 A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens április 17.

2 Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása: 2. a jelenlevők átlagos életkora:

3 Milyen a statisztika? Churchill: Én csak abban a statisztikában hiszek, amit magam hamisítottam. Öreg igazság: Van kis hazugság, van nagy hazugság, és van statisztika.

4 Milyen a statisztika? George Horace Gallup : az esedékes elnökválasztáson a Literary Digest című hetilap a republikánus Alfred Landon, míg Gallup a végül győztes demokrata Franklin Delano Roosevelt sikerét jelezte előre. A Literary Digest a szokásos módszerrel tízmillió "szavazólapot" küldött szét, amelyekből kétmillió érkezett vissza. Gallup ezzel szemben egy keresztmetszetet adó lakossági mintával dolgozott: 3 ezer embert, de férfiakat és nőket arányosan "szondáztak" meg, interjúkat készítettek, valamint figyelembe vették az iskolázottságot és az anyagi körülményeket is.

5 Y Matematikai összefoglaló Emlékezzünk! Mi a mintavétel? Az alapsokaság nem mindegyik tagját vizsgáljuk, hanem véletlenszerűen kiemelünk belőle néhányat (n elemű minta), ezeket vizsgálva következtetünk az alapsokaság jellemző paramétereire (valószínűségi változó dimenziói). A reprezentatív módszer elmélete a valószínűség-számítás törvényein, más szóval a véletlen tömegjelenségek törvényein nyugszik. Ezért követelmény, hogy az alapsokaság, a szó szoros értelmében sokaság legyen, tehát nagyszámú egységet foglaljon magában. X

6 Emlékezzünk! Mekkora legyen a minta? 300 ezer élelmiszeripari vállalkozás, kb. 220 milliárd tétel évente mindez az élelmiszerláncban A minta nagysága a mintából nyerhető adatok pontosságára és megbízhatóságára van hatással, ezért a minta nagyságát mindig az szabja meg, hogy a populáció vizsgált jellemzőjét milyen pontossággal és megbízhatósággal (megbízhatósági intervallummal és szignifikancia-szinttel) akarjuk megkapni. A minta nagysága független az alapsokaság terjedelmétől táblázatokban n értéke. A minta nagysága az adatfelvétel pontosságával és megbízhatóságával van összefüggésben.

7 Az ismérvelosztás várható értékei A hiba nagysága (%) 10% vagy 90% 20% vagy 80% 30% vagy 70% 40% vagy 60% 50% 0, , , , Vissza

8 Emlékezzünk! Szignifikancia-szint: A próbafüggvény kritikus tartományba esésének valószínűsége. Megbízhatósági intervallum (konfidencia-intervallum): Valószínűségi intervallum, adott szignifikancia-szinten a becsült változó alsó és felső korlátja. A konfidencia-intervallum intervallum értékű becslést ad egy paraméterre, amely valószínűleg ezek közé a korlátok közé esik. Az α paraméter egy előzetesen megadott értékére a becsült paraméter 1-α valószínűséggel esik az intervallumba. Ezt az 1-α szintet sokszor százalékban adják meg; például 95% tipikus.

9 Y Emlékezzünk! Konfidencia-intervallum 95 %-os szignifikancia-szint mellett 99 %-os szignifikancia-szint mellett Számítása: ismeretlen szórású normál eloszlásra Student t eloszlásfüggvénnyel X

10 Konf. int. (%) Különböző mintanagyságokhoz tartozó konfidencia intervallumok ( + %) Mintanagy ság fõben

11 Emlékezzünk! Milyen legyen a minta? Reprezentatív a minta, ha a minta és az alapsokaság, amiből vettük, ugyanazt az eloszlást követi. A minta reprezentativitása nem a minta-elemszám, hanem a minta kiválasztás módszerének függvénye. Milyen statisztikai következtetéseket tudunk levonni a minta alapján? - leírást, - analízissel az alapsokaság jellemzőit írjuk le, - jóslással következtetünk további jellemzőkre.

12 Emlékezzünk! Mitől lesz jó egy következtetés? - reprezentatív a minta; - jól illeszkedő hozzárendelt empirikus eloszlásfüggvény, - az illeszkedés hibájának megadása.

13 A mintavételezés hibái általában Alapvető hibák: nem reprezentatív a minta, (túl kicsi a minta, nem random a mintavételezés), a következtetésekhez nincsenek becslések a bizonytalansági tényezőkre, hibákra; nem definiáltak előre a lehetséges mintavételi hiba nagysága, a megbízhatósági szintje és a konfidencia intervallumok. Csak random mintavétel esetében következtethetünk a populációra!

14 A mintavétel hibáinak típusai az elsőfajú hibák és bekövetkezésük valószínűsége a másodfajú hibák és bekövetkezésük valószínűsége a nullhipotézis igaz a nullhipotézis hamis a nullhipotézist elfogadjuk Helyes döntés másodfajú hiba a nullhipotézist elvetjük elsőfajú hiba Helyes döntés

15 A mintavételezés hibáinak statisztikai következményei megnő az adott szignifikancia-szinten a konfidencia-intervallum nagysága adott megbízhatósági intervallum mellett lecsökken a szignifikancia-szint nagysága megnő az első- és másodfajú hibák előfordulásának valószínűsége. A bevezető mintavétel hibája: - A teremben x átlagéletkorú férfiak ülnek: igaz, ha a megállapításhoz megadjuk, hogy - 5 elemű mintát vettünk az alapsokaságból, - és hogy az ehhez tartozó hiba - a Δ 2 = 1/n képlettel becsülve: 45%. Kapcsoló

16 A monitoring mintavétel céljai Cél: a populációt minél jobban leíró statisztikákat (statisztikai válto- zókat) meghatározni, azaz statisztikai változókkal leírni az adott populációt, illetve megadni azt, hogy az állításaink milyen biztonsággal igazak. Ezek az adatok szolgálnak később a kockázatbecslések alapjaként. A vizsgált populációból kiválasztunk bizonyos számú vizsgálati egységet, amiket ténylegesen is megvizsgálunk, ezek alkotják a mintát. Rétegezett mintavétel (egylépcsős mintavétel): - a sokaság adott ismérvek szerint csoportokba van rendezve, - majd egyszerű véletlen mintát veszünk a csoportokból. A fentiek csak a monitoring célú mintavételek kis részére igaz. Bár nincs rögzített arány, de később kb. 25% lesz az ilyen, véletlenszerű, és 75% a kockázatalapú mintavétel - önkényes kiválasztással, azaz a felvételt végző személy szakmai ismereteire támaszkodva választják ki a mintát.

17 A Hivatalok mintavételezési hibáinak okai A mintaszámok és a véletlenszerű kiválasztás - gazdasági, - logisztikai, - munkaszervezési okokból felülíródnak.

18 A hibák statisztikai következményei Mi történik, ha a tervezettnél kevesebb mintát veszünk? Mi történik, ha nem az előírt hónapban vesszük a mintát? Mi történik, ha nem az előírt élelmiszerlánc-pozícióban vesszük a mintát? Mi történik, ha előre tudja a megmintázandó, hogy mintát vesznek tőle? élelmiszer-áruházláncok problematikája

19 A hibák statisztikai következményei Mi történik, ha a tervezettnél kevesebb mintát veszünk? pozitivitás pozitivitás pozitivitás pozitivitás > a hiba megnő, a megbízhatósági intervallum szélesedik

20 A hibák statisztikai következményei Mi történik, ha nem az előírt hónapban vesszük a mintát? pozitivitás pozitivitás pozitivitás pozitivitás > a hiba megnő, a megbízhatósági intervallum szélesedik

21 A hibák statisztikai következményei Mi történik, ha nem az előírt élelmiszerlánc-pozícióban vesszük a mintát? pozitivitás tejgazdaság kiskereskedő nagykereskedő nem lesz reprezentatív a mintánk

22 A hibák statisztikai következményei Mi történik, ha előre tudja a megmintázandó, hogy mintát vesznek tőle? élelmiszer-áruházláncok problematikája nem lesz reprezentatív a mintánk

23 A monitoring mintavétel céljainak veszélyeztetése a hibák által hibás következtetések a magyar mezőgazdaság állapotáról; hibás kockázatbecslések monitoring-tervek; rosszabb pozíciók a nemzetközi piacokon; rossz stratégiai irányok kijelölése; gazdasági, politikai, társadalmi feszültségek keltése.

24 Összefoglalás Egy monitoring mintavétel akkor teljesíti az elvárásokat, ha - reprezentatív jól jellemzi az alapsokaságot, - kiszámítható (megbecsülhető) az állítások igazságtartalma azaz a hibák valószínűsége; Ezért nem szabad: - a terveket szabadon felülbírálni, - a nehézségeket a szakszerűség rovására megoldani.

25 Felhasznált irodalom Dr. Dukáti Ferenc: Termékek megfelelőségének matematikai statisztikai ellenőrzése (BME Továbbképző Intézete) Kehl Dániel dr. Rappai Gábor: Mintaelemszám tervezése Likertskálát alkalmazó lekérdezésekben (Statisztikai Szemle, 84. évfolyam 9. szám) Lehota József : Marketingkutatás az agrárgazdaságban (Mezőgazda Kiadó) Szelezsán János: Valószínűségszámítás és matematikai statisztika (LSI Oktatóközpont)

26 Köszönöm a figyelmüket!

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát:

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát: A társadalomkutatás módszerei I. 10. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 17. Outline 1 Ismétlés Számítási feladat Egyéb példák 2 A mintavételi hiba dichotóm változók esetében

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%)

3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%) MINTAVÉTELEZÉSI ELJÁRÁSOK A mintavételezés célja A statisztikai és nem statisztikai mintavételi eljárások során az ellenőr megtervezi és kiválasztja az ellenőrzési mintát, valamint kiértékeli a mintavétel

Részletesebben

A társadalomkutatás módszerei I.

A társadalomkutatás módszerei I. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 A mintaválasztás célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Mintavétel. Kovács István BME Menedzsment és Vállalatgazdaságtan. Tanszék

Mintavétel. Kovács István BME Menedzsment és Vállalatgazdaságtan. Tanszék Mintavétel Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Alapfogalmaink Sokaság azon elemek összessége, amelyek valamilyen közös jellemzővel bírnak, és megfelelnek a marketingkutatási probléma

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 9. MA3-9 modul. Statisztikai hipotézisek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 9. MA3-9 modul. Statisztikai hipotézisek Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 9. MA3-9 modul Statisztikai hipotézisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Termék- és tevékenység ellenőrzés tervezése

Termék- és tevékenység ellenőrzés tervezése Termék- és tevékenység ellenőrzés tervezése Tirián Attila NÉBIH Rendszerszervezési és Felügyeleti Igazgatóság 2016. November 15. Élelmiszerlánc-biztonsági Stratégia Időtáv 2013. október 8-tól hatályos

Részletesebben

Matematikai statisztikai elemzések 3.

Matematikai statisztikai elemzések 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR

Részletesebben

Mintavétel: terv és eljárások

Mintavétel: terv és eljárások Mintavétel: terv és eljárások Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Az előadás felépítése Mi is az a mintavétel A mintavétel folyamata Mintavételi technikák A minta nagyságának meghatározása

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató

Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana Domokos Tamás, módszertani igazgató A helyzetfeltárás célja A közösségi kezdeményezéshez kapcsolódó kutatások célja elsősorban felderítés,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA OMNIBUSZ 98/1. SPSS állomány neve: Könyvtári dokumentum sorszáma: 287. Budapest, 1998.

TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA OMNIBUSZ 98/1. SPSS állomány neve: Könyvtári dokumentum sorszáma: 287. Budapest, 1998. TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA OMNIBUSZ 98/1 SPSS állomány neve: d58.sav Könyvtári dokumentum sora: 287 Budapest, 1998. Omnibusz 98/1 2 Tartalomjegyzék TARTALOMJEGYZÉK 2 BEVEZETÉS 3 A MINTA ÖSSZEHASONLÍTÁSA

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

II. A következtetési statisztika alapfogalmai

II. A következtetési statisztika alapfogalmai II. A következtetési statisztika alapfogalmai Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

PIACKUTATÁS (MARKETINGKUTATÁS)

PIACKUTATÁS (MARKETINGKUTATÁS) PIACKUTATÁS (MARKETINGKUTATÁS). FŐBB PONTOK A kutatási terv fogalmának meghatározása, a különböző kutatási módszerek osztályozása, a feltáró és a következtető kutatási módszerek közötti különbségtétel

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2010 10. évfolyam :: Szakiskola FVM DASzK, Szakképző Iskola - Teleki Zsigmond Mezőgazdasági Szakképző Iskola és Kollégium, Villány 7773 Villány, Mathiasz János u. 2. Figyelem! A 2010. évi

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2015 8. évfolyam :: Általános iskola Baár-Madas Református Gimnázium, Általános Iskola és Kollégium 1022 Budapest, Lorántffy Zsuzsanna utca 3. Létszámadatok A telephely létszámadatai az

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Hild József Általános Iskola 1051 Budapest, Nádor u. 12. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2008 Városmajori Gimnázium, Módszertani Információs Felnőttképzési Továbbképző és Vizsgaközpont 1122 Budapest, Városmajor 71. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Pesti Barnabás Élelmiszeripari Szakképző Iskola és Gimnázium Almádi u. 3-5. Telephelye 1148 Budapest, Almádi u. 3-5. Létszámadatok A telephely létszámadatai

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK

Részletesebben

MÓDSZERTANI LEÍRÁS DIPLOMÁS KUTATÁS 2010. A vizsgálat keretei. A kutatás alapsokasága. Az adatfelvétel módszere

MÓDSZERTANI LEÍRÁS DIPLOMÁS KUTATÁS 2010. A vizsgálat keretei. A kutatás alapsokasága. Az adatfelvétel módszere FÜGGELÉK FÜGGELÉK DIPLOMÁS KUTATÁS 2010 MÓDSZERTANI LEÍRÁS A vizsgálat keretei A Diplomás kutatás 2010 adatfelvétele az Országos Diplomás Pályakövetési Rendszer kutatási programjának keretében zajlott

Részletesebben

Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő

Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Mintaterületek kijelölésének javasolt módjai kapás sortávú növényekre Miért is kell mintatér?

Részletesebben

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21. Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

FİBB PONTOK PIACKUTATÁS (MARKETINGKUTATÁS) Kutatási terv október 20.

FİBB PONTOK PIACKUTATÁS (MARKETINGKUTATÁS) Kutatási terv október 20. FİBB PONTOK PIACKUTATÁS (MARKETINGKUTATÁS) 2010. október 20. A kutatási terv fogalmának, a különbözı kutatási módszerek osztályozása, a feltáró és a következtetı kutatási módszerek közötti különbségtétel

Részletesebben

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló

Részletesebben

A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI. Omnibusz 2003/08. A kutatás dokumentációja. Teljes kötet

A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI. Omnibusz 2003/08. A kutatás dokumentációja. Teljes kötet A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI Omnibusz 2003/08 A kutatás dokumentációja Teljes kötet 2003 Tartalom BEVEZETÉS... 4 A MINTA... 6 AZ ADATFELVÉTEL FŐBB ADATAI... 8 TÁBLÁK A SÚLYVÁLTOZÓ KÉSZÍTÉSÉHEZ...

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Dr. Török Béla Óvoda, Általános Iskola, Speciális Szakiskola, Egységes Gyógypedagógiai Módszertani Intézmény, Diákotthon és Gyermekotthon 1142 Budapest,

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

FIT-jelentés :: Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. OM azonosító: Intézményi jelentés

FIT-jelentés :: Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. OM azonosító: Intézményi jelentés FIT-jelentés :: 2009 Arany János Általános Iskola és Gimnázium 2440 Százhalombatta, Szent István tér 1. Létszámadatok A telephelyek kódtáblázata A 001 - Arany János Általános Iskola és Gimnázium (8 évfolyamos

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben