Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!"

Átírás

1 BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok Összesen Szerezhető pontszám Elért pontszám A megoldás részletes mellékszámítások hiányában nem értékelhető! 1. feladat (21 pont) A háztartások havi egy főre jutó élelmiszer kiadásait rétegzett kiválasztás alapján vizsgálták az észak-magyarországi régióban. A felmérés során az alábbi adatokat kapták: Háztartás Átlagos kiadás Szórás Háztartások száma a (Ft/fő) (Ft) régióban (ezer) a mintában Városi Községi Összesen Ismert továbbá, hogy a mintába került 1500 háztartás fele volt városi (ez utóbbi háztartások egy főre jutó kiadásainak tapasztalati szórása 6000 Ft/fő), illetve hogy a községi háztartások egy főre jutó kiadási adatai a községi átlagtól átlagosan 29,167%-kal térnek el. A mintába került községi háztartások 43%-ában volt magasabb az egy főre jutó átlagos kiadás a községi átlagtól, ugyanez az adat a városi háztartások esetében 52%. a. Becsülje meg a városi háztartások évi átlagos egy főre jutó húsfogyasztási kiadásainak alsó és felső határát 99,7 %-os megbízhatósági szinten! b. Adjon konfidencia intervallumot 95%-os megbízhatósággal azoknak a községi háztartásoknak a számára a régióban, ahol az egy főre jutó átlagos kiadás meghaladja a községi átlagot! (4 pont) c. Mekkora mintát kell venni a városi háztartások rétegéből, ha az a. pontban végzett becslés maximális hibáját a felére kívánjuk csökkenteni 95,5%-os megbízhatóság mellett? (4 pont) d. Becsülje meg rétegzett mintavétel alapján 96 %-os megbízhatósággal a régió háztartásainak egy főre jutó átlagos élelmiszerkiadási összegét! (5 pont) e. Elfogadja-e azt az állítást, hogy a háztartások településtípus szerinti fekvése szignifikánsan meghatározza az egy főre jutó átlagos kiadás nagyságát? ( =5%) (5 pont) - 1 -

2 2. feladat (20 pont) Egy termelő vállalkozásnál novemberében 1 200, decemberében pedig 850 termékösszeszerelést végző fizikai dolgozót foglalkoztattak novemberében megfigyelték véletlenszerűen kiválasztott 90 dolgozó termelékenységét és az alábbi táblát állították össze. Az elemzésből ismert még, hogy a dolgozók 87,78%-a állított össze legfeljebb 57 munkadarabot a hónap során: termelékenység (db/fő) dolgozók (fő) ,236 1, ,120 0,548 0, ,864 0,316 0, Összesen: Ismert továbbá, hogy decemberében a termelékenység ellenőrzésére ismét vettek egy a novemberinél 10 fővel nagyobb mintát. Ez alapján azt találták, hogy decemberben a mintába került munkások összesen db-ot szereltek össze, valamint az átlagtól az egyes munkások termelékenységi adatai átlagosan 8%-kal térnek el. a. Töltse ki a táblázat hiányzó rovatait és a részletes mellékszámításokat is írja le! Ellenőrizze le 5%-os szignifikancia szinten, hogy a munkások novemberi termelékenysége normális eloszlást követ-e? (6 pont) b. Elfogadná-e 2,5%-os szignifikancia szinten azt az állítást, hogy a munkások termelékenységének szórása decemberében meghaladta a 4 db/fő-t? (4 pont) c. Tesztelje le 5%-os szignifikancia szinten azt a hipotézist, miszerint novemberben a munkások legalább 15%-a legfeljebb 50 db-ot szerelt össze! d. Milyen szignifikancia szinten fogadná el azt az állítást, hogy az átlagos termelékenység novemberről decemberre több, mint 1,5 db/fő-vel növekedett? (7 pont) - 2 -

3 3. feladat (7 pont) Egy mezőgazdasági vállalkozás hosszú évek óta figyeli a termésátlag (t/ha) és az éves csapadékmennyiség (mm) alakulását, melyek között az alábbi összefüggést találták: 0,0589 yˆ 5,2 x a. Értelmezze a regresszió függvény paramétereit! (6 pont) b. Becsülje meg, hogy egy olyan évben, amikor 500 mm csapadék esik, várhatóan mennyi lesz a termésátlag! (1 pont) - 3 -

4 4. feladat (22 pont) Egy strand büféjében a nyári időszakban megfigyelték 25 véletlenszerűen kiválasztott napon a napi középhőmérsékletet és a vendégek által elfogyasztott sör mennyiségét: Nap Középhőmérséklet ( o C) Elfogyasztott sör (l) További számítási eredmények: x = 525 d x d y = y = d 2 x = 170 s y = 410 a. Jellemezze a középhőmérséklet és az elfogyasztott sör mennyiségének kapcsolatát a megfelelő mutatókkal és határozza meg a két ismérv kapcsolatát leíró lineáris regressziófüggvényt! Értelmezze a mutatókat és a függvény paramétereit! (4+8 pont) b. Számítsa ki és értelmezze a 22 ºC-hoz tartozó rugalmasságot! c. Határozza meg az a. pontban illesztett függvény relatív hibáját és értelmezze azt! (4 pont) d. Becsülje meg 98 %-os megbízhatósági szinten az átlagos fogyasztás várható alakulását azokon a napokon, amikor a napi középhőmérséklet 25 ºC! - 4 -

5 5. feladat (17 pont) Egy orvosi vizsgálaton véletlenszerűen kiválasztott betegek vérnyomásának alakulását vizsgálták meg az életkor (év x 1 ), a testsúly (kg x 2 ) és a nem (1, ha férfi; 0, ha nő x 3 ) függvényében. A vizsgálat nyomán az alábbi számítási eredmények ismertek: (X * X) -1 = C= R -1 = b=(87,3; 0,609; -0,097; 9,13) a. Írja fel a regressziófüggvényt és értelmezze az X 1 változó regressziós együtthatóját! (4 pont) b. Határozza meg és értelmezze a vérnyomás és a testsúly közötti parciális korrelációs együtthatót! c. Számítsa ki és értelmezze a többszörös korrelációs együtthatót! Csak ezt a mutatót! d. Tesztelje le a függvény megfelelőségét 10%-os szignifikancia szinten! e. Becsülje meg a lineáris regressziófüggvény alapján 90%-os megbízhatósággal a 34 éves, 75 kg testsúlyú férfiak átlagos vérnyomását! [x 0 (X * X) -1 x 0 = 2,1483] (4 pont) - 5 -

6 6. feladat (13 pont) Egy wellness hotelben 2008 és 2011 között negyedéves bontásban vizsgálták a látogatók számának (fő) alakulását t = 0 módszerrel és a következő eredményeket kapták: y = ty = t 2 = A látogatók száma néhány kiemelt negyedévben a következő volt: időszak II II II II látogatók száma (fő) a. Írja fel a lineáris trend egyenletét, értelmezze a paramétereket! (6 pont) b. Készítsen előrejelzést, hogy az idei második negyedévben várhatóan mekkora lesz a hotelbe érkező vendégek száma, ha multiplikatív szezonalitást feltételezünk! (7 pont) - 6 -

Módszertani Intézeti Tanszéki Osztály

Módszertani Intézeti Tanszéki Osztály BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

GYAKORLÓ FELADATOK KORRELÁCIÓ- ÉS REGRESSZIÓ-SZÁMÍTÁS

GYAKORLÓ FELADATOK KORRELÁCIÓ- ÉS REGRESSZIÓ-SZÁMÍTÁS GYAKORLÓ FELADATOK KORRELÁCIÓ- ÉS REGRESSZIÓ-SZÁMÍTÁS 44. feladat Egy strandbüfében úgy találták, hogy összefüggés van az üdítőital fogyasztás mennyisége és az átlagos napi hőmérséklet között. Ezért 20

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. 1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Statisztika példatár

Statisztika példatár Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT Készítette: Vályi Réka Neptun-kód: qk266b 2011 1 Az elemzés

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik. (b) Mit nevezünk másodfajú hibának?

1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik. (b) Mit nevezünk másodfajú hibának? Statisztika 2015. május 08. D csoport Név Neptun kód 1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik pályázatnál 320 pályázóból 42 nyert, a másik pályázatnál

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

A MIDAS_HU modell elemei és eredményei

A MIDAS_HU modell elemei és eredményei A MIDAS_HU modell elemei és eredményei Tóth Krisztián Országos Nyugdíjbiztosítási Főigazgatóság A MIDAS_HU mikroszimulációs nyugdíjmodell eredményei további tervek Workshop ONYF, 2015. május 28. MIDAS_HU

Részletesebben

FIT-jelentés :: Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. OM azonosító:

FIT-jelentés :: Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. OM azonosító: FIT-jelentés :: 2012 Szent Imre Általános Iskola, Gimnázium és Szakközépiskola, Esztergom 2500 Esztergom, Főapát u. 1. Létszámadatok A telephelyek kódtáblázata A 001 - Szent Imre Általános Iskola, Gimnázium

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

FIT-jelentés :: KÉTEGYHÁZAI MEZŐGAZDASÁGI SZAKKÉPZŐ ISKOLA ÉS KOLLÉGIUM 5741 Kétegyháza, Gyulai út 6 OM azonosító: Intézményi jelentés

FIT-jelentés :: KÉTEGYHÁZAI MEZŐGAZDASÁGI SZAKKÉPZŐ ISKOLA ÉS KOLLÉGIUM 5741 Kétegyháza, Gyulai út 6 OM azonosító: Intézményi jelentés FIT-jelentés :: 2015 KÉTEGYHÁZAI MEZŐGAZDASÁGI SZAKKÉPZŐ ISKOLA ÉS KOLLÉGIUM 5741 Kétegyháza, Gyulai út 6 Létszámadatok A telephelyek kódtáblázata A 001 - KÉTEGYHÁZAI MEZŐGAZDASÁGI SZAKKÉPZŐ ISKOLA ÉS

Részletesebben

STATISZTIKA. Gyakorló feladatok az első zh-ra

STATISZTIKA. Gyakorló feladatok az első zh-ra STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i

Részletesebben

A gazdasági növekedés mérése

A gazdasági növekedés mérése A gazdasági növekedés mérése Érték-, volumen- és árindexek 25.) Az alábbi táblázat két egymást követő év termelési mennyiségeit és egységárait mutatja egy olyan gazdaságban, ahol csupán három terméket

Részletesebben

Kistérségi gazdasági aktivitási adatok

Kistérségi gazdasági aktivitási adatok Kistérségi gazdasági aktivitási adatok 1. A KMSR rendszerben alkalmazott statisztikai módszerek Előadó: Dr. Banai Miklós 2. A KMSR rendszer által szolgáltatott adatok, jelentések Előadó: Kovács Attila

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

FIT-jelentés :: Tereskei Általános Iskola 2652 Tereske, Kossuth utca 84. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Tereskei Általános Iskola 2652 Tereske, Kossuth utca 84. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2015 Tereskei Általános Iskola 2652 Tereske, Kossuth utca 84. Létszámadatok A telephelyek kódtáblázata A 001 - Tereskei Általános Iskola (általános iskola) (2652 Tereske, Kossuth utca 84.)

Részletesebben

Németh Imre Általános Iskola

Németh Imre Általános Iskola 4 Németh Imre Általános Iskola Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon. osztály szövegértés Standardizált átlagos képességek szövegértésből Az Önök iskolájának átlagos

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

FIT-jelentés :: Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: Mátyás Király Általános Iskola 2013 Pomáz, Mátyás Király u. 2. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Mátyás Király Általános Iskola 2013 Pomáz, Mátyás Király u. 2. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2011 Mátyás Király Általános Iskola 2013 Pomáz, Mátyás Király u. 2. Létszámadatok A telephelyek kódtáblázata A 001 - Mátyás Király Általános Iskola (általános iskola) (2013 Pomáz, Mátyás

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Ady Endre Általános Iskola

Ady Endre Általános Iskola 4 Ady Endre Általános Iskola 3 Gyál, Ady E. u.. Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon. osztály matematika 1 3 Gyál, Ady E. u.. Standardizált átlagos képességek matematikából

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Dr. Török Béla Óvoda, Általános Iskola, Speciális Szakiskola, Egységes Gyógypedagógiai Módszertani Intézmény, Diákotthon és Gyermekotthon 1142 Budapest,

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 4 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon. osztály matematika 1 Standardizált átlagos képességek matematikából

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

FIT-jelentés :: Pomázi Mátyás Király Általános Iskola 2013 Pomáz, Mátyás király utca 2. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Pomázi Mátyás Király Általános Iskola 2013 Pomáz, Mátyás király utca 2. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2015 Pomázi Mátyás Király Általános Iskola 2013 Pomáz, Mátyás király utca 2. Létszámadatok A telephelyek kódtáblázata A 001 - Pomázi Mátyás Király Általános Iskola (általános iskola) (2013

Részletesebben

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2011 Kós Károly Szakképző Iskola 2030 Érd, Ercsi u. 8. Létszámadatok A telephelyek kódtáblázata A 001 - Kós Károly Szakképző Iskola (szakközépiskola) (2030 Érd, Ercsi u. 8.) B 001 - Kós

Részletesebben

FIT-jelentés :: KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam

FIT-jelentés :: KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. OM azonosító: Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2013 KÓS KÁROLY SZAKKÉPZŐ ISKOLA 2030 Érd, Ercsi u. 8. Létszámadatok A telephelyek kódtáblázata A 001 - Kós Károly Szakképző Iskola (szakközépiskola) (2030 Érd, Ercsi u. 8.) B 001 - Kós

Részletesebben

FIT-jelentés :: Damjanich János Általános Iskola 2100 Gödöllő, Batthyány u. 32. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Damjanich János Általános Iskola 2100 Gödöllő, Batthyány u. 32. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2013 Damjanich János Általános Iskola 2100 Gödöllő, Batthyány u. 32. Létszámadatok A telephelyek kódtáblázata A 001 - Damjanich János Általános Iskola (általános iskola) (2100 Gödöllő,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FIT-jelentés :: Kölcsey Ferenc Gimnázium 8900 Zalaegerszeg, Rákóczi út OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Kölcsey Ferenc Gimnázium 8900 Zalaegerszeg, Rákóczi út OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2011 Kölcsey Ferenc Gimnázium 8900 Zalaegerszeg, Rákóczi út 49-53. Létszámadatok A telephelyek kódtáblázata A 001 - Kölcsey Ferenc Gimnázium (6 évfolyamos gimnázium) (8900 Zalaegerszeg,

Részletesebben

Ady Endre Általános Iskola

Ady Endre Általános Iskola Ady Endre Általános Iskola 36 Gyál, Ady E. u.. Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 6. osztály szövegértés 1 36 Gyál, Ady E. u.. Standardizált átlagos képességek szövegértésből

Részletesebben

Gyakorló feladatok Anyagmérnök hallgatók számára

Gyakorló feladatok Anyagmérnök hallgatók számára Gyakorló feladatok Anyagmérnök hallgatók számára. feladat Egy külkereskedelmi vállalat 7 ezer üvegből álló gyümölcskonzerv szállítmányt exportál. A nettó töltősúly ellenőrzése céljából egy 9 elemű véletlen

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2011 10. évfolyam :: Szakiskola Herman Ottó Kertészeti-, Környezetvédelmi-, Vadgazdálkodási Szakképző Iskola és Kollégium 9700 Szombathely, Ernuszt K. u. 1. Létszámadatok A telephely létszámadatai

Részletesebben

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,

Részletesebben

FIT-jelentés :: Kazinczy Ferenc Református Általános Iskola 3580 Tiszaújváros, Munkácsy Mihály út 18. OM azonosító: Intézményi jelentés

FIT-jelentés :: Kazinczy Ferenc Református Általános Iskola 3580 Tiszaújváros, Munkácsy Mihály út 18. OM azonosító: Intézményi jelentés FIT-jelentés :: 2013 Kazinczy Ferenc Református Általános Iskola 3580 Tiszaújváros, Munkácsy Mihály út 18. Létszámadatok A telephelyek kódtáblázata A 001 - Kazinczy Ferenc Református Általános Iskola (általános

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2011 Gimnázium, Informatikai, Közgazdasági, Nyomdaipari Szakközépiskola és Szakiskola 3300 Eger, Mátyás Király út 165. Létszámadatok A telephelyek kódtáblázata A 001 - Gimnázium, Informatikai,

Részletesebben

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: 6 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: Orosháza Város Általános Iskolája 5900 Orosháza, Előd u. 17. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Orosháza Város Általános Iskolája 5900 Orosháza, Előd u. 17. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2008 Orosháza Város Általános Iskolája 5900 Orosháza, Előd u. 17. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák átlageredményeinek összehasonlítása Matematika A szignifikánsan

Részletesebben

FIT-jelentés :: Intézményi jelentés. 8. évfolyam

FIT-jelentés :: Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2015 Etyeki Nyelvoktató Német Nemzetiségi Általános Iskola és Alapfokú Művészeti Iskola 2091 Etyek, Magyar utca 2. Létszámadatok A telephelyek kódtáblázata A 001 - Etyeki Nyelvoktató Német

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 4 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 18 Budapest, Horváth Mihály tér 8. Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 6. osztály szövegértés 1 18

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2014 10. évfolyam :: Szakiskola VM DASzK, Sellyei Mezőgazdasági Szakképző Iskolája és Kollégiuma 7960 Sellye, Zrínyi M. utca 2. Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

Hunyadi János Általános Iskola

Hunyadi János Általános Iskola 4 Hunyadi János Általános Iskola Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 6. osztály matematika 1 Standardizált átlagos képességek matematikából Az Önök iskolájának átlagos

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

GYAKORLÓ FELADATOK BECSLÉS - HIPOTÉZISVIZSGÁLAT

GYAKORLÓ FELADATOK BECSLÉS - HIPOTÉZISVIZSGÁLAT GYAKORLÓ FELADATOK BECSLÉS - HIPOTÉZISVIZSGÁLAT 1. feladat Egy külkereskedelmi vállalat 70 ezer üvegből álló gyümölcskonzerv szállítmányt exportál. A nettó töltősúly ellenőrzése céljából egy 900 elemű

Részletesebben

FIT-jelentés :: Tápszentmiklósi Csokonai Vitéz Mihály Általános Iskola 9094 Tápszentmiklós, Major utca 1. OM azonosító:

FIT-jelentés :: Tápszentmiklósi Csokonai Vitéz Mihály Általános Iskola 9094 Tápszentmiklós, Major utca 1. OM azonosító: FIT-jelentés :: 2014 Tápszentmiklósi Csokonai Vitéz Mihály Általános Iskola 9094 Tápszentmiklós, Major utca 1. Létszámadatok A telephelyek kódtáblázata A 001 - Tápszentmiklósi Csokonai Vitéz Mihály Általános

Részletesebben

FIT-jelentés :: Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. OM azonosító:

FIT-jelentés :: Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. OM azonosító: FIT-jelentés :: 2015 Szegedi Gábor Dénes Műszaki és Környezetvédelmi Középiskola és Szakiskola 6724 Szeged, Mars tér 14. Létszámadatok A telephelyek kódtáblázata A 002 - Szegedi Műszaki Középiskola Csonka

Részletesebben

(a) Számolja ki a vásárolt benzin átlagos mennyiségét! (b) Számítsa ki az átlagos abszolút eltérést! (a) Mekkora a napi átlagos csökkenés?

(a) Számolja ki a vásárolt benzin átlagos mennyiségét! (b) Számítsa ki az átlagos abszolút eltérést! (a) Mekkora a napi átlagos csökkenés? Statisztika 2015. október 09. A csoport Név Neptun kód 1. Egy benzikútnál egy id½oszakban a vásárolt benzin mennyisége az alábbiak szerint alakult: benzin(l) gépkocsi -15 27 15.1-25 39 25.1-35 45 35.1-45

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Dunabogdányi Általános Iskola és Alapfokú Művészeti Iskola 2023 Dunabogdány, Hegyalja utca 9-11. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: Telephely kódja: 003. Telephelyi jelentés

FIT-jelentés :: Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: Telephely kódja: 003. Telephelyi jelentés FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: Intézményi jelentés. 8. évfolyam

FIT-jelentés :: Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2012 Általános és Alapfokú Művészeti Iskola Gyenesdiás-Várvölgy Közös Fenntartású Nevelési-Oktatási Intézmény 8315 Gyenesdiás, Kossuth u. 91. Létszámadatok A telephelyek kódtáblázata A

Részletesebben

Hunyadi János Általános Iskola

Hunyadi János Általános Iskola 4 Hunyadi János Általános Iskola Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon. osztály szövegértés 1 Standardizált átlagos képességek szövegértésből Az Önök iskolájának átlagos

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

FIT-jelentés :: Csillaghegyi Általános Iskola 1038 Budapest, Dózsa György u. 42. OM azonosító: Intézményi jelentés. 8.

FIT-jelentés :: Csillaghegyi Általános Iskola 1038 Budapest, Dózsa György u. 42. OM azonosító: Intézményi jelentés. 8. FIT-jelentés :: 2011 Csillaghegyi Általános Iskola 1038 Budapest, Dózsa György u. 42. Létszámadatok A telephelyek kódtáblázata A 001 - Általános Iskola (általános iskola) (1038 Budapest, Dózsa György u.

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2015 8. évfolyam :: Általános iskola Baár-Madas Református Gimnázium, Általános Iskola és Kollégium 1022 Budapest, Lorántffy Zsuzsanna utca 3. Létszámadatok A telephely létszámadatai az

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

FIT-jelentés :: 2012 Telephelyi jelentés 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium

FIT-jelentés :: 2012 Telephelyi jelentés 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium FIT-jelentés :: 2012 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium 8000 Székesfehérvár, Jókai u. 20. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Vénkerti Általános Iskola, Óvoda és Alapfokú Művészetoktatási Intézmény 4027 Debrecen, Sinay M. u. 6. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Szent Imre Római Katolikus Általános Iskola és Kisboldogasszony Óvoda 3532 Miskolc, Fadrusz János u. 3-8. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Városközponti Általános Iskola Jókai Mór Általános Iskolája 7622 Pécs, Jókai Mór utca 49. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Hild József Általános Iskola 1051 Budapest, Nádor u. 12. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2008 8. évfolyam :: Általános iskola Hild József Általános Iskola 1051 Budapest, Nádor u. 12. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben