Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége"

Átírás

1 Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás deltacheck Elméleti alapjait Cembrowsky és Carey fogalmazták meg: Bevezették a delta érték fogalmát, ami nem más mint a beteg eredményeiben bekövetkező változás. Ha a delta érték kicsi, akkor a beteg állapota stabil. Ha a delta érték nagy, illetve nagyobb mint egy előre definiált határérték, akkor az egy delta-check hiba. A delta-check hiba oka lehet a beteg állapotában bekövetkező klinikai jelentőségű változás, vagy a mintával kapcsolatos hiba Mi a teendő, ha delta-check hibát észlelünk? Kiadjuk az eredményt! Megjegyzéssel látjuk el, ha szükséges! Delta-check hibát észleltünk A klinikai eset megállapítása A változást igazolja a beteg klinikai állapota? Kiadjuk az eredményt, felvesszük a kapcsolatot a klinikussal, ha szükséges! Ellenőrizzük a beteg azonosítót az eredeti mintavételi csövön Ellenőrizzük a belső kontrollokat Megismételjük a mérést Az ismétlés megerősítette a delta eltérést? Vegyük fel a kapcsolatot a klinikussal, kérjünk új mintát az analízisre. Autovalidálás bevezetésének munkafolyamatai Informatikai háttér megteremtése (Labor Informatikai Rendszer - LIR) Az analitikai folyamatok minőségének ellenőrzése, a külső és belső kontrollok segítségével LIR paraméterezése Az autovalidálási algoritmus és ellenőrző értékek optimalizálása Tesztelés Az autovalidálás informatikai feltételeinek megteremtése Felkészítjük a laboratóriumban használt informatikai rendszert az autovalidálásra Veszünk egy új laborinformációs rendszert, ami felkészíthető az autovalidálásra Veszünk egy autovalidáló szoftvert és illesztjük a működő laborinformatikai rendszerhez. Az analitikai minőség ellenőrzése: Mérési bizonytalanság ismerete A laboratóriumban minden egyes mérésről elmondható, hogy van: Preanalitikai - (CV p ) Analitikai - (CV a ) Biológiai variabilitása Egyénen belüli (CVi) Csoporton belüli (CV g ) Mindegyik véletlenszerű és Gaussi eloszlást mutat. Variációs koefficienssel fejezzük ki: CV=(Szórás/Átlag)*100 A mérés teljes variabilitását matematikai képlettel a következőképpen írható le: CV T =(CV p2 +CV a2 +CV i2 ) 1/2 1

2 Preanalitikai bizonytalanság minimalizása Ha: Standardizáljuk a beteg előkészítésének feltételeit Standard eljárásokat alkalmazunk a vérvétel során Mintaszállítás, -kezelés és -centrifugálás standard módon történik, Akkor a mérés preanalitikai variabilitása elhanyagolható: CV p 0 A mérés teljes variabilitása a következő képen módosul (egy mintából, egy mérés esetén): CV T =(CV a2 +CV i2 ) 1/2 Alapvető minőségi kritériumok Elvárható analitikai pontosság belső kontroll Az analitikai pontosság kisebb legyen az egyénen belüli biológiai variabilitás felénél: CV a <0,5CV i Elvárható analitikai teljesítmény külső kontroll A torzítás (bias) kisebb legyen a csoport biológiai variabilitásának egynegyedénél: B a <0,25(CV i2 +CV g2 ) 1/2 Ellenőrző értékek Referencia tartomány Delta eltérés tartomány Becslésére jó közelítéssel alkalmazható a KRITIKUS DIFFERENCIA (CD) Lehet abszolút érték vagy százalék Pánik érték tartomány Kritikus differencia definíciója Egy analit két különböző mérési sorozatából származó eredménye akkor különbözik jelentősen egymástól, ha a különbség nagyobb mint a két eredmény együttes variabilitása. Ezt az értéket hívjuk kritikus differenciának (CD). Teljes variabilitás A mérés teljes variabilitása minden analit esetében a CV T =Z*(CV a2 +CV i2 ) 1/2 matematikai képlettel írható le. Mi a Z? Standard normál eloszlás A mérés teljes variabilitására véletlenszerű és Gaussi eloszlást mutat. Ezért könnyű meghatározni, hogy egy adott valószínűség mellett, milyen intervallumba kerül a mért értékünk. A mért érték 68,3% valószínűséggel az átlag ± 1 SD tartományon belül található A mért érték 95,5% valószínűséggel az átlag ± 2 SD tartományon belül található A mért érték 99,7% valószínűséggel az átlag ± 3 SD tartományon belül található 2

3 Z-score A mért érték tetszőleges valószínűséggel az átlag ± Z SD tartományon belül található ez a Z-score. Ha csak az átlagtól való pozitív (+Z) vagy negatív (-Z) irányú eltérést vesszük figyelembe, akkor a Z-score egyirányú unidirekcionális. Ha az átlagtól való pozitív és negatív irányú eltérést is figyelembe vesszük (± Z), akkor a Z- score kétirányú bidirekcionális. Hol találom meg a Z-score értékét? Az egy és kétirányú változást feltételező Z értékeket a leggyakrabban alkalmazott valószínűségekre az alábbi táblázat foglalja össze. Valószínűség (%) Egyirányú változás Z-score Kétirányú változás Z-score 99 2,33 2, ,05 2, ,88 2, ,75 2, ,65 1, ,28 1, ,04 1,44 Feltételezés: Ha egy analit két különböző mérési sorozatából származó eredményét hasonlítjuk össze, akkor mindkét eredmény variabilitására igaz a fenti megállapítás. 1.mérés: CV T1 =Z*(CV a12 +CV i12 ) 1/2 2.mérés: CV T2 =Z*(CV a22 +CV i22 ) 1/2 Ha egy beteg két különböző időben mért azonos paraméterét hasonlítjuk össze az analitikai- és egyénen belüli biológiai variabilitás, mindkét mérés esetében ugyanaz. Kritikus differencia számítása Így a két eredmény együttes variabilitás a két egyedi mérés teljes variabilitásának összegeként írható le: Kritikus differencia=1. mérés variabilitása +2. mérés variabilitása CD= {[Z*(CV a12 +CV i12 ) 1/2 ] 2 +[Z*(CV a22 +CV i22 ) 1/2 ] 2 } 1/2 A képlet matematikai rendezés után a következőként alakul: CD=2 1/2 *Z*(CV a2 +CV i2 ) 1/2 CV a1 =CV a2 és CV i1 =CV i2 Véletlenszerű torzítás - Random Bias Ha még pontosabban szeretnénk megfogalmazni a kritikus differenciát, a képletbe bele kell foglalni a véletlenszerű torzításból (újrakalibrálás, reagens lot váltás) eredő torzítás változást (ΔB) is: CD=ΔB+2 1/2 *Z*(CV a2 +CV i2 ) 1/2 Hogyan tudjuk kiküszöbölni? odafigyelünk a lot váltás és újra kalibrálás minőségi menedzsmentjére. A belső kontrollokból számított CV hosszabb időintervallumra nézve tartalmazza a ΔB-t. Mi kell még a kritikus differencia kiszámításhoz? Van Z-score értékünk táblázatból Van analitikai variabilitásunk belső kontrollok analitikai variabilitásából számíthatjuk egy hosszabb időintervallumra nézve. Honnan vegyek egyénen belüli biológiai variabilitást? 3

4 Egyénen belüli biológiai variabilitás 1. Kiszámítható Előnye: A laboratórium ellátási területén lévő populációra vonatkozik Hátránya: Nagyszámú egészséges ember szükséges Sok-sok pénzbe kerül (vérvételi csövek, mérés) Egyénen belüli biológiai variabilitás 2. Irodalmi adatgyűjteményekben megtalálható Westgard honlap: Előnye: Jelentősen olcsóbb és energiatakarékos megoldás Hátránya: Kompromisszumokat kell kötni! Kritikus differencia használatával kapcsolatban felmerülő problémák Egyénen belüli biológiai variabilitásban rejlő hibák: Egészséges populációra számított - Álpozitív Gaussi eloszlást feltételez (nincs korreláció az egymást követő eredmények között) - Álnegatív Egyénen belüli biológiai variabilitás közép értékével számolunk, bár az emberek egyénen belüli biológiai variabilitása eltérhet ettől szerencsére a legtöbb analit esetében az ebből eredő hiba elhanyagolhatóan kicsi. Autovalidálási algoritmus elkészítése Autovalidált Referencia tartományon belül van? Nem autovalidált Első eredmény? Az előző eredmény adott időintervallumon belüli? Az eltérés ±Δ-eltérés tartományon belül van? Pánik tartományom belül van? Nem autovalidált (Delta-check hiba) Úgy járunk el, mit ha első eredmény lenne! Nem autovalidált Autovalidált Az optimalizálás munkafolyamatai Előzetes statisztikák készítésével felmérhető, hogyan alakulna az autovalidált eredmények száma egy adott paraméternél. Az autovalidált eredmények számának előzetes becslése Ezeket az eredményeket összehasonlítjuk a diplomás validáló kollégák döntéseivel. Az összehasonlítás eredményeit elemezzük és az eltéréseket mérlegelve módosítjuk az algoritmust illetve a döntési határokat. AV-D autovalidált lenne, mert átment a delta-check szűrőn AV-T autovalidált lenne, mert nincs előző eredménye a definiált időintervallumon belül, de az eredménye referencia tartományon belüli NAV-D nem lenne autovalidált mert nem ment át a delta-check szűrőn NAV-T nem lenne autovalidált, mert nincs előző eredménye a definiált időintervallumon belül és az eredmény referencia tartományon kívüli. NAV-DP átment ugyan a delta-check szűrőn, de nem autovalidált, mert pánik érték. 4

5 Az autovalidálás és diplomás validálás eredményeinek összehasonlítása Az összehasonlítás eredményeként: az autovalidálási rendszerrel egyező, az autovalidálási rendszernél megengedőbb és az autovalidálási rendszernél szigorúbb döntések születtel. Ha a kollégák nem hoztak egyértelmű döntést a kérdésben, azaz ugyanannyi számú kolléga voksolt megengedőbben vagy szigorúbban, mint ahányan egyeztek a döntéssel, azokat megosztó esetekként regisztráltuk. Az összehasonlítást elvégeztük, mind a 95%, mind a 99% valószínűségnél meghatározott kritikus differencia értékek behelyettesítésével a döntési algoritmusba. Az összehasonlítás értékelése a Kálium példáján 31% Megosztó 4% 32% Alap döntési algoritmus (CD95%) 1% Döntési határ: CD95% 1% 64% Megosztók száma kicsi k száma túl nagy Ha a delta döntési határ értékét növeltük a szigorú döntések száma is megnő! Mi a teendő? 5% Döntési határ: CD99% 9% AZ eredményeket kördiagram formájában ábrázoltuk 67% 86% Az eredményekből levonható következtetések Módosított döntési algoritmus Elemeztük az autovalidálásnál megengedőbb eseteteket. A kollégák a referencia tartományon belüli változásokkal szemben megengedőbbek voltak. Ennek megfelelően módosítottuk a döntési algoritmust. Döntési algoritmus módosítás eredménye a Kálium példáján Tesztelés Módosított döntési algoritmus (CD95%/CD99%) 8% 2% 90% A szigorú döntések száma az algoritmus módosításával nem változott jelentős mértékben. A delta-check értékeket statisztikai szempontból megfelelőnek találjuk optimalizálás megtörtént. Módosítottuk a döntési algoritmust, ahol az szükséges. Figyeljük a delta-check hibákat a diplomás validálás során a felmerülő hibákat javítottuk. Egyidejűleg alkalmaztuk az autovalidálást és a diplomás validálást az autovalidált eredmények revalidálásával. 5

6 Az autovalidáló rendszer finomítása Interferáló tényezők automatizálása Egyénen belüli biológiai variabilitás nem és kortól való függésének figyelembe vétele A delta érték időfüggésének alkalmazása Egy leleten belüli klinikailag összefüggő eredmények összehasonlítása. Köszönöm a figyelmet! Várom a témához kapcsolódó kérdéseiket! 6

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Eredmények (technikai) jóváhagyása Eredmények klinikai validálása Eredmények interpretálása Konzultáció További vizsgálatok Leletek küldése

Eredmények (technikai) jóváhagyása Eredmények klinikai validálása Eredmények interpretálása Konzultáció További vizsgálatok Leletek küldése Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Dr. Araczki Ágnes Szegedi Tudományegyetem, Általános Orvostudományi Kar, Laboratóriumi Medicina Intézet Pre- és posztanalitika

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

2349-06 Szövettani minőségbiztosítás követelménymodul szóbeli vizsgafeladatai

2349-06 Szövettani minőségbiztosítás követelménymodul szóbeli vizsgafeladatai 1. feladat Új munkatárs érkezik a laboratóriumba. Tájékoztassa kollégáját a munkafázisonkénti minőségbiztosításról! - a vizsgálati anyag beérkezésénél a vizsgálatkérőlap ellenőrzése - a vizsgálati anyag

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Laboratóriumi riumi diagnosztikai folyamatok pre-és posztanalitikai hibalehetıségei

Laboratóriumi riumi diagnosztikai folyamatok pre-és posztanalitikai hibalehetıségei Laboratóriumi riumi diagnosztikai folyamatok pre-és posztanalitikai hibalehetıségei Dr. Gilyán Judit, Dr. Havass Zoltán Erzsébet KórhK rház - Rendelıint intézet Központi Laboratórium rium Hódmezıvásárhely

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

2011. 01. 27. A laboratórium feladata. Interferáló tényezők

2011. 01. 27. A laboratórium feladata. Interferáló tényezők Interferáló tényezők hatása a laboratóriumi eredmények értelmezésére Valczer Erzsébet Szegedi Tudományegyetem Szent-Györgyi Albert Klinikai Központ Laboratóriumi Medicina Intézet 2011. január 27. A laboratórium

Részletesebben

Biológiai variabilitás szerepe

Biológiai variabilitás szerepe Biológiai variabilitás szerepe a laboratóriumi munka során dr. Bekő Gabriella Semmelweis Egyetem, Laboratóriumi Medicina Intézet Központi Laboratórium Budapest, 2011. május 31. Bio-Rad Szimpózium Biológiai

Részletesebben

A betegbiztonság növelése humán diagnosztikai laboratóriumban

A betegbiztonság növelése humán diagnosztikai laboratóriumban A betegbiztonság növelése humán diagnosztikai laboratóriumban Dr. Barna T. Katalin 1, Szlatinszki Nóra 2, Kanik Erika 3, Kegyes Lászlóné 4, Bálint Gyöngyi 5 (Synlab Dunaújvárosi Laboratórium 1-4, Dunaújváros,

Részletesebben

Kontrolladatok kiértékelése

Kontrolladatok kiértékelése Itt a nyilam, mibe lıjem? Kontrolladatok kiértékelése Fizil Attila (Bio-Rad Magyarország Kft.) Bio-Rad QC Szimpozium 2007. 05. 08. Budapest, Hotel Platánus Kontrolladatok győjtése MIÉRT? Megfelelı-e a

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Minıségellenırzés a laboratóriumi akkreditáció szemszögébıl

Minıségellenırzés a laboratóriumi akkreditáció szemszögébıl Minıségellenırzés a laboratóriumi akkreditáció szemszögébıl Liszt Ferenc PTE OEKK ÁOK Laboratóriumi Medicina Intézet Bio-Rad Magyarország rendezvény 2007. május 8. MSZ EN ISO 15189:2003 Orvosi laboratóriumok.

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

A megbízható pontosság

A megbízható pontosság A megbízható pontosság Tájékoztató a vércukormérő rendszerek pontosságáról Ismerje meg, mire képesek az Accu-Chek termékek! Vércukor-önellenőrzés A vércukor-önellenőrzés szerves része mind az 1-es, mind

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra.

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. I. A Gimnáziumi ágazat Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. matematika Az eredmények szerint a 4 évfolyamos

Részletesebben

Térfogat és súly alapú faátvétel problémái

Térfogat és súly alapú faátvétel problémái 49. FAGOSZ Fakonferencia 2015. október 28-29. Balatonszemes Térfogat és súly alapú faátvétel problémái Nyugat-magyarországi Egyetem Innovációs Központ Pásztory Zoltán Fakitermelés Fakitermelés 6,5-7,5

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,

Részletesebben

Hogyan felelhet meg jobban egy laboratórium a vizsgálatokat kérők elvárásainak? Dr. Antal-Szalmás Péter DEOEC Laboratóriumi Medicina Intézet

Hogyan felelhet meg jobban egy laboratórium a vizsgálatokat kérők elvárásainak? Dr. Antal-Szalmás Péter DEOEC Laboratóriumi Medicina Intézet Hogyan felelhet meg jobban egy laboratórium a vizsgálatokat kérők elvárásainak? Dr. Antal-Szalmás Péter DEOEC Laboratóriumi Medicina Intézet A laboratóriumi vizsgálatok végzésének folyamatábrája Anamnézis,

Részletesebben

GYORSTESZTEK ALKALMAZÁSA A

GYORSTESZTEK ALKALMAZÁSA A GYORSTESZTEK ALKALMAZÁSA A GYÓGYSZERTÁRAKBAN DR. MISETA ILDIKÓ GÖLLE, SZENT ISTVÁN GYÓGYSZERTÁR Rozsnyay Mátyás emlékverseny Debrecen, 2012. május 10-12. BEVEZETÉS - CÉLKITŰZÉS Miért kell a gyorstesztekkel

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

MINŐSÉGI INDIKÁTOROK SZEREPE AZ ORVOSI LABORATÓRIUM PREANALITIKAI MUNKAFOLYAMATAIBAN

MINŐSÉGI INDIKÁTOROK SZEREPE AZ ORVOSI LABORATÓRIUM PREANALITIKAI MUNKAFOLYAMATAIBAN MINŐSÉGI INDIKÁTOROK SZEREPE AZ ORVOSI LABORATÓRIUM PREANALITIKAI MUNKAFOLYAMATAIBAN Takácsné Horváth Ágnes, Csajbókné Boldizsár Margit, Dr. Ajzner Éva Szabolcs Szatmár Bereg Megyei Kórházak és Egyetemi

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Minőség - akkreditálás

Minőség - akkreditálás Bio-Rad Quality Control szimpózium Budapest 010. május 18. Minőség - akkreditálás Dr. Liszt Ferenc Pécsi Tudományegyetem Laboratóriumi Medicina Intézet Kötelező akkreditálás Egészségügyi miniszter 48/009.

Részletesebben

FÜGGELÉK. értékelési módok

FÜGGELÉK. értékelési módok FÜGGELÉK Q C uali ont értékelési módok BEVEZETÉS A diagnosztikai bizonytalanságot alapvetően két összetevő, a mérési bizonytalanság (analitikai hiba), a véletlen + rendszeres hiba és az adott paraméter

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Mátrix effektus a 25(OH)D-vitamint és a parathormont mérő módszerekben valamint. a 2013-as QuliCont eredményekből levonható tanulságok

Mátrix effektus a 25(OH)D-vitamint és a parathormont mérő módszerekben valamint. a 2013-as QuliCont eredményekből levonható tanulságok Mátrix effektus a 25(OH)D-vitamint és a parathormont mérő módszerekben valamint a 2013-as QuliCont eredményekből levonható tanulságok Toldy Erzsébet, Kányási Mária, Walentin Szilvia QuliCont Fórum 2015.

Részletesebben

Szakpolitikai programok és intézményi változások hatásának elemzése

Szakpolitikai programok és intézményi változások hatásának elemzése Szakpolitikai programok és intézményi változások hatásának elemzése Kézdi Gábor Közép-európai Egyetem (CEU) és MTA KRTK A Magyar Agrárközgazdasági Egyesület konferenciája Budapest A hatás tényellentétes

Részletesebben

Változások a minőség(biztosítás)irányítás területén

Változások a minőség(biztosítás)irányítás területén Változások a minőség(biztosítás)irányítás területén Miszti Cecilia DEOEC Orvosi Mikrobiológiai Intézet 2013.04.18. A minőségirányítási rendszer Célja: Olyan szabályozott rendszer létrehozása és működtetése,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mőszaki-technológiai Laboratórium 95 Budapest, Mester u. 8. ; 44 Budapest, Remény u. 4. (+6)--8-9, (+6)--468-757; (+6)--467-46

Részletesebben

Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1.

Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1. SZAKÉRTŐI VÉLEMÉNY élelmiszer minőségének ellenőrzéséről Munka azonosító jele: (C1276/2016) Termékek neve Sült libamell Megrendelő A vizsgálat célja Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft.

Részletesebben

Quality Control a napi gyakorlatban

Quality Control a napi gyakorlatban Quality Control a napi gyakorlatban Fizil Attila Bio-Rad Magyarország Kft. A laboratóriumi vizsgálatok kontrollrendszerei Belsı kontroll (IQC) kalibrátorok valódiság kontrollok gyártói kontrollok független

Részletesebben

Minőségirányítás az orvosi laboratóriumi medicina területén hazánkban, tanúsítás vagy akkreditálás? Dr. Hetyésy Katalin Témakörök

Minőségirányítás az orvosi laboratóriumi medicina területén hazánkban, tanúsítás vagy akkreditálás? Dr. Hetyésy Katalin Témakörök Minőségirányítás az orvosi laboratóriumi medicina területén hazánkban, tanúsítás vagy akkreditálás? Dr. Hetyésy Katalin (Petz Aladár Megyei Oktató Kórház) Témakörök I. Minőség a mai magyar egészségügyi

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát:

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát: A társadalomkutatás módszerei I. 10. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 17. Outline 1 Ismétlés Számítási feladat Egyéb példák 2 A mintavételi hiba dichotóm változók esetében

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Intézményi jelentés. 10. évfolyam

Intézményi jelentés. 10. évfolyam FIT-jelentés :: 2008 Gimnázium, Informatikai, Közgazdasági, Nyomdaipari Szakközépiskola és Szakiskola 3300 Eger, Mátyás Király út 165. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák

Részletesebben

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Horváth András, Kis Dániel Péter, Szatmáry Zoltán XV. Nukleáris Technikai Szimpózium 2016. december 8-9. Paks, Erzsébet Nagyszálloda

Részletesebben

Eredmény POSZTANALITIKA. értelmezése. Vizsgálatkérés Eredmény. Fekete doboz: a labor. Mintavétel

Eredmény POSZTANALITIKA. értelmezése. Vizsgálatkérés Eredmény. Fekete doboz: a labor. Mintavétel Posztanalitika Vizsgálatkérés Eredmény értelmezése POSZTANALITIKA Eredmény Mintavétel Fekete doboz: a labor És megszületik az EREDMÉNY a technikus nyugtázza; átkerül a laborinformatikai rendszerbe Diplomás

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

egfr körvizsgálat Griecs Andrásné, Dr. Sárkány Erika

egfr körvizsgálat Griecs Andrásné, Dr. Sárkány Erika Bevezetés egfr körvizsgálat Griecs Andrásné, Dr. Sárkány Erika A krónikus vesebetegség korai felismerése és az időben történő gondozásba vétel nagy jelentőséggel bír. A korai gondozás csökkenti a veseelégtelenség

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Robotika. Relatív helymeghatározás Odometria

Robotika. Relatív helymeghatározás Odometria Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben