Jelek és rendszerek előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Jelek és rendszerek - 1-2.előadás"

Átírás

1 Jelek és rendszerek előadás Bevezetés, rendszeranaĺızis az időtartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 1 / 141

2 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

3 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

4 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

5 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

6 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

7 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

8 Vázlat Állapotváltozós rendszerleírás III.rész: Az állapotváltozós rendszerleírás 7 Fizikai objektumok és leírásuk (pl.) 8 Az állapotváltozós rendszerleírás Definíció Az állapotváltozós leírás előálĺıtása hálózat alapján Az állapotváltozós leírás megoldása SISO rendszer megoldása Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 4 / 141

9 Vázlat Állapotváltozós rendszerleírás III.rész: Az állapotváltozós rendszerleírás 7 Fizikai objektumok és leírásuk (pl.) 8 Az állapotváltozós rendszerleírás Definíció Az állapotváltozós leírás előálĺıtása hálózat alapján Az állapotváltozós leírás megoldása SISO rendszer megoldása Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 4 / 141

10 Összefoglalás Vázlat IV.rész: Összefoglalás 9 Összefoglalás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 5 / 141

11 Jel fogalma és leírása 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 6 / 141

12 Jel fogalma és leírása Jelek és fizikai mennyiségek Valamely valóságos folyamat mérhető mennyiségeiről mérőeszközök segítségével szerezhetünk információt. Definíció (Fizikai mennyiség) Különböző folyamatok mérhető mennyiségeiről valamilyen mérőeszköz segítségévél mért mennyiséget fizikai mennyiségnek nevezzük. Példa hőmérséklet a tér egy adott pontján, egy testre ható erő, feszültség egy erősítő kimenetén, folyadékszint egy tartályban, stb. A fizikai mennyiségek matematikai leírását változók bevezetésével végezzük, melyek értéke valamely mértékegységben (pl. SI) megadott számérték. Példa T = 26.2 C, F = 90 N, u = 0.8 V, l = 1.43 m. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 7 / 141

13 Jel fogalma és leírása A jel fogalma és matematikai leírása Definíció (Jel) A jel valamely fizikai mennyiség olyan értéke vagy értékváltozása, amely egy egyértelműen hozzárendelt információt hordoz. Jelek matematikai leírására függvényeket használunk. A függvények egy független változó és egy függő változó között definiálnak kapcsolatot. (Egy változós skalár függvények) f : R R, y = x f(x), y = f(x) A független változó lehetséges értékeinek halmaza alkotja a függvény értelmezési tartományát (D f ), a függő változó értékeinek halmaza pedig a függvény értékkészletét (R f ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 8 / 141

14 Jel fogalma és leírása Jelek osztályozása A jelek alaptípusai, az értékkészlet és az értelmezési tartomány szerkezete alapján. 1 Ha a jel az idő argumentum minden valós értékére értelmezett, akkor folytonos idejű jelről beszélünk. Ezen csoportban legismertebb az analóg jel (folytonos értékű jel),amelynél a jel értéke is folytonos, 2 Ha egy analóg jelből adott (általában egyenletes osztású) időpillanatokban mintákat veszünk, akkor az időben diszkrét, értékkészletében pedig folytonos jelet kapunk, ami voltaképpen egy számsorozat. Ezt diszkrét idejű jelnek nevezzük, 3 Vannak olyan jelek, amelyek csak bizonyos értékeket vehetnek fel egy megszámlálható számhalmaz elemeiből (lépcsős, másnéven kvantált jelalak, vagy diszkrét értékű jel). Az ilyen jel az időben folytonos, de értékkészletében diszkrét, 4 Végül a számítástechnika szinte minden műszaki területen jelen lévő alkalmazása miatt nagy jelentősége van a mind időben, mind értékkészletében diszkrét jelnek, amelyet digitális jelnek nevezünk. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 9 / 141

15 A különböző jeltípusok Jel fogalma és leírása Jelek osztályozása x 1 (t) 0 x 2 [k] t k x 3 (t) 0.5 x 4 [k] t k Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 10 / 141

16 Jel fogalma és leírása Jelek osztályozása Folytonos jelek és megadásuk Egy x jel akkor folytonos idejű, ha a jel az idő minden valós értékére értelmezett ahol t az időváltozó jele. Megadásuk: x = x(t), t R, < t <, Képlettel (matematikai formulával) (pl. x(t) = 3cos(t π/2)) Grafikusan (ábrázolással) Differenciál-egyenlettel Értékek felsorolásával (értéktáblázattal) Figyelem! A grafikus és értéktáblázatos megadással csak véges hosszú jel adható meg korlátozott pontossággal. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 11 / 141

17 Jel fogalma és leírása Jelek osztályozása Megadás képlettel(formulával) és grafikusan x 1 (t) 0 x 1 (t) = { 0 ha t < 0 2cos(3t)sin(5t) ha t 0 x 2 (t) = { t ha t < 2 t 2 ha t t x 2 (t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 12 / 141

18 Jel fogalma és leírása Megadás képlettel és grafikusan Jelek osztályozása x 3 (t) x 3 (t) = 2cos(3t π/2) t x 4 (t) = 1 0.3e 0.5t sin(3t) t x 4 (t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 13 / 141

19 Jel fogalma és leírása Megadás differenciálegyenlettel Jelek osztályozása Egy folytonos idejű jel megadható egy n-ed rendű differenciálegyenlettel, de ebben az esetben egy adott t időpontban (célszerűen a t = 0-ban) meg kell adnunk n számú kezdeti értéket is. A megadott jel ekkor a differenciálegyenlet megoldásaként kapott függvény. Pl. dy dt = f(y, t), y(0) = y 0 y(t) Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 14 / 141

20 Jel fogalma és leírása Jelek osztályozása Megadás differenciálegyenlettel A megadott egyenlet dy dt = 2y, y(0) = 5 dy = 2ydt (1) dy y = 2dt (2) 1 dy = 2 1dt (3) y lny + C 1 = 2(t + C 2 ) (4) y = e 2t C = e 2t C (5) e y(t) = Me 2t 1 vigyük át az y változót a bal, a t változót pedig a jobb oldalra (változók szeparálása) 2 formálisan integráljuk az egyenlet mindkét oldalát. 3 felhasználjuk az 1/y és az 1 integranduszok primitív függvényét, az ln y + C 1 és a t + C 2 függvényeket, és 4 rendezzük az egyenletet y-ra úgy, hogy a C 1 és C 2 konstanokat összevonjuk egyetlen C konstanssá (C = C 1 + 2C 2 ). 5 helyettesítsük az e C konstanst M-el. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 15 / 141

21 Jel fogalma és leírása Jelek osztályozása Megadás differenciálegyenlettel (folyt.) 25 Ezáltal az y = Me 2t általános megoldást kapjuk, ahol az M konstans értékét a t = 0 időpillanatban adott érték segítségével határozzuk meg: y(0) = Me 0 = 5 M = 5. Így a differenciálegyenletet és a kezdeti feltételt is kilégítő időfüggvény a következő (kék görbe): y(t) y(t) = 5e 2t t 5 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 16 / 141

22 Jel fogalma és leírása Jelek osztályozása Diszkrét jelek és megadásuk Egy f[k] jel akkor diszkrét idejű, ha független változója k csak egész értékeket vehet fel y = f[k], k Z, k [,..., 1, 0, 1, 2,..., ], ahol k a diszkrét idő, azaz a kt s mintavételi időpillanat indexe. Megadásuk: Képlettel (matematikai formulával) (pl. y[k] = 3cos(k π/2)) Rekurzív formulával (pl. y[k] = 0.8y[k 1] + 0.2y[k 2]) Grafikusan (ábrázolással) Értékek felsorolásával (értéktáblázattal) Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 17 / 141

23 Jel fogalma és leírása Jelek osztályozása Megadás rekurzív formulával A jel k-adik ütembeli értéke sok esetben rekurzív úton számolható az azt megelőző értékek segítségével, pl.: y[k] = 0.5y[k 1] + 0.1y[k 2], y[ 1] = 2, y[ 2] = 0. A k = 0, 1, 2,... ütemekre az y[k] értéke lépésenként számolható, melyhez azonban ismerni kell a kezdeti feltételeket is (most y[ 1] = 2 és y[ 2] = 0). A rekurzió tehát a következő: y[0] = 0.5y[ 1] + 0, 1y[ 2] = = 1 y[1] = 0.5y[0] + 0, 1y[ 1] = = 0.7 y[2] = 0.5y[1] + 0, 1y[0] = 0.5 0, = 0.45 y[3] = = és így tovább. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 18 / 141

24 Jel fogalma és leírása Belépő és nem belépő jelek Jelek további csoportosítása Egy folytonos idejű y(t) jel belépő, ha értéke t negatív értékeire azonosan nulla. y(t) 0, ha t < 0 Egy diszkrét idejű y[k] jel belépő, ha értéke k negatív értékeire azonosan nulla. y[k] 0, ha k < 0 Általánosabban egy folytonos (diszkrét) idejű jel belépő a t 0 (k 0 ) időpillanatban, ha t < t 0 (k < k 0 ) esetén azonosan nulla. y(t) 0, ha t < t 0, y[k] 0, ha k < k 0 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 19 / 141

25 Jel fogalma és leírása Jelek további csoportosítása Páros és páratlan jelek Egy x(t) ill. x[k] jel páros, ha igaz a jelre hogy x( t) = x(t), x[ k] = x[k], azaz a jel szimmetrikus az ordinátára (függőleges tengely). Pl. y(t) = cos(t), y(t) = 1, y(t) = t Egy x(t) ill. x[k] jel páratlan, ha x( t) = x(t), x[ k] = x[k]. azaz a jel szimmetrikus az origóra. Pl. y(t) = sin(t), y(t) = sgn(t), y(t) = t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 20 / 141

26 Jel fogalma és leírása Jelek további csoportosítása Korlátos jelek Egy y(t) (y[k]) jel korlátos, ha létezik olyan véges K érték amelyre igaz, hogy y(t) < K, y[k] < K. Pl. pl. az y(t) = A sin(ωt) korlátos mert az értéke abszolút értékben legfeljebb A. Az y(t) = t vagy az y[k] = e 3k nem korlátos, mert nem létezik olyan véges K amelyre igaz a fenti feltétel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 21 / 141

27 Jel fogalma és leírása Jelek további csoportosítása Periodikus és aperiodikus jelek Az y(t) folytonos idejű jel T periódusidővel periodikus, ha y(t + T) = y(t) igaz t minden értékére. Hasonlóan az y[k] diszkrét idejű jel K periódusidővel periodikus, ha y[k + K] = y[k] igaz k minden értékére. Pl. Periodikus jelek pl. a harmonikus függvények (sin, cos), aperiodikus pl. az y(t) = e t vagy az y[k] = k 2 jel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 22 / 141

28 Jel fogalma és leírása Jelek további csoportosítása Determinisztikus és sztochasztikus jelek Az y(t) (y[k]) jel determinisztikus, ha értékét minden t időpillanatra előre ismerjük. Pl. Determinisztikus pl. y(t) = t vagy y[k] = sin[k]. Az y(t) (y[k]) jel sztochasztikus, ha időfüggését nem ismerjük előre, de meg tudjuk határozni bizonyos statisztikai jellemzőit. A sztochasztikus jelek véletlen folyamatok eredményei. Pl. Tipikus sztochasztikus jelek a különböző zajok. Melyek időfüggvény formájában nem adhatók meg, de statisztikai tulajdonságaik ismertek. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 23 / 141

29 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Egy y(t) (y[k]) jel átlagértéke a [0, T] ([0, K]) intervallumon µ = 1 T T 0 y(t)dt, µ = 1 K + 1 K y[k]. k=0 Egy y(t) (y[k]) jel szórása a [0, T] ([0, K]) intervallumon 1 T σ = (y(t) µ) T 2 dt, σ = 1 K (y[k] µ) 0 K 2. k=0 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 24 / 141

30 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Két különböző sztochasztikus jel átlaga és szórása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 25 / 141

31 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Különböző jelek átlaga és szórása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 26 / 141

32 Jel fogalma és leírása További gyakori jeltípusok Jelek további csoportosítása Korlátos tartójú jelek: A jel egy korlátos intervallumon kívül azonosan 0. Abszolút integrálható jelek: Abszolút összegezhető jelek: k= Négyzetesen integrálható jelek Négyzetesen összegezhető jelek k= x(t) dt < x[k] < x(t) 2 dt < x[k] 2 < Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 27 / 141

33 Jel fogalma és leírása Fontosabb FI és DI jelek A FI egységugrásjel ε(t) (Heaviside fv., 1(t) ) A vizsgált folyamatokat leíró jelek egy adott időpillanatban kezdődnek, ami célszerűen választható nullának. Az egységugrásjel hasznos lesz ilyen jelek leírására Definíció (Egységugrás) ε(t) = { 0, ha t < 0, 1, ha t > 0. ε(t) t A szakaszonként folytonos egységugrásjelnek a t = 0 időpillanatban szakadása van. Itt bal oldali határértéke (a t = 0 időpillanatban) 0, jobb oldali határértéke (a t = +0 időpillanatban) pedig 1. lim ε(t) = 0, lim t 0 ε(t) = 1. t +0 Az ε(t) a t = 0 időpillanatban nem definiált. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 28 / 141

34 Eltolt egységugrás Jel fogalma és leírása Fontosabb FI és DI jelek Szükségünk lehet egy tetszőleges τ idővel eltolt egységugrásjelre, amely a következőképp adható meg Definíció (Eltolt egységugrás) ε(t τ) = { 0, ha t < τ, 1, ha t > τ. ε(t τ) τ t Az egységugrásjelet és eltolját korlátos tartójú jelek matematikai formulával történő megadására alkalmazzuk Definíció (Négyszög-ablak) ε(t) w R(τ1,τ 2 )(t) = ε(t τ 1 ) ε(t τ 2 ) ε(t) ε(t τ) ε(t τ) τ t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 29 / 141

35 Jel fogalma és leírása Fontosabb FI és DI jelek Ablakolás az egységugrásjel segítségével Egy x(t) jel adott intervallumát szeretnénk kiválasztani Az egységugrásjel segítségével, a vizsgált jel egy adott részét kitakarjuk egy négyszögletes ablakkal, amit két eltolt egységugrásjel különbségeként álĺıthatunk elő Az eredeti jel x(t) = e 0.2t cos(2t) Az ablakolt jel y(t) = [ε(t τ 1 ) ε(t τ 2 )]x(t), 0 ahol τ 1 = 0.5 és τ 2 = y(t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 30 / 141

36 Jel fogalma és leírása Fontosabb FI és DI jelek A FI Dirac-impulzus δ(t) (egységimpulzus) Definíció (Egységnyi intenzitású impulzus) δ(t, τ) = ε(t) ε(t τ) τ Ennek szélessége tehát τ, magassága pedig 1/τ, így intenzitása (területe) egységnyi δ(t, τ)dt = 1. Szemléletesen δ(t, τ) δ(t) ε(t) ε(t τ) δ(t) = lim. τ 0 τ δ(t,τ) δ(t) /τ τ t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 31 / 141

37 Jel fogalma és leírása Fontosabb FI és DI jelek A Dirac-δ fontosabb tulajdonságai jelölése egy függőleges nyíl, a Dirac-δ páros függvény. A Dirac-δ tehát olyan jel, melynek értéke minden t helyen 0, kivéve a t = 0 helyet, ahol végtelen nagy, és intenzitása (területe) egységnyi. δ(t)dt = +0 0 δ(t)dt = 1. A fenti egyenlőség igaz az eltolt Dirac-impulzusra is δ(t τ)dt = τ+0 τ 0 δ(t τ)dt = 1. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 32 / 141

38 Jel fogalma és leírása Fontosabb FI és DI jelek A Dirac-δ definíciója Definíció (Dirac-δ) Ha f(t) folytonos a τ helyen, akkor f(t)δ(t τ)dt = f(τ), mert, ha az f(t) időfüggvényt beszorozzuk a δ(t τ) Dirac-impulzussal, akkor egy olyan függvényt kapunk, amelynek értéke mindenütt nulla, kivéve a t = τ helyet, ahol viszont értéke egy olyan Dirac-impulzus, melynek nagysága arányos a konstans f(τ) értékkel, azaz f(t)δ(t τ)dt = f(τ) τ+0 τ 0 δ(t τ)dt = f(τ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 33 / 141

39 Jel fogalma és leírása Az általánosított derivált Fontosabb FI és DI jelek Ha az x = x(t) jel differenciálható, akkor x (t) dx dt = lim x(t + t) x(t) t 0 t az x(t) jel derivált jele, ha létezik a fenti határérték. Előfordul, hogy egy folytonos idejű jel szakaszonként differenciálható, viszont az egyes szakaszok közötti átmenetnél a jelnek véges szakadása (ugrása) van. Ennek kezelésére vezetjük be az általánosított derivált fogalmát Definíció (Általánosított derivált) egy x(t) jel általánosított deriváltja az az x (t) jel, melynek segítségével az x(t) jel az alábbi módon álĺıtható elő x(t) = t t 0 x (τ)dτ + x(t 0 ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 34 / 141

40 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és a Dirac-δ kapcsolata Pl.1 Közeĺıtsük az ε(t) függvényt az alábbi függvénnyel 0 ha t < 0 x(t) = t/τ ha 0 < t < τ 1 ha t > τ Innen az x (t) derivált jel egy olyan négyszögimpulzus, amelynek értéke a 0 < t < τ intervallumban 1/τ, azaz x (t) = δ(t, τ). x(t) t Ha τ 0, akkor x(t) ε(t) és x (t) δ(t). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 35 / 141

41 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és a Dirac-δ kapcsolata (folyt.) Pl.1 (folyt) A definíciós összefüggés szerint tehát (figyelembe véve, hogy x( ) = 0) hiszen t ε(t) = δ(τ)dτ = t δ(τ)dτ { 0 ha t < 0 1 ha t > 0 ε(t), tehát ε(t) = δ(t), Azaz a Dirac-δ az ε(t) egységugrásjel általánosított deriváltja. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 36 / 141

42 Jel fogalma és leírása Az általánosított derivált (folyt.) Fontosabb FI és DI jelek Pl.2 Adott egy x(t) jel, amelyet szakaszonként az x 1 (t) illetve az x 2 (t) folytonos jel ír le, melyek találkozásánál (a t 1 helyen) x(t)-nek K értékű véges szakadása van { { x 1 (t) ha t < t 1 x 1 (t) = 3e 2t ha t < 2 x(t) = = x 2 (t) ha t t 1 x 2 (t) = 5e 2(t 2) ha t 2 A jel általánosított deriváltja x 1 (t) ha t < t 1 x 1 (t) = 6e 2t ha t < 2 x (t) = Kδ(t t 1 ) ha t = t 1 = 4.95δ(t 2) ha t = 2 x 2 (t) ha t > t 1 x 2 (t) = 10e 2(t 2) ha t > 2 mivel K = x 2 (t 1 ) x 1 (t 1 ) = 5 3e 4 = Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 37 / 141

43 Jel fogalma és leírása Az általánosított derivált (folyt.) Fontosabb FI és DI jelek Pl.2 (folyt) 5 5 x(t) x (t) t x(t) = { x 1 (t) = 3e 2t ha t < 2 x 2 (t) = 5e 2(t 2) ha t t x 1 (t) = 6e 2t ha t < 2 x (t) = 4.95δ(t 2) ha t = 2 x 2 (t) = 10e 2(t 2) ha t > 2 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 38 / 141

44 Jel fogalma és leírása Fontosabb FI és DI jelek Az általánosított derivált (folyt.) Pl.2 alternatív megoldási módszer Írjuk fel az x(t) függvényt ablakozott jelek segítségével zárt alakban x(t) = x a (t) + x b (t) = [1 ε(t t 1 )]x 1 (t) + ε(t t 1 )x 2 (t), majd végezzük el a deriválást (szorzatfüggvények összegének deriváltja) x a(t) = [1 ε(t t 1 )] x 1 (t) + [1 ε(t t 1 )]x 1(t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1 (t), x b(t) = ε (t t 1 )x 2 (t) + ε(t t 1 )x 2(t) = δ(t t 1 )x 2 (t) + ε(t t 1 )x 2(t), x (t) = x a(t) + x b(t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1(t) + δ(t t 1 )x 2 (t) + ε(t t 1 )x 2 (t), Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 39 / 141

45 Jel fogalma és leírása Fontosabb FI és DI jelek Az általánosított derivált (folyt.) Pl.2 alternatív megoldási módszer (folyt.) A derivált jel tartalmaz eltolt Dirac-impulzusokat, melyekről azonban tudjuk, hogy csak a t = t 1 időpillanatban vesznek fel értéket, minden más időpillanatban az értékük nulla, (továbbá δ(t t 1 )x 1 (t) = δ(t t 1 )x 1 (t 1 )) x (t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1 (t) + δ(t t 1)x 2 (t) + ε(t t 1 )x 2 (t) = [1 ε(t t 1 )]x 1 (t) + δ(t t 1)(x 2 (t 1 ) x 1 (t 1 )) + ε(t t 1 )x 2 (t) ahonnan a számértékek behelyettesítésével x (t) = 6[1 ε(t 2)]e 2t δ(t 2) 10ε(t 2)e 2(t 2), ami azonos az előzőekben kapott eredménnyel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 40 / 141

46 Jel fogalma és leírása Fontosabb FI és DI jelek A DI egységugrás ε[k] és egységimpulzus δ[k] Definíció (Egységugrás) ε[k] = { 0 ha k < 0, 1 ha k 0, azaz az egységugrás értéke a k < 0 ütemekre 0, nemnegatív egészekre pedig 1. Definíció (Egységimpulzus) 0 ha k < 0, δ[k] = 1 ha k = 0, 0 ha k > 0, azaz az egységimpulzus értéke a k = 0 helyen 1, bármely más helyen értéke nulla. Eltolt egységugrás ε[k i] = Eltolt egységimpulzus { 0 ha k < i, 1 ha k i, 0 ha k < i, δ[k i] = 1 ha k = i, 0 ha k > i, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 41 / 141

47 Jel fogalma és leírása Fontosabb FI és DI jelek DI jelek megadása eltolt egységimpulzusokkal Pl. x[k] = { 0 ha k < 0, k = 4δ[k] + 2δ[k 1] + δ[k 2] +... ha k 0, Tetszőleges x[k] jel megadása x[k] = i= x[i]δ[k i], tehát az x[k] jelet eltolt egységimpulzusok súlyozott összegeként, más néven szuperpozíciójaként írhatjuk fel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 42 / 141

48 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és az egységimpulzus kapcsolata Az egységugrásjel kifejezhető egységimpulzusokkal ε[k] = δ[k i] = δ[k] + δ[k 1] + δ[k 2] +..., i=0 Az egységimpulzus pedig megadható az egységugrással δ[k] = ε[k] ε[k 1], melynek általánosításával juthatunk el a folytonos idejű ablakhoz hasonló diszkrét idejű ablakhoz. 0 ha k < 0, x[k] = 1.1k ha 0 k < 4 x[k] = {ε[k] ε[k 4]}1.1k 0 ha k 4, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 43 / 141

49 Rendszerek és osztályozásuk 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 44 / 141

50 A rendszer fogalma Rendszerek és osztályozásuk Definíció (Rendszer) A rendszer egy fizikai objektum valamilyen modellje, melynek segítségével modellezhetjük, matematikailag leírhatjuk annak működését. Rendszer lehet pl. egy szabályozandó berendezés, egy bonyolult ipari robot, de rendszer lehet egy rugóra akasztott test és a rugó együttesen. A rendszer lényege, hogy matematikai formába öntsük azt a bonyolult folyamatot, amelynek szimulációját el szeretnénk végezni annak érdekében, hogy megbizonyosodjunk az objektum tulajdonságairól, megtudjuk, hogy az hogyan fog viselkedni, ha valamilyen hatás éri. Ezek a külső hatások a rendszer bemenetei, másnéven gerjesztések, s a rendszer ezen gerjesztésekre válaszokkal reagál, melyek a rendszer kimenetei. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 45 / 141

51 Rendszerek és osztályozásuk SISO és MIMO rendszerek SISO, MIMO rendszerek A rendszer a bemeneteket kimenetekké transzformálja, azaz adott gerjesztésekhez adott válaszokat rendel. A rendszereket bemeneteik és kimeneteik száma alapján két fő csoportba sorolhatjuk 1 SISO-rendszerek (Single Input Single Output), melyek egy gerjesztéshez egy választ rendelnek y(t) = W{s(t)}, vagy y[k] = W{s[k]}, 2 MIMO-rendszerek (Multiple Input Multiple Output), melyek több gerjesztéshez több választ rendelnek y(t) = W{s(t)}, vagy y[k] = W{s[k]}, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 46 / 141

52 Rendszerek és osztályozásuk SISO, MIMO rendszerek További osztályozási lehetőségek Attól függően, hogy a gerjesztés és a válasz folytonos idejű vagy diszkrét idejű, egy rendszer lehet 1 Folytonos idejű gerjesztésű és folytonos idejű válaszú, (FI rendszerek) 2 diszkrét idejű gerjesztésű és diszkrét idejű válaszú, (DI rendszerek) 3 diszkrét idejű gerjesztésű és folytonos idejű válaszú, (D/A átalakítók) 4 folytonos idejű gerjesztésű és diszkrét idejű válaszú, (A/D átalakítók) Főként az 1 2 csoportba tartozó rendszerekkel foglalkozunk. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 47 / 141

53 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Lineáris rendszerek Egy rendszer lineáris, ha a G-V kapcsolatot jellemző W operátor lineáris,azaz homogén és additív (érvényes a szuperpozíció elve). A y = W{s} jelöléssel W{C 1 s 1 + C 2 s 2 } = C 1 W{s 1 } + C 2 W{s 2 } = C 1 y 1 + C 2 y 2. Pl. Lináris elemek pl. ellenállás, kondenzátor, tekercs, nemlineáris elemek pl. dióda, tranzisztor. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 48 / 141

54 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Invariáns rendszerek Egy rendszer akkor invariáns, ha a gerjesztés időbeli eltolása azt eredményezi, hogy a válaszban csak egy ugyanekkora időbeli eltolódás következik be. Ellenkező esetben a rendszer variáns. Pl. Variáns rendszer pl. egy egyszerű ellenállás is, ha figyelembe vesszük, hogy a rajta átfolyó áram által létrehozott teljesítmény melegíti az ellenálláshuzalt, amelynek ennek hatására megnő az ellenállása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 49 / 141

55 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Kauzális rendszerek Egy rendszer akkor kauzális, ha válaszának adott időpontbeli értéke nem függ a gerjesztés jövőbeli értékétől, azaz egy FI (DI) rendszer akkor kauzális, ha az y(t) (y[k]) válasz bármely t 1 (k 1 ) időpontban az s(t) (s[k]) gerjesztés csak olyan értékeitől függ, melyekre t < t 1 (k k 1 ). Egyébként a rendszer akauzális. Pl. Minden fizikai rendszer kauzális, hiszen a tapasztalat szerint nincs olyan rendszer, amelynek jelen időpillanatbeli állapota függene a jövőtől. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 50 / 141

56 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Stabil rendszerek Egy rendszer akkor gerjesztés-válasz stabilis, ha bármely korlátos gerjesztésre korlátos válasszal reagál. Ezt a stabilitást BIBO-stabilitásnak is szokás nevezni a,,bounded input implies bounded output angol elnevezés rövidítéséből. Fontos! Elképzelhető, hogy a rendszer több korlátos gerjesztésre korlátos választ ad, de ha létezik akár egyetlen olyan korlátos gerjesztés, amelyre a rendszer nem korlátos válasszal reagál, akkor a rendszer nem gerjesztés-válasz stabilis, más szóval a rendszer labilis. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 51 / 141

57 Hálózatok 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 52 / 141

58 Hálózatok A hálózat fogalma A hálózat komponensek összekapcsolásából áll. Minden komponensnek (hálózati elemnek) egy vagy több bemenete és egy vagy több kimenete lehet (pólusok). A bemenet(ek) és a kimenet(ek) közti kapcsolatot a komponens karakterisztikája adja meg, ami egy függvénykapcsolat a komponens bemeneti változója (változói) és kimeneti változója (változói) között, pl. megadja a kimeneti változót a bemeneti változó függvényében. A hálózat be- és kimenete A hálózat bemenetére a gerjesztést kapcsoljuk, kimenetén pedig a választ várjuk. A hálózat is rendelkezhet egy, vagy több bemenettel és egy, vagy több kimenettel, gerjesztése és válasza lehet folytonos idejű vagy diszkrét idejű. Hálózatok és rendszerek kapcsolata A hálózat akkor reprezentál, másszóval realizál egy rendszert, ha gerjesztés-válasz kapcsolataik megegyeznek. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 53 / 141

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

2. Analízis az időtartományban

2. Analízis az időtartományban 2. Analízis az időtartományban Ebben a részben megadjuk az olyan lineáris, invariáns rendszerek különböző időtartománybeli leírását, amelyeknek a gerjesztései és a válaszai vagy egyaránt diszkrét idejűek

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját!

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! . Vizsgálat az időtartományban.. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! x x x xy x [ k ] x b( c eg x x gf u [ k ] x ( bd beh x x fh [ k ] bx( c

Részletesebben

Jelek és Rendszerek 2. Kidolgozott Témakörök

Jelek és Rendszerek 2. Kidolgozott Témakörök Gábor Norbert és Kondor Máté András 2012 január Előszó, figyelmeztetés, jogi nyilatkozat, stb. 1. Ez nem hivatalos jegyzet! Nem oktatók írták! Hibák előfordulahatnak! 2. Ez nem a hivatalos tananyag, vagy

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

DIGITÁLIS JELFELDOLGOZÁS

DIGITÁLIS JELFELDOLGOZÁS Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar BME MIT Tanszéki Munkaközösség DIGITÁLIS JELFELDOLGOZÁS Segédlet a Digitális jelfeldolgozás (BMEVIMM4084) tárgyhoz MIT-VIMM4084-0

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Differenciaegyenletek a differenciálegyenletek

Differenciaegyenletek a differenciálegyenletek Differenciaegyenletek a differenciálegyenletek tükrében Guzsvány Szandra Újvidéki Egyetem, Természettudományi Kar, Újvidék E-mail: g.sandra@citromail.hu 1. Bevezetés 1.1. Történeti áttekintés Dolgozatom

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2014. május 27.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2014. május 27. Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

3. Elsőrendű differenciálegyenletek

3. Elsőrendű differenciálegyenletek 32 MAM143A előadásjegyzet, 2008/2009 3. Elsőrendű differenciálegyenletek 3.1. Alapvető fogalmak Differenciálegyenleten egy olyan egyenletet értünk, amelyben a keresett ismeretlen egy függvény, és a függvény

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Rendszeresen használt jelek és rövidítések

Rendszeresen használt jelek és rövidítések Rendszeresen használt jelek és rövidítések a «, együttható a rendszeregyenletben ÍJ, együttható az átviteli karakterisztika és az átviteli függvény nevezőjében A A rendszermátrix (az állapotegyenletben

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16 Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN

DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN KOVÁCS ZOLTÁN 1. Bevezetés A természeti jelenségeket sokszor differenciálegyenletekkel lehet leírni: a vizsgált mennyiség például

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben