Jelek és rendszerek előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Jelek és rendszerek - 1-2.előadás"

Átírás

1 Jelek és rendszerek előadás Bevezetés, rendszeranaĺızis az időtartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 1 / 141

2 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

3 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

4 Bevezetés,alapfogalmak Vázlat I.rész: Bevezetés, alapfogalmak 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 2 / 141

5 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

6 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

7 Vázlat II.rész: Ugrásválasz, impulzusválasz, rendszeregyenlet Ugrásválasz, impulzusválasz, rendszeregyenlet 4 Az ugrásválasz és alkalmazása Definíció Alap tulajdonságok Tetszőleges válasz számítása 5 Az impulzusválasz és alkalmazása Definíció Alap tulajdonságok A válasz számítása A konvolúció Gerjesztés-válasz stabilitás 6 A rendszeregyenlet Definíció A rendszeregyenlet megoldása Gerjesztés-válasz stabilitás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 3 / 141

8 Vázlat Állapotváltozós rendszerleírás III.rész: Az állapotváltozós rendszerleírás 7 Fizikai objektumok és leírásuk (pl.) 8 Az állapotváltozós rendszerleírás Definíció Az állapotváltozós leírás előálĺıtása hálózat alapján Az állapotváltozós leírás megoldása SISO rendszer megoldása Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 4 / 141

9 Vázlat Állapotváltozós rendszerleírás III.rész: Az állapotváltozós rendszerleírás 7 Fizikai objektumok és leírásuk (pl.) 8 Az állapotváltozós rendszerleírás Definíció Az állapotváltozós leírás előálĺıtása hálózat alapján Az állapotváltozós leírás megoldása SISO rendszer megoldása Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 4 / 141

10 Összefoglalás Vázlat IV.rész: Összefoglalás 9 Összefoglalás Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 5 / 141

11 Jel fogalma és leírása 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 6 / 141

12 Jel fogalma és leírása Jelek és fizikai mennyiségek Valamely valóságos folyamat mérhető mennyiségeiről mérőeszközök segítségével szerezhetünk információt. Definíció (Fizikai mennyiség) Különböző folyamatok mérhető mennyiségeiről valamilyen mérőeszköz segítségévél mért mennyiséget fizikai mennyiségnek nevezzük. Példa hőmérséklet a tér egy adott pontján, egy testre ható erő, feszültség egy erősítő kimenetén, folyadékszint egy tartályban, stb. A fizikai mennyiségek matematikai leírását változók bevezetésével végezzük, melyek értéke valamely mértékegységben (pl. SI) megadott számérték. Példa T = 26.2 C, F = 90 N, u = 0.8 V, l = 1.43 m. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 7 / 141

13 Jel fogalma és leírása A jel fogalma és matematikai leírása Definíció (Jel) A jel valamely fizikai mennyiség olyan értéke vagy értékváltozása, amely egy egyértelműen hozzárendelt információt hordoz. Jelek matematikai leírására függvényeket használunk. A függvények egy független változó és egy függő változó között definiálnak kapcsolatot. (Egy változós skalár függvények) f : R R, y = x f(x), y = f(x) A független változó lehetséges értékeinek halmaza alkotja a függvény értelmezési tartományát (D f ), a függő változó értékeinek halmaza pedig a függvény értékkészletét (R f ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 8 / 141

14 Jel fogalma és leírása Jelek osztályozása A jelek alaptípusai, az értékkészlet és az értelmezési tartomány szerkezete alapján. 1 Ha a jel az idő argumentum minden valós értékére értelmezett, akkor folytonos idejű jelről beszélünk. Ezen csoportban legismertebb az analóg jel (folytonos értékű jel),amelynél a jel értéke is folytonos, 2 Ha egy analóg jelből adott (általában egyenletes osztású) időpillanatokban mintákat veszünk, akkor az időben diszkrét, értékkészletében pedig folytonos jelet kapunk, ami voltaképpen egy számsorozat. Ezt diszkrét idejű jelnek nevezzük, 3 Vannak olyan jelek, amelyek csak bizonyos értékeket vehetnek fel egy megszámlálható számhalmaz elemeiből (lépcsős, másnéven kvantált jelalak, vagy diszkrét értékű jel). Az ilyen jel az időben folytonos, de értékkészletében diszkrét, 4 Végül a számítástechnika szinte minden műszaki területen jelen lévő alkalmazása miatt nagy jelentősége van a mind időben, mind értékkészletében diszkrét jelnek, amelyet digitális jelnek nevezünk. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 9 / 141

15 A különböző jeltípusok Jel fogalma és leírása Jelek osztályozása x 1 (t) 0 x 2 [k] t k x 3 (t) 0.5 x 4 [k] t k Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 10 / 141

16 Jel fogalma és leírása Jelek osztályozása Folytonos jelek és megadásuk Egy x jel akkor folytonos idejű, ha a jel az idő minden valós értékére értelmezett ahol t az időváltozó jele. Megadásuk: x = x(t), t R, < t <, Képlettel (matematikai formulával) (pl. x(t) = 3cos(t π/2)) Grafikusan (ábrázolással) Differenciál-egyenlettel Értékek felsorolásával (értéktáblázattal) Figyelem! A grafikus és értéktáblázatos megadással csak véges hosszú jel adható meg korlátozott pontossággal. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 11 / 141

17 Jel fogalma és leírása Jelek osztályozása Megadás képlettel(formulával) és grafikusan x 1 (t) 0 x 1 (t) = { 0 ha t < 0 2cos(3t)sin(5t) ha t 0 x 2 (t) = { t ha t < 2 t 2 ha t t x 2 (t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 12 / 141

18 Jel fogalma és leírása Megadás képlettel és grafikusan Jelek osztályozása x 3 (t) x 3 (t) = 2cos(3t π/2) t x 4 (t) = 1 0.3e 0.5t sin(3t) t x 4 (t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 13 / 141

19 Jel fogalma és leírása Megadás differenciálegyenlettel Jelek osztályozása Egy folytonos idejű jel megadható egy n-ed rendű differenciálegyenlettel, de ebben az esetben egy adott t időpontban (célszerűen a t = 0-ban) meg kell adnunk n számú kezdeti értéket is. A megadott jel ekkor a differenciálegyenlet megoldásaként kapott függvény. Pl. dy dt = f(y, t), y(0) = y 0 y(t) Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 14 / 141

20 Jel fogalma és leírása Jelek osztályozása Megadás differenciálegyenlettel A megadott egyenlet dy dt = 2y, y(0) = 5 dy = 2ydt (1) dy y = 2dt (2) 1 dy = 2 1dt (3) y lny + C 1 = 2(t + C 2 ) (4) y = e 2t C = e 2t C (5) e y(t) = Me 2t 1 vigyük át az y változót a bal, a t változót pedig a jobb oldalra (változók szeparálása) 2 formálisan integráljuk az egyenlet mindkét oldalát. 3 felhasználjuk az 1/y és az 1 integranduszok primitív függvényét, az ln y + C 1 és a t + C 2 függvényeket, és 4 rendezzük az egyenletet y-ra úgy, hogy a C 1 és C 2 konstanokat összevonjuk egyetlen C konstanssá (C = C 1 + 2C 2 ). 5 helyettesítsük az e C konstanst M-el. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 15 / 141

21 Jel fogalma és leírása Jelek osztályozása Megadás differenciálegyenlettel (folyt.) 25 Ezáltal az y = Me 2t általános megoldást kapjuk, ahol az M konstans értékét a t = 0 időpillanatban adott érték segítségével határozzuk meg: y(0) = Me 0 = 5 M = 5. Így a differenciálegyenletet és a kezdeti feltételt is kilégítő időfüggvény a következő (kék görbe): y(t) y(t) = 5e 2t t 5 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 16 / 141

22 Jel fogalma és leírása Jelek osztályozása Diszkrét jelek és megadásuk Egy f[k] jel akkor diszkrét idejű, ha független változója k csak egész értékeket vehet fel y = f[k], k Z, k [,..., 1, 0, 1, 2,..., ], ahol k a diszkrét idő, azaz a kt s mintavételi időpillanat indexe. Megadásuk: Képlettel (matematikai formulával) (pl. y[k] = 3cos(k π/2)) Rekurzív formulával (pl. y[k] = 0.8y[k 1] + 0.2y[k 2]) Grafikusan (ábrázolással) Értékek felsorolásával (értéktáblázattal) Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 17 / 141

23 Jel fogalma és leírása Jelek osztályozása Megadás rekurzív formulával A jel k-adik ütembeli értéke sok esetben rekurzív úton számolható az azt megelőző értékek segítségével, pl.: y[k] = 0.5y[k 1] + 0.1y[k 2], y[ 1] = 2, y[ 2] = 0. A k = 0, 1, 2,... ütemekre az y[k] értéke lépésenként számolható, melyhez azonban ismerni kell a kezdeti feltételeket is (most y[ 1] = 2 és y[ 2] = 0). A rekurzió tehát a következő: y[0] = 0.5y[ 1] + 0, 1y[ 2] = = 1 y[1] = 0.5y[0] + 0, 1y[ 1] = = 0.7 y[2] = 0.5y[1] + 0, 1y[0] = 0.5 0, = 0.45 y[3] = = és így tovább. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 18 / 141

24 Jel fogalma és leírása Belépő és nem belépő jelek Jelek további csoportosítása Egy folytonos idejű y(t) jel belépő, ha értéke t negatív értékeire azonosan nulla. y(t) 0, ha t < 0 Egy diszkrét idejű y[k] jel belépő, ha értéke k negatív értékeire azonosan nulla. y[k] 0, ha k < 0 Általánosabban egy folytonos (diszkrét) idejű jel belépő a t 0 (k 0 ) időpillanatban, ha t < t 0 (k < k 0 ) esetén azonosan nulla. y(t) 0, ha t < t 0, y[k] 0, ha k < k 0 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 19 / 141

25 Jel fogalma és leírása Jelek további csoportosítása Páros és páratlan jelek Egy x(t) ill. x[k] jel páros, ha igaz a jelre hogy x( t) = x(t), x[ k] = x[k], azaz a jel szimmetrikus az ordinátára (függőleges tengely). Pl. y(t) = cos(t), y(t) = 1, y(t) = t Egy x(t) ill. x[k] jel páratlan, ha x( t) = x(t), x[ k] = x[k]. azaz a jel szimmetrikus az origóra. Pl. y(t) = sin(t), y(t) = sgn(t), y(t) = t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 20 / 141

26 Jel fogalma és leírása Jelek további csoportosítása Korlátos jelek Egy y(t) (y[k]) jel korlátos, ha létezik olyan véges K érték amelyre igaz, hogy y(t) < K, y[k] < K. Pl. pl. az y(t) = A sin(ωt) korlátos mert az értéke abszolút értékben legfeljebb A. Az y(t) = t vagy az y[k] = e 3k nem korlátos, mert nem létezik olyan véges K amelyre igaz a fenti feltétel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 21 / 141

27 Jel fogalma és leírása Jelek további csoportosítása Periodikus és aperiodikus jelek Az y(t) folytonos idejű jel T periódusidővel periodikus, ha y(t + T) = y(t) igaz t minden értékére. Hasonlóan az y[k] diszkrét idejű jel K periódusidővel periodikus, ha y[k + K] = y[k] igaz k minden értékére. Pl. Periodikus jelek pl. a harmonikus függvények (sin, cos), aperiodikus pl. az y(t) = e t vagy az y[k] = k 2 jel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 22 / 141

28 Jel fogalma és leírása Jelek további csoportosítása Determinisztikus és sztochasztikus jelek Az y(t) (y[k]) jel determinisztikus, ha értékét minden t időpillanatra előre ismerjük. Pl. Determinisztikus pl. y(t) = t vagy y[k] = sin[k]. Az y(t) (y[k]) jel sztochasztikus, ha időfüggését nem ismerjük előre, de meg tudjuk határozni bizonyos statisztikai jellemzőit. A sztochasztikus jelek véletlen folyamatok eredményei. Pl. Tipikus sztochasztikus jelek a különböző zajok. Melyek időfüggvény formájában nem adhatók meg, de statisztikai tulajdonságaik ismertek. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 23 / 141

29 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Egy y(t) (y[k]) jel átlagértéke a [0, T] ([0, K]) intervallumon µ = 1 T T 0 y(t)dt, µ = 1 K + 1 K y[k]. k=0 Egy y(t) (y[k]) jel szórása a [0, T] ([0, K]) intervallumon 1 T σ = (y(t) µ) T 2 dt, σ = 1 K (y[k] µ) 0 K 2. k=0 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 24 / 141

30 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Két különböző sztochasztikus jel átlaga és szórása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 25 / 141

31 Jelek átlaga és szórása Jel fogalma és leírása Jelek további csoportosítása Különböző jelek átlaga és szórása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 26 / 141

32 Jel fogalma és leírása További gyakori jeltípusok Jelek további csoportosítása Korlátos tartójú jelek: A jel egy korlátos intervallumon kívül azonosan 0. Abszolút integrálható jelek: Abszolút összegezhető jelek: k= Négyzetesen integrálható jelek Négyzetesen összegezhető jelek k= x(t) dt < x[k] < x(t) 2 dt < x[k] 2 < Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 27 / 141

33 Jel fogalma és leírása Fontosabb FI és DI jelek A FI egységugrásjel ε(t) (Heaviside fv., 1(t) ) A vizsgált folyamatokat leíró jelek egy adott időpillanatban kezdődnek, ami célszerűen választható nullának. Az egységugrásjel hasznos lesz ilyen jelek leírására Definíció (Egységugrás) ε(t) = { 0, ha t < 0, 1, ha t > 0. ε(t) t A szakaszonként folytonos egységugrásjelnek a t = 0 időpillanatban szakadása van. Itt bal oldali határértéke (a t = 0 időpillanatban) 0, jobb oldali határértéke (a t = +0 időpillanatban) pedig 1. lim ε(t) = 0, lim t 0 ε(t) = 1. t +0 Az ε(t) a t = 0 időpillanatban nem definiált. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 28 / 141

34 Eltolt egységugrás Jel fogalma és leírása Fontosabb FI és DI jelek Szükségünk lehet egy tetszőleges τ idővel eltolt egységugrásjelre, amely a következőképp adható meg Definíció (Eltolt egységugrás) ε(t τ) = { 0, ha t < τ, 1, ha t > τ. ε(t τ) τ t Az egységugrásjelet és eltolját korlátos tartójú jelek matematikai formulával történő megadására alkalmazzuk Definíció (Négyszög-ablak) ε(t) w R(τ1,τ 2 )(t) = ε(t τ 1 ) ε(t τ 2 ) ε(t) ε(t τ) ε(t τ) τ t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 29 / 141

35 Jel fogalma és leírása Fontosabb FI és DI jelek Ablakolás az egységugrásjel segítségével Egy x(t) jel adott intervallumát szeretnénk kiválasztani Az egységugrásjel segítségével, a vizsgált jel egy adott részét kitakarjuk egy négyszögletes ablakkal, amit két eltolt egységugrásjel különbségeként álĺıthatunk elő Az eredeti jel x(t) = e 0.2t cos(2t) Az ablakolt jel y(t) = [ε(t τ 1 ) ε(t τ 2 )]x(t), 0 ahol τ 1 = 0.5 és τ 2 = y(t) t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 30 / 141

36 Jel fogalma és leírása Fontosabb FI és DI jelek A FI Dirac-impulzus δ(t) (egységimpulzus) Definíció (Egységnyi intenzitású impulzus) δ(t, τ) = ε(t) ε(t τ) τ Ennek szélessége tehát τ, magassága pedig 1/τ, így intenzitása (területe) egységnyi δ(t, τ)dt = 1. Szemléletesen δ(t, τ) δ(t) ε(t) ε(t τ) δ(t) = lim. τ 0 τ δ(t,τ) δ(t) /τ τ t Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 31 / 141

37 Jel fogalma és leírása Fontosabb FI és DI jelek A Dirac-δ fontosabb tulajdonságai jelölése egy függőleges nyíl, a Dirac-δ páros függvény. A Dirac-δ tehát olyan jel, melynek értéke minden t helyen 0, kivéve a t = 0 helyet, ahol végtelen nagy, és intenzitása (területe) egységnyi. δ(t)dt = +0 0 δ(t)dt = 1. A fenti egyenlőség igaz az eltolt Dirac-impulzusra is δ(t τ)dt = τ+0 τ 0 δ(t τ)dt = 1. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 32 / 141

38 Jel fogalma és leírása Fontosabb FI és DI jelek A Dirac-δ definíciója Definíció (Dirac-δ) Ha f(t) folytonos a τ helyen, akkor f(t)δ(t τ)dt = f(τ), mert, ha az f(t) időfüggvényt beszorozzuk a δ(t τ) Dirac-impulzussal, akkor egy olyan függvényt kapunk, amelynek értéke mindenütt nulla, kivéve a t = τ helyet, ahol viszont értéke egy olyan Dirac-impulzus, melynek nagysága arányos a konstans f(τ) értékkel, azaz f(t)δ(t τ)dt = f(τ) τ+0 τ 0 δ(t τ)dt = f(τ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 33 / 141

39 Jel fogalma és leírása Az általánosított derivált Fontosabb FI és DI jelek Ha az x = x(t) jel differenciálható, akkor x (t) dx dt = lim x(t + t) x(t) t 0 t az x(t) jel derivált jele, ha létezik a fenti határérték. Előfordul, hogy egy folytonos idejű jel szakaszonként differenciálható, viszont az egyes szakaszok közötti átmenetnél a jelnek véges szakadása (ugrása) van. Ennek kezelésére vezetjük be az általánosított derivált fogalmát Definíció (Általánosított derivált) egy x(t) jel általánosított deriváltja az az x (t) jel, melynek segítségével az x(t) jel az alábbi módon álĺıtható elő x(t) = t t 0 x (τ)dτ + x(t 0 ). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 34 / 141

40 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és a Dirac-δ kapcsolata Pl.1 Közeĺıtsük az ε(t) függvényt az alábbi függvénnyel 0 ha t < 0 x(t) = t/τ ha 0 < t < τ 1 ha t > τ Innen az x (t) derivált jel egy olyan négyszögimpulzus, amelynek értéke a 0 < t < τ intervallumban 1/τ, azaz x (t) = δ(t, τ). x(t) t Ha τ 0, akkor x(t) ε(t) és x (t) δ(t). Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 35 / 141

41 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és a Dirac-δ kapcsolata (folyt.) Pl.1 (folyt) A definíciós összefüggés szerint tehát (figyelembe véve, hogy x( ) = 0) hiszen t ε(t) = δ(τ)dτ = t δ(τ)dτ { 0 ha t < 0 1 ha t > 0 ε(t), tehát ε(t) = δ(t), Azaz a Dirac-δ az ε(t) egységugrásjel általánosított deriváltja. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 36 / 141

42 Jel fogalma és leírása Az általánosított derivált (folyt.) Fontosabb FI és DI jelek Pl.2 Adott egy x(t) jel, amelyet szakaszonként az x 1 (t) illetve az x 2 (t) folytonos jel ír le, melyek találkozásánál (a t 1 helyen) x(t)-nek K értékű véges szakadása van { { x 1 (t) ha t < t 1 x 1 (t) = 3e 2t ha t < 2 x(t) = = x 2 (t) ha t t 1 x 2 (t) = 5e 2(t 2) ha t 2 A jel általánosított deriváltja x 1 (t) ha t < t 1 x 1 (t) = 6e 2t ha t < 2 x (t) = Kδ(t t 1 ) ha t = t 1 = 4.95δ(t 2) ha t = 2 x 2 (t) ha t > t 1 x 2 (t) = 10e 2(t 2) ha t > 2 mivel K = x 2 (t 1 ) x 1 (t 1 ) = 5 3e 4 = Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 37 / 141

43 Jel fogalma és leírása Az általánosított derivált (folyt.) Fontosabb FI és DI jelek Pl.2 (folyt) 5 5 x(t) x (t) t x(t) = { x 1 (t) = 3e 2t ha t < 2 x 2 (t) = 5e 2(t 2) ha t t x 1 (t) = 6e 2t ha t < 2 x (t) = 4.95δ(t 2) ha t = 2 x 2 (t) = 10e 2(t 2) ha t > 2 Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 38 / 141

44 Jel fogalma és leírása Fontosabb FI és DI jelek Az általánosított derivált (folyt.) Pl.2 alternatív megoldási módszer Írjuk fel az x(t) függvényt ablakozott jelek segítségével zárt alakban x(t) = x a (t) + x b (t) = [1 ε(t t 1 )]x 1 (t) + ε(t t 1 )x 2 (t), majd végezzük el a deriválást (szorzatfüggvények összegének deriváltja) x a(t) = [1 ε(t t 1 )] x 1 (t) + [1 ε(t t 1 )]x 1(t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1 (t), x b(t) = ε (t t 1 )x 2 (t) + ε(t t 1 )x 2(t) = δ(t t 1 )x 2 (t) + ε(t t 1 )x 2(t), x (t) = x a(t) + x b(t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1(t) + δ(t t 1 )x 2 (t) + ε(t t 1 )x 2 (t), Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 39 / 141

45 Jel fogalma és leírása Fontosabb FI és DI jelek Az általánosított derivált (folyt.) Pl.2 alternatív megoldási módszer (folyt.) A derivált jel tartalmaz eltolt Dirac-impulzusokat, melyekről azonban tudjuk, hogy csak a t = t 1 időpillanatban vesznek fel értéket, minden más időpillanatban az értékük nulla, (továbbá δ(t t 1 )x 1 (t) = δ(t t 1 )x 1 (t 1 )) x (t) = δ(t t 1 )x 1 (t) + [1 ε(t t 1 )]x 1 (t) + δ(t t 1)x 2 (t) + ε(t t 1 )x 2 (t) = [1 ε(t t 1 )]x 1 (t) + δ(t t 1)(x 2 (t 1 ) x 1 (t 1 )) + ε(t t 1 )x 2 (t) ahonnan a számértékek behelyettesítésével x (t) = 6[1 ε(t 2)]e 2t δ(t 2) 10ε(t 2)e 2(t 2), ami azonos az előzőekben kapott eredménnyel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 40 / 141

46 Jel fogalma és leírása Fontosabb FI és DI jelek A DI egységugrás ε[k] és egységimpulzus δ[k] Definíció (Egységugrás) ε[k] = { 0 ha k < 0, 1 ha k 0, azaz az egységugrás értéke a k < 0 ütemekre 0, nemnegatív egészekre pedig 1. Definíció (Egységimpulzus) 0 ha k < 0, δ[k] = 1 ha k = 0, 0 ha k > 0, azaz az egységimpulzus értéke a k = 0 helyen 1, bármely más helyen értéke nulla. Eltolt egységugrás ε[k i] = Eltolt egységimpulzus { 0 ha k < i, 1 ha k i, 0 ha k < i, δ[k i] = 1 ha k = i, 0 ha k > i, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 41 / 141

47 Jel fogalma és leírása Fontosabb FI és DI jelek DI jelek megadása eltolt egységimpulzusokkal Pl. x[k] = { 0 ha k < 0, k = 4δ[k] + 2δ[k 1] + δ[k 2] +... ha k 0, Tetszőleges x[k] jel megadása x[k] = i= x[i]δ[k i], tehát az x[k] jelet eltolt egységimpulzusok súlyozott összegeként, más néven szuperpozíciójaként írhatjuk fel. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 42 / 141

48 Jel fogalma és leírása Fontosabb FI és DI jelek Az egységugrás és az egységimpulzus kapcsolata Az egységugrásjel kifejezhető egységimpulzusokkal ε[k] = δ[k i] = δ[k] + δ[k 1] + δ[k 2] +..., i=0 Az egységimpulzus pedig megadható az egységugrással δ[k] = ε[k] ε[k 1], melynek általánosításával juthatunk el a folytonos idejű ablakhoz hasonló diszkrét idejű ablakhoz. 0 ha k < 0, x[k] = 1.1k ha 0 k < 4 x[k] = {ε[k] ε[k 4]}1.1k 0 ha k 4, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 43 / 141

49 Rendszerek és osztályozásuk 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 44 / 141

50 A rendszer fogalma Rendszerek és osztályozásuk Definíció (Rendszer) A rendszer egy fizikai objektum valamilyen modellje, melynek segítségével modellezhetjük, matematikailag leírhatjuk annak működését. Rendszer lehet pl. egy szabályozandó berendezés, egy bonyolult ipari robot, de rendszer lehet egy rugóra akasztott test és a rugó együttesen. A rendszer lényege, hogy matematikai formába öntsük azt a bonyolult folyamatot, amelynek szimulációját el szeretnénk végezni annak érdekében, hogy megbizonyosodjunk az objektum tulajdonságairól, megtudjuk, hogy az hogyan fog viselkedni, ha valamilyen hatás éri. Ezek a külső hatások a rendszer bemenetei, másnéven gerjesztések, s a rendszer ezen gerjesztésekre válaszokkal reagál, melyek a rendszer kimenetei. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 45 / 141

51 Rendszerek és osztályozásuk SISO és MIMO rendszerek SISO, MIMO rendszerek A rendszer a bemeneteket kimenetekké transzformálja, azaz adott gerjesztésekhez adott válaszokat rendel. A rendszereket bemeneteik és kimeneteik száma alapján két fő csoportba sorolhatjuk 1 SISO-rendszerek (Single Input Single Output), melyek egy gerjesztéshez egy választ rendelnek y(t) = W{s(t)}, vagy y[k] = W{s[k]}, 2 MIMO-rendszerek (Multiple Input Multiple Output), melyek több gerjesztéshez több választ rendelnek y(t) = W{s(t)}, vagy y[k] = W{s[k]}, Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 46 / 141

52 Rendszerek és osztályozásuk SISO, MIMO rendszerek További osztályozási lehetőségek Attól függően, hogy a gerjesztés és a válasz folytonos idejű vagy diszkrét idejű, egy rendszer lehet 1 Folytonos idejű gerjesztésű és folytonos idejű válaszú, (FI rendszerek) 2 diszkrét idejű gerjesztésű és diszkrét idejű válaszú, (DI rendszerek) 3 diszkrét idejű gerjesztésű és folytonos idejű válaszú, (D/A átalakítók) 4 folytonos idejű gerjesztésű és diszkrét idejű válaszú, (A/D átalakítók) Főként az 1 2 csoportba tartozó rendszerekkel foglalkozunk. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 47 / 141

53 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Lineáris rendszerek Egy rendszer lineáris, ha a G-V kapcsolatot jellemző W operátor lineáris,azaz homogén és additív (érvényes a szuperpozíció elve). A y = W{s} jelöléssel W{C 1 s 1 + C 2 s 2 } = C 1 W{s 1 } + C 2 W{s 2 } = C 1 y 1 + C 2 y 2. Pl. Lináris elemek pl. ellenállás, kondenzátor, tekercs, nemlineáris elemek pl. dióda, tranzisztor. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 48 / 141

54 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Invariáns rendszerek Egy rendszer akkor invariáns, ha a gerjesztés időbeli eltolása azt eredményezi, hogy a válaszban csak egy ugyanekkora időbeli eltolódás következik be. Ellenkező esetben a rendszer variáns. Pl. Variáns rendszer pl. egy egyszerű ellenállás is, ha figyelembe vesszük, hogy a rajta átfolyó áram által létrehozott teljesítmény melegíti az ellenálláshuzalt, amelynek ennek hatására megnő az ellenállása. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 49 / 141

55 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Kauzális rendszerek Egy rendszer akkor kauzális, ha válaszának adott időpontbeli értéke nem függ a gerjesztés jövőbeli értékétől, azaz egy FI (DI) rendszer akkor kauzális, ha az y(t) (y[k]) válasz bármely t 1 (k 1 ) időpontban az s(t) (s[k]) gerjesztés csak olyan értékeitől függ, melyekre t < t 1 (k k 1 ). Egyébként a rendszer akauzális. Pl. Minden fizikai rendszer kauzális, hiszen a tapasztalat szerint nincs olyan rendszer, amelynek jelen időpillanatbeli állapota függene a jövőtől. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 50 / 141

56 Rendszerek és osztályozásuk Lineáris, invariáns, kauzális, stabil rendszerek FI és DI rendszerek további csoportosítása Stabil rendszerek Egy rendszer akkor gerjesztés-válasz stabilis, ha bármely korlátos gerjesztésre korlátos válasszal reagál. Ezt a stabilitást BIBO-stabilitásnak is szokás nevezni a,,bounded input implies bounded output angol elnevezés rövidítéséből. Fontos! Elképzelhető, hogy a rendszer több korlátos gerjesztésre korlátos választ ad, de ha létezik akár egyetlen olyan korlátos gerjesztés, amelyre a rendszer nem korlátos válasszal reagál, akkor a rendszer nem gerjesztés-válasz stabilis, más szóval a rendszer labilis. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 51 / 141

57 Hálózatok 1 Jel fogalma és leírása Jelek osztályozása Jelek további csoportosítása Fontosabb FI és DI jelek 2 Rendszerek és osztályozásuk SISO, MIMO rendszerek Lineáris, invariáns, kauzális, stabil rendszerek 3 Hálózatok Jelfolyam-hálózatok és elemeik Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 52 / 141

58 Hálózatok A hálózat fogalma A hálózat komponensek összekapcsolásából áll. Minden komponensnek (hálózati elemnek) egy vagy több bemenete és egy vagy több kimenete lehet (pólusok). A bemenet(ek) és a kimenet(ek) közti kapcsolatot a komponens karakterisztikája adja meg, ami egy függvénykapcsolat a komponens bemeneti változója (változói) és kimeneti változója (változói) között, pl. megadja a kimeneti változót a bemeneti változó függvényében. A hálózat be- és kimenete A hálózat bemenetére a gerjesztést kapcsoljuk, kimenetén pedig a választ várjuk. A hálózat is rendelkezhet egy, vagy több bemenettel és egy, vagy több kimenettel, gerjesztése és válasza lehet folytonos idejű vagy diszkrét idejű. Hálózatok és rendszerek kapcsolata A hálózat akkor reprezentál, másszóval realizál egy rendszert, ha gerjesztés-válasz kapcsolataik megegyeznek. Mérnök informatika BSc (lev.) (PTE PMMK MIT) Jelek és rendszerek előadás 53 / 141

Jelek és rendszerek - 1.előadás

Jelek és rendszerek - 1.előadás Jelek és rendszerek - 1.előadás Bevezetés, alapfogalmak Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Jelek és rendszerek - 7.előadás

Jelek és rendszerek - 7.előadás Jelek és rendszerek - 7.előadás A Laplace-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika

Részletesebben

Dr. Kuczmann Miklós. Ez a példatár a tervezett példatár nulladik verziója. További

Dr. Kuczmann Miklós. Ez a példatár a tervezett példatár nulladik verziója. További Dr. Kuczmann Miklós Példatár a Jelek és rendszerek című tárgyhoz 0. verzió Csak a könyvből kimaradt példák... Ez a példatár a tervezett példatár nulladik verziója. További példákat és megoldásokat az előadásokon

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Jelek és rendszerek - 12.előadás

Jelek és rendszerek - 12.előadás Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Tudományegyetemen. jelfeldolgozásba I. A tananyag a TÁMOP F-14/1/KONV azonosító számú, A

Tudományegyetemen. jelfeldolgozásba I. A tananyag a TÁMOP F-14/1/KONV azonosító számú, A TÁMOP-4.1.1.F-14/1/KONV-2015-0009 A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi Tudományegyetemen Bevezetés a számítógépes jelfeldolgozásba I. Sári Zoltán Pécs

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

2. Analízis az időtartományban

2. Analízis az időtartományban 2. Analízis az időtartományban Ebben a részben megadjuk az olyan lineáris, invariáns rendszerek különböző időtartománybeli leírását, amelyeknek a gerjesztései és a válaszai vagy egyaránt diszkrét idejűek

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila Elektromosságtan II. Általános áramú hálózatok Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010. március 22. Áttekintés

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

M pont(30) : (ii) Adja meg az e egyenes egy olyan pontját, melynek első koordinátája 7.

M pont(30) : (ii) Adja meg az e egyenes egy olyan pontját, melynek első koordinátája 7. M pont(30) :. Az S sík egyenlete: 2x +4y +8z =4,azS 2 sík egyenlete: 2x +8y +4z =2. Legyene az az egyenes, mely párhuzamos mindkét síkkal és átmegy az (,2,3) ponton. (i) Adja meg az e egyenes egy olyan

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját!

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! . Vizsgálat az időtartományban.. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! x x x xy x [ k ] x b( c eg x x gf u [ k ] x ( bd beh x x fh [ k ] bx( c

Részletesebben