Tudományegyetemen. jelfeldolgozásba I. A tananyag a TÁMOP F-14/1/KONV azonosító számú, A

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tudományegyetemen. jelfeldolgozásba I. A tananyag a TÁMOP F-14/1/KONV azonosító számú, A"

Átírás

1 TÁMOP F-14/1/KONV A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi Tudományegyetemen Bevezetés a számítógépes jelfeldolgozásba I. Sári Zoltán Pécs 2015 A tananyag a TÁMOP F-14/1/KONV azonosító számú, A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi Tudományegyetemen című projekt keretében valósul meg.

2

3 Tartalomjegyzék 1. Bevezetés A tananyag felépítése A komplex számok A komplex számok általános áttekintése Különböző alakok közötti áttérés Műveletvégzés komplex számokkal Jelek típusai és tulajdonságaik Folytonos és diszkrét idejű jelek Jelek alapvető tulajdonságai Fontosabb jelek és jellemzőik A szinuszos jel A komplex exponenciális jel Tipikus vizsgálójelek Az egységugrás Az egységimpulzus Az egységugrás és az egységimpulzus kapcsolata A mintavételezés A mintavételezés elve A mintavételi törvény

4 Tartalomjegyzék 4. Lineáris rendszerek és tulajdonságaik Alapfogalmak Fontosabb rendszertulajdonságok Lineáris rendszerek Rendszermodellek, rendszerek leírása A rendszeregyenlet Az állapotváltozós rendszerleírás A válaszidőfüggvények Impulzus-dekompozíció, impulzusválasz alkalmazása Az átviteli karakterisztika Szinuszos jelek, komplex csúcsérték Átviteli karakterisztika előállítása

5 Ábrák jegyzéke 1.1. Komplex szám vektorreprezentációja Az e j π 4, e j 3π 4, e j 5π 4, e j 7π 4 komplex számok a komplex síkon Szinuszos jel Komplex exponenciális jel valós része α < 0 és α > 0 esetén Az ε(t) egységugrás jel, és τ-val eltolt változata Az ε(t) ε(t τ) négyszögablak és alkalmazása A DI egységugrás A Dirac-δ jel konstrukciójának grafikus interpretációja A DI egységimpulzus Szinuszos jel helyes mintavételezése Szinuszos jel helytelen mintavételezése Szinuszos jel mintavételezése a határfrekvencia közelében. 31 5

6 6 Ábrák jegyzéke

7 1. fejezet Bevezetés 1.1. A tananyag felépítése A Bevezetés a számítógépes jelfeldolgozásba I.-II. tananyag megismerteti az olvasót a jelfeldolgozás matematikai alapjaival, valamint a legfontosabb módszerekkel és technikákkal, amelyek jellemzően előfordulnak a jelfeldolgozás gyakorlati problémáinak kapcsán. Szerkezeti felépítését tekintve elsőként a legfontosabb matematikai fogalmakat tárgyalja (I./1. és I./2. fejezetek), majd a mintavételezés elvét és a mintavételezett jelek alapvető tulajdonságait az I./3. fejezetben. Az I./4. fejezet a jelfeldolgozás szempontjából kiemelkedően fontos lineáris rendszerekkel és reprezentációjukkal foglalkozik. A II./1., II./2., II./3. fejezetek már konkrét jelfeldolgozási módszereket, és ezek matematikai hátterét mutatják be, ezután a tananyag II./4., II./5., II./6. fejezetei a digitális szűrők felépítését, működését, és alkalmazási lehetőségeit tárgyalják. Mivel a jelfeldolgozás és a rendszerelmélet igen erősen támaszkodik a matematika módszereire és a matematika eszköztárának egy viszonylag nagy szeletét intenzíven alkalmazza, elkerülhetetlen, hogy bizonyos mélységben feldolgozzuk ezeket a területeket, melyek közül bevezetésként a komplex számokkal kapcsolatos néhány alapfogalmat tekintünk át. 7

8 1.2. A komplex számok 1.2. A komplex számok A komplex számok és az ezeket tartalmazó kifejezések, komplex változós és komplex értékű függvények nagyon gyakoriak a jelfeldolgozással és rendszerjellemzéssel kapcsolatos matematikai reprezentációkban, így ezek alapos ismerete elengedhetetlen a téma tárgyalásához, a későbbiekben előforduló fogalmak értelmezéséhez és alkalmazásához A komplex számok általános áttekintése Komplex számoknak a z = a + bj alakú konstrukciókat nevezzük, ahol z a komplex szám, melynek a a valós, b a képzetes része, és j az ún. képzetes egység, ami a 1 négyzetgyökével egyenlő, vagyis j = 1. A komplex számok tehát a valós számkör kiterjesztéseként értelmezhetők. Ez a fajta kiterjesztés, ill. maga a konstrukció első pillantásra meglepőnek és mesterségesnek tűnhet, de a j képzetes egységre nyugodtan gondolhatunk úgy, mint bármelyik közönséges konstansra. 1 Egy komplex szám tehát egy két valós számból álló (a, b) rendezett pár, ahol a b be van szorozva a j képzetes egységgel. Ezen a módon a valós számok körét nyilvánvalóan kiterjesztettük, hiszen ahogy az a z komplex szám szerkezete alapján világos, minden valós szám komplex szám is egyben, csak olyan, amelynek a képzetes része nullával egyenlő. A komplex számokat többféle módon reprezentálhatjuk, melyek közül a legfontosabbak az alábbiak: 1. Algebrai (vagy kanonikus) alak: z = a + bj, 2. Trigonometrikus alak: z = r(cos φ + j sin φ), 3. Exponenciális (vagy Euler-) alak: z = re jφ, ahol z a komplex szám, a és b rendre a valós és képzetes rész, r a komplex szám abszolút értéke, φ pedig a komplex szám arkusza. Mindhárom fenti alaknak megvannak az előnyei és a hátrányai, de talán a leghasznosabb 1 Pl. 0, 1, 2, 2, π stb. 8

9 1. fejezet. Bevezetés közülük az exponenciális (vagy Euler-) alak, elsősorban kompakt írásmódja és könnyű olvashatósága miatt. Egy komplex szám geometriai reprezentációja a komplex síkon képzelhető el 2 egy vektor formájában, melynek derékszögű koordinátái az a és a b, ahogy az megfigyelhető a 1.1. ábrán ábra. Komplex szám vektorreprezentációja A két tengely a komplex síkot feszíti ki, és a sík minden pontja egy komplex számnak felel meg, az adott pont derékszögű koordinátáinak megfelelő valós és képzetes résszel. 3 Egy z = a + bj komplex szám konjugáltjának nevezzük a z = a bj komplex számot, melynek valós része megegyezik a z valós részével, képzetes része pedig z képzetes részének az ellentettje. A z konjugált geometriai interpretációja a z valós (vízszintes) tengelyre való tükrözésével nyert komplex szám. A komplex számok jelentősége többek között abban áll, hogy a segítségükkel le tudjuk írni az olyan algebrai egyenletek megoldásait, mint az x = 0, amelynek a valós számok körében nincsenek megoldásai, a komplex számok körében azonban létezik megoldás, nevezetesen az x 1,2 = ±j. 2 Ez hasonló a valós számok számegyenesen való ábrázolásához, csak itt két számegyenesre van szükség a valós és a képzetes rész miatt, melyeket célszerűen egymásra merőlegesen állítva létrehoztuk a számsíkot. 3 A valós számok halmaza a komplex sík vízszintes tengelye, hiszen az összes olyan szám, amelynek nulla a képzetes része, ezen a tengelyen helyezkedik el. 9

10 1.2. A komplex számok Nagyon egyszerűen belátható, hogy a megoldás helyes, hiszen definíció szerint j = 1, ahonnan j 2 = 1 és ( j) 2 = 1, azaz a megoldások valóban kielégítik ez egyenletet Különböző alakok közötti áttérés A komplex szám különböző alakjai közötti áttérésre igen gyakran van szükség, hiszen a különböző problémákhoz kötődő alkalmazások, különböző reprezentációkat kívánhatnak meg. Az áttérés a legkönnyebben a grafikus reprezentáció (vektor a komplex síkon) segítségével tehető meg. Ez természetesen nem jelenti azt, hogy minden átváltásnál szükség van a komplex számokat reprezentáló vektorok lerajzolására, egy kis gyakorlattal ez fejben könnyen elvégezhető. Amiért a grafikus reprezentáció nagyon hasznos, az elsősorban szoros kapcsolata a z = re jφ Euler-alakkal. 4 A komplex számok Euler-alakja tulajdonképpen polárkoordinátás megadásnak tekinthető, ahol a sík egy pontját (a komplex számot) egy r hosszúságú vektorral és a pozitív valós féltengellyel bezárt φ szöggel jelöljük ki. Így például az e j π 4 egy olyan vektor, amelynek egységnyi a hossza, és a pozitív valós féltengellyel bezárt szöge π/4. Az 1.2. ábrán négy komplex számnak megfelelő vektor látható a komplex síkon. Példa: Alakítsuk át az alábbi komplex számokat exponenciális alakba! 5 {1, 1, 2, j, 2j, j 2 2 } Műveletvégzés komplex számokkal Az elemi algebrai műveletek (+,,, /) a következőképp értelmezhetők komplex számok esetén: 6 4 A trigonometrikus alak az Euler-alakból közvetlenül származtatható az Euler-formulák alkalmazásával e ±jφ = cos φ ± j sin φ. 5 Megoldás: {1, e jπ, 2e jπ, e j π 2, 2e j π 2, e j π 4 } 6 A kiindulásként alkalmazott komplex számok: z 1 = a 1 + b 1j, z 2 = a 2 + b 2j. 10

11 1. fejezet. Bevezetés 1.2. ábra. Az e j π 4, e j 3π 4, e j 5π 4, e j 7π 4 komplex számok a komplex síkon Összeadás: Szorzás: 7 z 1 + z 2 = (a 1 + b 1 j) + (a 2 + b 2 j) = a 1 + a 2 + j(b 1 + b 2 ) (1.2.1) z 1 z 2 = (a 1 + b 1 j) (a 2 + b 2 j) = a 1 a 2 + a 1 b 2 j + a 2 b 1 j + b 1 jb 2 j Osztás: = (a 1 a 2 b 1 b 2 ) +j (a }{{} 1 b 2 + a 2 b 1 ) }{{} Re Im (1.2.2) z 1 = (a 1 + b 1 j) z 2 (a 2 + b 2 j) = (a 1 + b 1 j) (a 2 + b 2 j) (a 2 b 2 j) (a 2 b 2 j) = (a 1a 2 + b 1 b 2 ) + j(a 2 b 1 a 1 b 2 ) a b2 2 = (a 1a 2 + b 1 b 2 ) a b2 2 } {{ } Re +j (a 2b 1 a 1 b 2 ) a b2 2 }{{} Im (1.2.3) 7 Figyeljünk rá, hogy a képzetes egység j nem része a komplex szám képzetes részének, a képzetes rész az a valós szám, amivel a képzetes egység meg van szorozva. 11

12 1.2. A komplex számok A multiplikatív algebrai műveletek trigonometrikus és exponenciális alakban 8 is végrehajthatók. A legfontosabb műveletek a következők: 9 Szorzás: z 1 z 2 = r 1 e jφ1 r 2 e jφ 2 = r 1 r 2 e j(φ 1+φ 2 ) (1.2.4) Osztás: z 1 z 2 = r 1e jφ1 r 2 e jφ 2 = r 1 r 2 e j(φ 1 φ 2 ) (1.2.5) A z = re jφ komplex szám n-edik hatványának meghatározására szolgáló összefüggés közvetlenül származtatható a szorzásra vonatkozó szabály (vagy egyszerűen az algebra szabályai) alapján a következőképp z n = (re jφ ) n = r n e jnφ. (1.2.6) Az n-edik gyök meghatározása pedig az alábbi módon történik, 10 n z = n re jφ = n re j φ+k2π n, (k = 0, 1, 2,..., n 1). (1.2.7) Példa: Határozzuk meg a z = 1 komplex szám 4-edik gyökét! 11 Ez a probléma úgy is megfogalmazható, hogy határozzuk megy a z 4 = 1 egyenlet megoldásait, tehát négy komplex gyököt kell keresnünk 12, ugyanis 8 Az összeadás (és a kivonás) ezekben az alakokban közvetlenül nem értelmezhető. 9 A kiindulásként alkalmazott komplex számok: z 1 = r 1e jφ 1, z 1 = r 2e jφ Az n db komplex gyök abszolútértéke megegyezik, és egyenletesen oszlanak el egy körív mentén a komplex síkon. 11 Emlékezzünk vissza, hogy az 1 is egy komplex szám, aminek nulla a képzetes része. 12 A k = 4-hez tartozó gyöknek ugyanúgy 2π az arkusza, mint a k = 0-hoz tartozó gyöknek, és az összes további gyök (k 4) a már meglévők ismétlődései, tehát csak 4 különböző gyök van. 12

13 1. fejezet. Bevezetés egy n-ed fokú polinomnak mindig n db komplex gyöke van. Az (1.2.7) alapján a megoldás 4 1 = e j 0+k2π 4, (k = 0, 1, 2, 3), (1.2.8) a négy gyök tehát {1, e j π 2, e jπ, e j 3π 2 }, ami könnyen ellenőrizhető (1.2.6) segítségével. 13

14 A komplex számok

15 2. fejezet Jelek típusai és tulajdonságaik Ebben a fejezetben a jelekkel és a reprezentációjukkal kapcsolatos alapfogalmakat, és alapvető koncepciókat tárgyaljuk. A legfontosabb jeltípusok és tulajdonságok tárgyalásán túl bemutatjuk a jelfeldolgozásban és rendszervizsgálatban leggyakrabban előforduló speciális jeleket, ezek jellemzőit, valamint alkalmazásuk lehetőségeit Folytonos és diszkrét idejű jelek A jel mint fogalom tipikus alkalmazása általában egy fizikai mennyiség (hőmérséklet, nyomás, feszültség, térerősség stb.) absztrakt leírására irányul. A jel talán legfontosabb tulajdonsága, hogy információt hordoz az általa reprezentált fizikai mennyiségről. 1 A jel egy egyszerű definíciója lehet az alábbi: Def. (Jel): A jel egy mérhető fizikai mennyiség absztrakt reprezentációja, 1 A Merriam-Webster szótár definíciója szerint a jel egy detektálható fizikai mennyiség vagy impulzus (mint feszültség, áram, mágneses térerősség), melynek segítségével üzenet vagy információ továbbítható. 15

16 2.2. Jelek alapvető tulajdonságai amely egyértelműen hozzárendelt információt hordoz a szóban forgó fizikai mennyiség értékéről vagy értékváltozásáról. Mivel a jel egy mérhető fizikai mennyiség abszrakt reprezentációja, a jel leírása maga is absztrakt, és általában egy függvény segítségével történik. 2 A legtöbb esetben a fizikai mennyiségek időtartománybeli jelek, ami azt jelenti, hogy az őket leíró függvények független változója az idő, de vannak olyan jelek (és természetesen fizikai mennyiségek is), amelyek egy vagy több térdimenzió mentén is változnak. Az ilyen típusú jelek között a legegyszerűbbek talán a képek, amelyek a tér kétváltozós függvényei Jelek alapvető tulajdonságai A folytonos idejű jelek reprezentációja a valós számok halmazán értelmezett függvényekkel történik (melyeknek általában az idő a független változója), és az értékkészletük is tipikusan a valós számok halmaza (vagy részhalmaza), így az x(t) jel, az alábbi módon írható le x : R R, y = x(t), (t R), (2.2.1) ahol x a függvény neve, t a független változója, és y a függő változó (függvényérték). 4 Folytonos idejű jelekre egyszerű példa lehet egy szoba hőmérséklete, egy elektromos csatlakozón mérhető feszültség, egy csővezetékben mérhető nyomás stb. Az alábbiakban a jelek néhány fontos tulajdonsága következik definíciószerűen felsorolva. Def. (Periodicitás): Egy x(t) jel periodikus a T periódusidővel, ha x(t+t ) = x(t), t R. 2 Elképzelhetők más reprezentációk is, mint grafikonok vagy táblázatok, de a legfontosabbak a függvények. 3 Természetesen elképzelhetők olyan jelek is, amelyek egyszerre az időtől és a tértől is függnek, pl. egy videofolyam, de ebben az anyagban az ilyen típusú jelekkel nem foglalkozunk. 4 Az itt alkalmazott jelölés pontosan megegyezik a függvények matematikában megszokott jelölésével. 16

17 2. fejezet. Jelek típusai és tulajdonságaik Fontos megjegyezni, hogy ha egy jel T -vel periodikus, akkor nyilván periodikus T minden egész többszörösével is. Ezek közül a legkisebbet alapperiódusnak nevezzük. Tipikus periodikus jelek a harmonikus függvények (sin, cos). Def. (Párosság): Egy x(t) jel páros, ha x(t) = x( t), t R. Páros jelek a páros fokszámú polinomok (t 2, t 4,... ), az abszolútértékfüggvény t, a konstans értékű függvény x = C vagy a koszinusz cos(t) stb. Def. (Páratlanság): Egy x(t) jel páratlan, ha x(t) = x( t), t R. Páratlan jelek a páratlan fokszámú polinomok (t 3, t 5,... ), a t identitásfüggvény, vagy a szinusz sin(t) stb. Def. (Korlátosság): Egy x(t) jel korlátos, ha létezik egy véges K R amelyre x(t) < K, t R. Def. (Belépő jel): Egy x(t) jel belépő, ha x(t) 0, t < 0, (t R). Def. (Korlátos tartójú jel): Egy x(t) jel korlátos tartójú, ha értéke egy véges intervallumon kívül azonosan 0. A következő szakaszban a jelfeldolgozás szempontjából legfontosabb, leggyakrabban előforduló jelek bemutatása következik Fontosabb jelek és jellemzőik A szinuszos jel A szinuszos jeleknek kitüntetett a szerepük a jelfeldolgozásban elsősorban amiatt, hogy a szinuszos jelek a lineáris rendszerek sajátfüggvényei, azaz a lineáris rendszeren való átvitel hatására a jelalakjuk nem változik, továbbra is szinuszos marad, csak a jel bizonyos attribútumai változhatnak meg. 17

18 2.3. Fontosabb jelek és jellemzőik Def. (Szinuszos jel): Az x(t) = A cos(ωt + φ) alakú jelet szinuszos jelnek nevezzük x(t) t 2.1. ábra. Szinuszos jel Az x(t) szinuszos jelet jellemző paraméterek az A amplitúdó, az ω körfrekvencia és a φ kezdőfázis. A körfrekvencia és a periódusidő közötti viszony az ω = 2π/T összefüggéssel írható le. A 2.1. ábrán egy szinuszos jel látható, jellemző paramétereinek feltüntetésével A komplex exponenciális jel A komplex exponenciális jel szintén igen fontos szerepet játszik a jelfeldolgozásban, ugyanis a lineáris rendszerek válasza általános esetben komplex értékű exponenciális függvények lineáris kombinációjaként jelenik meg. A komplex exponenciális jel általános alakja x(t) = Ce λt, ahol C = C e jθ, λ = α + jω alakú komplex szám, melynek ismeretében a jel felírható a következő alakban 18

19 2. fejezet. Jelek típusai és tulajdonságaik ahonnan az Euler-formulák alapján adódik az x(t) = C e jθ e αt e jωt, (2.3.1) x(t) = C e αt cos(ωt + θ) + j C e αt sin(ωt + θ) (2.3.2) alak, melynek valós és képzetes része egyaránt szinuszos jel (2.2. ábra) x(t) 0 x(t) t t 2.2. ábra. Komplex exponenciális jel valós része α < 0 és α > 0 esetén E szinuszos jelek időbeli lefutásának jellegét az α paraméter befolyásolja, ahogy az a 2.2. ábrán megfigyelhető α < 0 esetén csökkenő, α > 0 esetén növekvő amplitúdójú jelet eredményezve. A fentebb tárgyalt szinuszos és exponenciális jelek diszkrét idejű variánsait a későbbi fejezetekben a módszerek és alkalmazások kapcsán tárgyaljuk Tipikus vizsgálójelek A rendszervizsgálat szempontjából kitüntetett szerepű jelek az ún. vizsgálójelek. Ezek a jelek, és a rendszerek rájuk adott válasza kiemelkedő jelentőséggel bírnak. Ebben a szakaszban a két legfontosabb vizsgálójelet, az egységugrást és az egységimpulzust tárgyaljuk. 19

20 2.4. Tipikus vizsgálójelek Az egységugrás A 2.3. ábrán látható az ε(t) egységugrás jel, mely az alábbi módon definiálható { 0, ha t < 0, ε(t) = (2.4.1) 1, ha t > 0. A definíció alapján világos, hogy az egységugrás jel nagyon egyszerűen viselkedik, a nulla időpillanat előtt azonosan nulla értékű, utána pedig azonosan egy, a nulla helyen a jelnek szakadása van. Rendszervizsgálatban betöltött szerepe elsősorban abban áll, hogy bemenőjelként valaminek a bekapcsolását modellezi. Az egységugrás segítségével ezen kívül bármilyen jel belépővé tehető, egyszerűen az egységugrással való szorzással ε(t) ε(t τ) τ t t 2.3. ábra. Az ε(t) egységugrás jel, és τ-val eltolt változata Az egységugrás alkalmas továbbá ún. négyszögablak 5 létrehozására is (ld ábra), ami egész egyszerűen annyit jelent, hogy egy jelből megtartunk egy szegmenst, korlátos tartójú jellé alakítva azt. A 2.4. ábra ezt az alkalmazást szemlélteti, ahol a folytonos idejű x(t) jelet (kék szaggatott) beszorozva az ablakfüggvénnyel (fekete szaggatott), az ábrán látható y(t) korlátos tartójú jel (fekete folytonos) keletkezik. 5 A négyszögablakon kívül számos más típusú ablakfüggvény is létezik, ezek közül 20

21 2. fejezet. Jelek típusai és tulajdonságaik ε(t) ε(t τ) ε(t) τ ε(t τ) t y(t) t 2.4. ábra. Az ε(t) ε(t τ) négyszögablak és alkalmazása Az egységugrás diszkrét idejű változata az alábbi formában adható meg a jel a 2.5. ábrán látható. ε[n] = { 0 ha n < 0, 1 ha n 0, (2.4.2) ε[n] n 2.5. ábra. A DI egységugrás néhányat a Digitális szűrőkkel foglalkozó fejezetben tárgyalunk. 21

22 2.4. Tipikus vizsgálójelek Az egységimpulzus A másik alapvető vizsgálójel az egységimpulzus (δ-függvény, Dirac-δ). Ennek a jelnek a konstrukciója már jóval összetettebb az egységugrásénál, hagyományos értelemben a Dirac-δ nem is függvény, hanem ún. disztribúció. Az ilyen típusú matematikai objektumok egzakt elméleti leírása meghaladja e tananyag kereteit, de szerencsére jelfeldolgozási 6 alkalmazások szempontjából bőven elég lesz az egységimpulzus szemléletes megközelítése. A Dirac-δ konstrukciója legegyszerűbben talán grafikusan szemléltethető, ahogy azt az 2.6. ábra mutatja. δ(t,τ) δ(t) δ[t] /τ τ t t 2.6. ábra. A Dirac-δ jel konstrukciójának grafikus interpretációja Az ábrán egy egységnyi területű jel ((ε(t) ε(t τ))/τ) látható, ahogy a τ 0 határátmenettel egyre keskenyebb, és egyre magasabb lesz, míg végül nulla szélességű és végtelen magasságú jelet kapunk, melynek a területe továbbra is egységnyi, és ami maga a Dirac-δ, azaz ε(t) ε(t τ) δ(t) = lim. (2.4.3) τ 0 τ Ez a jel tehát egy nulla szélességű, végtelen magasságú, egységnyi területű jel a nulla helyre koncentrálva. Jelölése egy függőleges nyíl, 6 És általában mérnöki alkalmazások szempontjából is. 22

23 2. fejezet. Jelek típusai és tulajdonságaik melynek magassága a δ(t) együtthatója. 7 Amint látjuk, a Dirac-δ nem hétköznapi függvény, így nem is tudjuk hétköznapi módon kezelni. Az intuitív megközelítése lehet a tömegpont, vagy a pontszerű töltés, 8 absztrakt megfelelője a jelek világában; az egy pontra koncentrált, nulla kiterjedésű, mégis egységnyi területű jel. Természetesen léteznek Dirac-impulzusnak a fentinél egzaktabb definíciói is, ezek közül az egyik a következőképp fogalmazható meg. Def. (Dirac-δ): Ha egy x(t) jel folytonos a τ helyen, akkor x(t)δ(t τ)dt = x(τ). (2.4.4) A fenti definíció alapján azt mondhatjuk, hogy a δ(t)-val való beszorzás és integrálás mintegy mintát vesz a jelből, valamint az is világos, hogy a δ(t) jelet nem önálló entitásként definiálja, hanem egy másik függvénnyel való interakcióján keresztül. Az egységimpulzus talán legfontosabb tulajdonsága a nulla helyre koncentrált egységnyi területe, ami az alábbi módon formalizálható δ(t)dt = +0 0 δ(t)dt = 1, (2.4.5) ahonnan jól látható, hogy a (, ) intervallumon végzett integrálás a ( 0, +0) intervallumon végzett integrálással megegyezően egyet ad eredményül, azaz az egységnyi terület a nulla helyre koncentrálódik. 9 Az egységimpluzus diszkrét idejű (DI) változata az alábbi módon definiálható 0 ha n < 0, δ[n] = 1 ha n = 0, 0 ha n > 0, (2.4.6) 7 Ábrázoláskor tehát a δ(t) nagysága a területet reprezentálja. 8 Paul Dirac épp a pontszerű töltés reprezentálására vezette be ezt a speciális függvényt. 9 Tömegpont, pontszerű töltés analógia. 23

24 2.4. Tipikus vizsgálójelek ahonnan látszik, hogy a δ[n] egyszerűen egy darab 1-es a nulla időpillanatban, az n = 0 helyen. Funkciója a folytonos idejű (FI) változattal analóg, viszont a jel leírása sokkal egyszerűbb. A δ[n] egységimpulzus a 2.7. ábrán látható δ[n] n 2.7. ábra. A DI egységimpulzus Az egységugrás és az egységimpulzus kapcsolata A két, fentebb tárgyalt vizsgálójel szoros kapcsolatban van egymással, mind folytonos, mind diszkrét időben. Az FI egységugrás a következőképpen állítható elő a Dirac-δ segítségével ε(t) = t δ(τ)dτ, (2.4.7) ami tulajdonképpen azt jelenti, hogy az egységugrás jel az egységimpulzus területmérő függvénye. A (2.4.7) által definiált egyenlőség nagyon könnyen belátható, hiszen t { δ(τ)dτ = 0 ha t < 0 ε(t). 1 ha t > 0 (2.4.8) Ebből következhetne, hogy az egységimpulzus az egységugrás deriváltja, 24

25 2. fejezet. Jelek típusai és tulajdonságaik de mivel az egységugrás jel a nulla helyen nem deriválható, 10 ehhez be kell vezetnünk az általánosított derivált fogalmát. Def. (Általánosított derivált): Egy x (t) jel az x(t) jel általánosított deriváltja, ha x(t) = t t 0 x (τ)dτ + x(t 0 ). (2.4.9) A fenti definíció igen hasonló a (2.4.7) formulához, hisz az általánosított derivált fogalma pontosan azt jelenti, hogy az x (t) akkor deriváltja x(t)-nek, ha x(t) területmérő függvénye x (t)-nek. Az általánosított derivált nagy előnye a határátmenettel definiált differenciálhányadossal szemben, hogy nem érzékeny a szakadásokra, tehát ebben az értelemben az egységugrásnak létezik derivált függvénye, ez pedig nem más, mint a Dirac-δ (ld. (2.4.7) formula). A diszkrét idejű egységugrás és egységimpulzus kapcsolata a következő módon adható meg ε[n] = δ[n i] = δ[n] + δ[n 1] + δ[n 2] +..., (2.4.10) i=0 vagy az ezzel ekvivalens ε[n] = illetve a δ[n] előállítását definiáló n i= δ[i], (2.4.11) δ[n] = ε[n] ε[n 1]. (2.4.12) Tekintve a (2.4.11) és (2.4.12) összefüggéseket, szembetűnhet, hogy az integrálás, ill. a differenciálás diszkrét idejű megfelelőit jelentik, azaz a DI 10 A jobb és bal oldali határérték nem egyenlő a nullában. 25

26 2.4. Tipikus vizsgálójelek egységugrás és egységimpulzus kapcsolata analóg az FI változatok (2.4.7) kapcsolatával. 26

27 3. fejezet A mintavételezés A fizikai folyamatokat és jelenségeket jellemző fizikai mennyiségek, és az ezeket reprezentáló jelek tipikusan folytonosak. Gondoljunk csak egy áramkör feszültség- és áramjeleire, egy vízvezetékben áramló közeg nyomására, vagy akár egy rockkoncerten tapasztalható hangnyomásra, ezek mind analóg, időben és értékben is folytonos jelek. A folytonosság természetesen csak matematikai értelemben áll fenn tökéletesen. A fizikai jeleket minden esetben behatárolja a sávszélesség és a zaj. Mivel a sávszélesség nem végtelen, ezért mindig lesz egy olyan legnagyobb frekvencia (sávkorlát), aminél nagyobb frekvenciák vizsgálata értelmetlen, és hasonlóan az amplitúdóban is lesz egy olyan legkisebb jelszint, ami már megkülönböztethetetlen a zajtól. Matematikai értelemben azonban a folytonosság alatt pontosan azt értjük, hogy a jel mind függő mind független változójában folytonos. Sokszor előfordul azonban, hogy egy folytonos jelet annak diszkretizált változatával közelítünk, és ez a közelítés első pillantásra nem különbözik az eredeti folytonos jeltől. Ha egy fényképet egy monitor képernyőjén egészen közelről nézünk, akkor láthatóvá válik a kép pixeles szerkezete, azaz a kicsit távolabbról folytonosnak tűnő kép valójában egy megfelelően sűrű pontmátrix pontjaiként van reprezentálva. Ez tehát egy diszkretizált változata az eredeti fényképnek, ami észlelésünk szempontjából nem különbözik az eredetitől. 27

28 3.1. A mintavételezés elve Annak érdekében, hogy analóg jelekkel digitális (számítógépes) környezetben dolgozhassunk, elengedhetetlen az analóg jelek mintavételezése és digitalizálása. A mintavételezést legegyszerűbben úgy képzelhetjük el, hogy adott időközönként megnézzük, hogy mekkora a jel nagysága. 1 Ezután ezek a rögzített időközönként vett értékek, az ún. minták fogják reprezentálni a folytonos jelet. A mintavételezés tulajdonságai, és hatása a legegyszerűbben az ún. matematikai mintavételezés segítségével értelmezhetőek. Az innen származó eredmények és az itt levont következtetések alapján tudjuk megválaszolni a mintavételezéssel kapcsolatos egyik legfontosabb kérdést, nevezetesen : Rekonstruálható-e az eredeti jel csupán mintáinak ismeretében? 3.1. A mintavételezés elve Egy jelnek bizonyos időközönként vett mintáival való reprezentációja a független változó szempontjából azt jelenti, hogy az eddigi folytonos időt reprezentáló valós (t R) változó helyett egy diszkrét időt (mintavételi időpillanatokat) reprezentáló egész számok halmazán értelmezett (n Z) változót vezetünk be, azaz, ha egy FI jelet a mintáival szeretnénk reprezentálni, akkor ezt formálisan a legegyszerűbben úgy tehetjük meg, hogy a folytonos t idő argumentum helyére ennek egy diszkretizált változatát nt s -t helyettesítjük x(t) t nts, (3.1.1) ahol T s a mintavételi periódusidő, n pedig a mintavételi időpillanat indexe, azaz a diszkrét idő. Egy szinuszos jel esetében a mintavételezett jel (3.1.1) alapján az alábbi módon alkotható meg x(t) = A cos(ωt + ρ) t nts, (3.1.2) 1 Ha egy szobában elhelyezett hőmérő kijelzőjét 5 percenként leolvasom, és lejegyzem a mutatott értéket, akkor tulajdonképpen mintavételeztem a T (t) hőmérsékletjelet, ami a szoba hőmérsékletét reprezentáló analóg jel. 28

29 3. fejezet. A mintavételezés x(nt s ) = A cos(ωnt s + ρ), (3.1.3) ahonnan a ϑ = ωt s DI körfrekvencia bevezetésével az alábbi jel adódik x[n] = A cos(ϑn + ρ). (3.1.4) A mintavételezés fenti folyamatát követhetjük nyomon a 3.1. ábrán, ahol két különböző ω körfrekvenciájú analóg jelet mintavételeztünk rögzített ω s = 2π/T s mintavételi körfrekvenciával. 1 ω = ωs 1 ω = 0.2 ωs x(t), x(nts) 0 x(t), x(nts) t t 3.1. ábra. Szinuszos jel helyes mintavételezése Látható, hogy az eredeti jel ω körfrekvenciájának növelésével a mintavételezés a jel változási sebességéhez képest egyre ritkábban történik. Ha az eredeti jel körfrekvenciáját tovább növeljük, akkor előfordulhat, hogy már nem tudunk elég gyakran mintát venni a jelből ahhoz, hogy a jel eredeti információtartalma megmaradjon. A 3.2. ábrán látható, hogy mi történik akkor, ha az analóg jel frekvenciáját még tovább növeljük. Mivel a mintavételezés nem elég gyakori, a jelből vett minták már nem reprezentálják az eredeti jelet, hanem egy másik, kisebb körfrekvenciával rendelkező jelnek tűnnek a mintavételezés után. Az ábrán jól látható, hogy a mintavételi pontokból az eredeti jel helyett egy másik, alacsonyabb frekvenciájú szinuszos jel áll össze. Ez az ún. aliasing 29

30 3.1. A mintavételezés elve 1 ω = 0.6 ωs 1 ω = 0.95 ωs x(t), x(nts) 0 x(t), x(nts) t t 3.2. ábra. Szinuszos jel helytelen mintavételezése jelenség. Az ábrán szaggatott vonallal jelölt szinuszos jel a mintavételi pontokban vett függvényértékekhez tartozó alacsony frekvenciás szinusz, az alias jel A mintavételi törvény A fenti példákból látható, hogy a mintavételi frekvencia megválasztása nem történhet tetszőlegesen, valamint azt is láthattuk, hogy a mintavétel helyessége az eredeti jel frekvenciája és a mintavételi frekvencia viszonyától függ. Ha a mintavételezést pusztán a szinuszos jel időfüggvénye alapján próbáljuk értelmezni, akkor azt mondhatjuk, hogy akkor lesz megfelelő a mintavételezés, ha minden félperiódusból veszünk legalább egy mintát, azaz a mintavételi periódusidőt az eredeti periódusidő felére vagy kisebbre választjuk (T s T/2), de ahogy azt a 3.3.a. ábra mutatja, ennél szigorúbbnak kell lennünk, és az egyenlőséget nem engedhetjük meg, mert ebben az esetben előfordulhat, hogy mindig a zérushelyekről mintát véve, az eredeti jel helyett egy konstanst kapunk. A helyes mintavételezés feltétele tehát, hogy a mintavételi periódusidő kisebb legyen, mint a szinuszos jel periódusidejének fele. Ez formulával megfogalmazva az alábbi összefüggést jelenti 30

31 3. fejezet. A mintavételezés ω = 0.5 ωs ω = 0.45 ωs x(t), x(nts) 0 x(t), x(nts) t (a.) t (b.) 3.3. ábra. Szinuszos jel mintavételezése a határfrekvencia közelében T s < T 2, (3.1.5) ahol T s a mintavételi periódusidő, T pedig az eredeti jel periódusideje. A körfrekvencia és a periódusidő közötti összefüggés ismeretében a (3.1.5) megfogalmazható körfrekvenciákra is az alábbi alakban ω s > 2ω, (3.1.6) ahol ω s a mintavételi körfrekvencia, ω pedig az eredeti jel körfrekvenciája. Általában egy jel nem csak egy szinuszos összetevőből áll, de amint a későbbiekben látni fogjuk, minden periodikus jel 2 felírható különböző szinuszos jelek lineáris kombinációjaként. Ilyenkor a (3.1.6) összefüggést az alábbi módon kell megfogalmazni, ω s > 2ω M, (3.1.7) ahol ω M a jelben előforduló legnagyobb frekvenciájú összetevő frekvenciája, azaz a jel sávkorlátja. A helyes mintavétel feltételét, azaz a mintavételi törvényt tehát úgy fogalmazhatjuk meg, hogy egy sávkorlátozott jelet 2 Tágabb értelemben az aperiodikus jelek is ide érthetők. 31

32 3.1. A mintavételezés elve egyértelműen reprezentálnak a mintái, ha a mintavételi frekvencia és a jelben előforduló maximális körfrekvencia viszonyára igaz (3.1.7). A most megfogalmazott mintavételi törvény egzakt igazolása a Fouiriertranszformáció tárgyalása után, a II./2. fejezetben következik. 32

33 4. fejezet Lineáris rendszerek és tulajdonságaik 4.1. Alapfogalmak Mikor rendszerekről beszélünk, akkor tipikusan valamilyen fizikai objektum (gép, berendezés, hardware-software komponensek együttese stb.) absztrakt leírására gondolunk. A rendszernek vannak bemenetei (gerjesztések) és az ezek, ill. a rendszer belső állapotának hatására keletkező kimenetei (válaszok) és olyan absztrakt entitásként tekinthetünk rá, ami valamit csinál a gerjesztésekkel, hogy azokból válaszok legyenek. A rendszereket sokféle módon csoportosíthatjuk, ezek közül az egyik a bemenetek és kimenetek száma szerinti csoportosítás, mely szerint megkülönböztetünk: Egy bemenetű egy kimenetű, SISO (Single Input Single Output) Több bemenetű több kimenetű, MIMO (Multiple Input Multiple Output) rendszereket, ill. az ezekből származtatható SIMO és MISO változatokat. 33

34 4.2. Lineáris rendszerek A rendszerek matematikai reprezentációja egy operátor, 1 melynek argumentuma a rendszer bemenőjele (vagy bemenőjelei), értéke pedig a kimenőjelet (kimenőjeleket) fogja szolgáltatni, az alábbiak szerint SISO, ill. y(t) = W{x(t)}, (4.1.1) y(t) = W{x(t)}, (4.1.2) alakban MIMO rendszer esetén, ahol W{.} a rendszert reprezentáló operátor, ami a gerjesztést a válaszba képezi. A vektorértékű gerjesztés és válasz az alábbi módon értelmezhető y k (t) = W{x i (t)}, i = 1... N x, k = 1... N y, (4.1.3) ahol N x a gerjesztések, N y a válaszok száma Fontosabb rendszertulajdonságok Def. (Kauzális rendszer): Egy rendszer kauzális, ha válaszának t 0 (n 0 ) időpillanatbeli értékét csak a t 0 (n 0 ) időpillanatot megelőző gerjesztések befolyásolják. Def. (Invariáns rendszer): Egy rendszer invariáns (időinvariáns), ha gerjesztésének időbeli eltolása, válaszának csak egy ugyanekkora eltolását eredményezi, azaz, ha y(t) = W{x(t)}, akkor y(t t 0 ) = W{x(t t 0 )}. Az invariancia definíciója tulajdonképpen annyit jelent, hogy a rendszer jellemzői (struktúrája és paraméterei) nem változnak az időben Lineáris rendszerek A lineáris rendszerek és tulajdonságaik központi szerepet játszanak a jelfeldolgozásban, a linearitás feltételezése számos jelfeldolgozási technika 1 Az operátor egy olyan leképezés, ami egy jelből egy másik jelet állít elő. 34

35 4. fejezet. Lineáris rendszerek és tulajdonságaik alapja. Def. (Lineáris rendszer): Egy rendszer lineáris, ha a rendszert jellemző W{.} operátor homogén és additív. A definícióban szereplő additív tulajdonság azt jelenti, hogyha a rendszer az x i (t) gerjesztésre az y i (t) választ adja, 2 akkor { n } n n W x i (t) = W{x i (t)} = y i (t), (4.2.1) i=1 i=1 a homogenitás pedig annyit tesz, hogy a gerjesztés K-szorosára való növelése a válasz K-szoros növekedését eredményezi, formálisan i=1 W{Kx(t)} = KW{y(t)} = Ky(t), (4.2.2) tehát egy lineáris rendszer bemenetére adott jel arányos megváltoztatása, a kimenőjel ugyanolyan arányú megváltozásával jár. A fenti két tulajdonság egy közös formulával is felírható az alábbiak szerint { n } n n W K i x i (t) = K i W{x i (t)} = K i y i (t), (4.2.3) i=1 i=1 amit úgy interpretálhatunk, hogy a lineáris rendszer a gerjesztések lineáris kombinációját a hozzájuk tartozó válaszok lineáris kombinációjába viszi át. Ezt szokás oly módon megfogalmazni, hogy a lineáris rendszerekre érvényes az ún. szuperpozíció elve, ami azt jelenti, hogy ha a gerjesztést egy súlyozott összegként reprezentáljuk, akkor a válasz előállítható a taggerjesztésekre adott válaszok súlyozott összegeként (ld. (4.2.3)). A nemlineáris rendszerek mindazok, amelyekre nem érvényes a szuperpozíció elve. Fontos megjegyezni, hogy a fizikai objektumok szinte minden esetben nemlineáris viselkedésűek, de az őket reprezentáló rendszereket célszerű lineárisnak tekinteni. Ez a linearizálás természetesen nem önkényesen történik, hanem a rendszer jellegének és működésének figyelembevételével. 2 y i(t) = W{x i(t)} i=1 35

36 4.3. Rendszermodellek, rendszerek leírása 4.3. Rendszermodellek, rendszerek leírása A rendszerek absztrakt reprezentációi a különféle rendszermodellek, melyek igen változatosak lehetnek. A legfontosabbak az időtartománybeli rendszerleírási módszerek közül az input output (I/O) modellek (rendszeregyenletek), az állapottér modellek, valamint a rendszerjellemző függvényekkel történő rendszerleírási módok. A rendszermodelleknek léteznek megfelelői a transzformált tartományokban (frekvencia, komplex frekvencia) is, ezeket a megfelelő helyen a téma megértéséhez szükséges mélységben fogjuk tárgyalni A rendszeregyenlet Folytonos idejű lineáris invariáns rendszer be-kimeneti kapcsolatát leíró általános I/O modell az alábbi alakú differenciálegyenlet y (n) (t) + n a i y (n i) (t) = i=1 m b j x (m j) (t), (4.3.1) ahol x(t) a gerjesztés, y(t) a válasz, az a i -k és b j -k pedig a rendszert jellemző konstans paraméterek. Az egyenletben szerepelnek a gerjesztés és a válasz deriváltjai is, melyek közül a válaszjel legmagasabb rendű deriváltja határozza meg a rendszeregyenlet rendjét. Diszkrét idejű rendszer I/O modellje az ún. differenciaegyenlet, amely az alábbi általános alakban írható y[n] + i=1 j=0 N M a i y[n i] = b j x[n j], (4.3.2) ahol hasonlóan a folytonos idejű esethez x[n] a gerjesztés, y[n] a válasz, az a i -k és b j -k pedig a rendszert jellemző konstans paraméterek. A (4.3.1) rendszeregyenlettel összehasonlítva az alapvető különbség az, hogy a (4.3.2) nem deriváltakat tartalmaz, hanem a rendszer DI jellegéből fakadóan a gerjesztés és a válaszjel késleltetett értékeit. 36 j=0

37 4. fejezet. Lineáris rendszerek és tulajdonságaik Az állapotváltozós rendszerleírás A rendszeregyenlet mellett egy másik fontos rendszerleírási mód az ún. állapotváltozós, vagy más néven állapotteres rendszerleírás. Ennél a módszernél nem közvetlenül az explicit I/O kapcsolatot definiáljuk, hanem bevezetjük az ún. állapotváltozókat, és ezek időbeli evolúciójára írunk fel differenciálegyenletet (diszkrét esetben differenciaegyenletet). Egy folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának általános alakja x i(t) = y k (t) = N N s A ij x j (t) + B ij u j (t), (i = 1, 2,..., N) j=1 j=1 N N u C kj x j (t) + D kj u j (t), (k = 1, 2,..., N y ) j=1 j=1 (4.3.3) ahol x i (t) az i. állapotváltozó, A, B, C, D együtthatók, u j (t) a j. gerjesztés, y k (t) a k. válasz, N u és N y pedig rendre a gerjesztések és a válaszok száma. Kompaktabb írásmódban (4.3.3) megadható vektorosan is az alábbi alakban x (t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t), (4.3.4) valamint SISO rendszer esetén (4.3.4) tovább egyszerűsödik, és az alábbi alakban írható x (t) = Ax(t) + bu(t) y(t) = c T x(t) + Du(t), (4.3.5) ahol az együttható mátrixok szerkezete a SISO rendszerre jellemző egy gerjesztés és egy válasz miatt jelentősen leegyszerűsödik. Diszkrétidejű SISO rendszer esetében az állapotváltozós leírás (4.3.5)-nek megfelelő normálalakja 37

38 4.3. Rendszermodellek, rendszerek leírása x[n + 1] = Ax[n] + bu[n] y[n] = c T x[n] + Du[n], (4.3.6) ahol a jelölések megegyeznek a (4.3.5) FI állapotváltozós leírásnál definiáltakkal A válaszidőfüggvények A válaszidőfüggvények alatt a tipikus vizsgálójelekre (ld. 2. fejezet) adott válaszokat értjük. Jelentőségük abban áll, hogy egy lineáris rendszer tipikus válaszainak ismeretében messzemenő következtetéseket vonhatunk le a rendszer működésével kapcsolatban. A válaszidőfüggvények ún. rendszerjellemző függvények, azaz megfelelő rendszermodellben magát a rendszert reprezentálják. Az alábbiakban a két legfontosabb vizsgálójelhez, az egységugráshoz és az egységimpulzushoz tartozó válaszfüggvényt definiáljuk, nevezetesen az ugrásválaszt és az impulzusválaszt. Def. (Ugrásválasz): Egy rendszer egységugrás-bemenetre adott válaszát ugrásválasznak nevezzük, formálisan v(t) = W{ε(t)}. Az ugrásválasz szokásos jelölése a v(t), az ugrásválasz ismeretében a rendszer válasza tetszőleges gerjesztésre kiszámítható (Duhamel-tétel). Def. (Impulzusválasz): Egy rendszer egységimpulzus-bemenetre adott válaszát impulzusválasznak nevezzük, formálisan w(t) = W{δ(t)}. Az impulzusválasz szokásos jelölése a w(t), ismeretében a rendszer válasza tetszőleges gerjesztésre kiszámítható (konvolúció). Az ugrásválasz és az impulzusválasz definíciója diszkrét idejű rendszerek esetére teljesen analóg a fenti definíciókkal, ezért külön nem kell bevezetni. 38

39 4. fejezet. Lineáris rendszerek és tulajdonságaik Impulzus-dekompozíció, impulzusválasz alkalmazása Az impulzus-dekompozíció elvét először diszkrét idejű jelekre vezetjük be, majd az itt lefektetett koncepciókat fogjuk alkalmazni a folytonos idejű esetre. Impulzusnak az alábbi módon definiált jelet nevezzük: { k, ha n = 0 i[n] = (4.3.7) 0, különben, melynek speciális esete a 2. fejezetben tárgyalt δ[n] egységimpulzus, { 1, ha n = 0 δ[n] = (4.3.8) 0, különben. Minden impulzus felírható az egységimpulzus segítségével: i[n] = kδ[n] alakban, így tetszőleges diszkrét idejű x[n] jel is megadható impulzusok súlyozott összegeként az alábbi módon x[n] = i= x[i]δ[n i], (4.3.9) azaz tetszőleges jel felbontható impulzusok sorozatára oly módon, hogy az egyes időpillanatokhoz tartozó függvényértékeket eltolt, különböző értékű impulzusoknak tekintjük, így bármilyen összetett jelet impulzusok sorozataként tudunk kezelni. Ha egy lineáris és invariáns rendszer bemenőjelét ilyen módon impulzusokra bontjuk (impulzus-dekompozíció), akkor a kimenőjel az egyes impulzusokra adott válaszok (impulzusválaszok vagy súlyfüggvények) összegeként állítható elő (a szuperpozíció elve alapján) az alábbi módon y[n] = i= x[i]w[n i], (4.3.10) ahonnan látható, hogy az egységimpulzusra adott w[n] impulzusválasz ismeretében a rendszer y[n] válasza tetszőleges x[n] gerjesztésre kiszámítható. 39

40 4.4. Az átviteli karakterisztika A (4.3.10) formulát konvolúciónak nevezzük és a következő fejezetben részletesen tárgyaljuk tulajdonságait és alkalmazási lehetőségeit Az átviteli karakterisztika Az átviteli karakterisztika a rendszerjellemző függvények közé tartozik és a rendszer frekvenciatartománybeli viselkedését reprezentálja. A bevezetését először folytonos majd diszkrét idejű rendszerekre végezzük el, de elsőként a szinuszos jelek lineáris rendszeren való átvitelének jellegzetességeit fogjuk áttekinteni Szinuszos jelek, komplex csúcsérték Az s(t) = S cos(ωt+ρ) alakú szinuszos jel az Se j(ωt+ρ) komplex exponenciális jel valós része, azaz s(t) = S cos(ωt + ρ) = R{Se j(ωt+ρ) } = R{Se jωt e jρ }, (4.4.1) ahonnan az Se jρ az ún. komplex csúcsérték, jele S. A komplex csúcsérték bevezetésének jelentősége abban áll, hogy a komplex exponenciális jel (így a szinuszos jel is) a lineáris rendszernek sajátfüggvénye, 3 azaz egy y(t) = W{s(t)} gerjesztés válasz kapcsolattal jellemzett rendszerre és szinuszos S komplex csúcsértékű s(t) gerjesztésre Y = W (j ˆω)S, (4.4.2) ahol Y a válasz komplex csúcsértéke, és W (j ˆω) a gerjesztés ˆω körfrekvenciájától függő komplex konstans. Ha tehát a gerjesztés szinuszos, akkor a válasz is az, mégpedig ugyanazzal az ˆω körfrekvenciával, a rendszer átviteli tulajdonságait pedig a W (j ˆω) átviteli együttható jellemzi az ˆω körfrekvencián. 4 3 A sajátfüggvény (a sajátvektorral analóg) a rendszeren való átvitel során csak egy konstanssal szorzódik, akárcsak a sajátvektor a mátrix-vektor szorzás során (Ax = λx). 4 A (4.4.2) könnyen belátható, ha konvolúcióval meghatározzuk egy LI rendszer válaszát az s(t) = e j ˆωt gerjesztésre. 40

41 4. fejezet. Lineáris rendszerek és tulajdonságaik A komplex csúcsérték fontos tulajdonsága, hogyha az időfüggvények viszonya x 2 (t) = x 1 (t), akkor a komplex csúcsokra igaz, hogy X 2 = jωx 1, azaz az idő szerinti deriválás jω-val való szorzásként jelenik meg a komplex csúcsban Átviteli karakterisztika előállítása Ha a (4.4.2) összefüggésben szereplő W (j ˆω)-ot minden körfrekvenciához meghatározzuk (ω =... ), úgy a W (jω) komplex értékű függvényhez jutunk, amit átviteli karakterisztikának nevezünk. Az így definiált W (jω) a rendszer átviteli tulajdonságait jellemzi a teljes frekvenciatartományon. Az átviteli karakterisztika egyszerűen előállítható a lineáris rendszeregyenlet alapján 6 a deriválásra vonatkozó szabály alkalmazásával, így a (4.3.1) rendszeregyenletből komplex csúcsokra való áttérés után az alábbi alakot kapjuk (jω) n Y + n a i (jω) n i Y = i=1 ahonnan az Y és X kiemelése után a W (jω) = Y X = n b j (jω) n j X, (4.4.3) j=0 n j=0 b j(jω) n j (jω) n + n i=1 a i(jω) n i (4.4.4) átviteli karakterisztika általános alakját kapjuk, ami egy racionális törtfüggvény, számlálójában és nevezőjében (jω) polinomjával. 7 Az átviteli karakterisztikát oly módon is megkaphatjuk, ha a lineáris rendszer bemenetére x(t) = e jωt alakú jelet adunk, és meghatározzuk a válaszát a II./1. fejezetben tárgyalt konvolúció 8 segítségével (a konvolúció 5 Fel fogjuk használni még a x(t) = i Kisi(t) X = i KiSi tulajdonságot is. 6 Az átviteli karakterisztika nem csak a rendszeregyenletből határozható meg, előállítható az állapotváltozós leírás ill. az impulzusválasz ismeretében is. 7 A W (jω) független változója az ω körfrekvencia, de a (4.4.4) konstrukció miatt célszerű a (jω)-t argumentumnak tekinteni. 8 y(t) = w(τ)x(t τ)dτ 41

42 4.4. Az átviteli karakterisztika mint látni fogjuk a rendszer impulzusválaszának és gerjesztésének ismeretében alkalmas a válasz meghatározására) az alábbi módon ami átrendezés után az y(t) = w(τ)e jω(t τ) dτ, (4.4.5) y(t) = e jωt w(τ)e jωτ dτ = e jωt W (jω), (4.4.6) } {{ } W (jω) alakban írható, ahol a W (jω) az átviteli karakterisztika. A (4.4.6) összefüggésből látható, hogy a komplex exponenciális jel 9 a lineáris rendszer sajátfüggvénye, azaz a rendszeren való átvitel hatására egy konstanssal való szorzástól eltekintve változatlan marad. Az átvitel hatását reprezentáló szorzókonstans pedig éppen a W (jω) átviteli karakterisztikának az x(t) = e jωt gerjesztés körfrekvenciájához tartozó helyettesítési értéke. Diszkrét idejű rendszerek esetén az átviteli karakterisztika bevezetése a fentivel analóg módon történhet, most a konvolúció DI változatának alkalmazásával az alábbiak szerint. Legyen a DI lineáris rendszer bemenőjele az x[n] = e jϑn és határozzuk meg a rendszer válaszát konvolúció 10 segítségével az alábbi alakban y[n] = i= w[i]e jϑ(n i) = e jϑn i= w[i]e jϑi = e jϑn W (e jϑ ), (4.4.7) } {{ } W (e jϑ ) ahol a W (e jϑ ) az átviteli karakterisztika. Az FI változathoz hasonlóan itt is elmondható a (4.4.7) alapján, hogy az x[n] = e jϑn jel a DI lineáris rendszer sajátfüggvénye, hisz a rendszeren való átvitel hatására csak egy konstanssal fog skálázódni. 9 Így a szinuszos jel is. 10 y[n] = n i=0 w[i]x[n i] 42

43 4. fejezet. Lineáris rendszerek és tulajdonságaik Mivel az átviteli karakterisztika a rendszert frekvenciatartománybeli viselkedés szempontjából jellemzi, nagyon fontos szerepet játszik a jelfeldolgozásban, ahogy a későbbiekben a digitális szűrők tervezésekor látni fogjuk. 43

44 Az átviteli karakterisztika

45 Irodalomjegyzék [1] Rafael C. Gonzales and Richard E. Woods. Digital Image Processing. Prentice Hall, [2] Fodor György. Jelek és rendszerek. Műegyetemi Kiadó, [3] Simon Haykin and Barry Van Veen. Signals and Systems. John Wiley & Sons, Inc., [4] Szakonyi Lajos. Jelek és rendszerek i.-ii., Főiskolai jegyzet. [5] Richard G. Lyons. Understanding Digital Signal Processing. Prentice Hall, [6] Kuczmann Miklós. Jelek és rendszerek. Universitas-Győr, [7] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Systems. Pearson Education Inc., [8] Steven W. Smith. The Scientist and Engineer s Guide to Digital Signal Processing. California Technical Publishing, [9] Schiffer Ádám Sári Zoltán. Digitális kép- és hangfeldolgozás, Főiskolai jegyzet. 45

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Jelek és rendszerek - 1.előadás

Jelek és rendszerek - 1.előadás Jelek és rendszerek - 1.előadás Bevezetés, alapfogalmak Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Négypólusok tárgyalása Laplace transzformációval

Négypólusok tárgyalása Laplace transzformációval Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Jelek és rendszerek - 7.előadás

Jelek és rendszerek - 7.előadás Jelek és rendszerek - 7.előadás A Laplace-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Kuczmann Miklós. Jelek és rendszerek

Kuczmann Miklós. Jelek és rendszerek Kuczmann Miklós Jelek és rendszerek Készült a HEFOP 3.3.-P.-4-9-/. pályázat támogatásával Szerzők: Lektor: Kuczmann Miklós Keviczky László, akadémikus c Kuczmann Miklós, 6. TARTALOMJEGYZÉK 3 Tartalomjegyzék.

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Diszkrét idej rendszerek analízise az id tartományban

Diszkrét idej rendszerek analízise az id tartományban Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;

Részletesebben

Jelek és rendszerek - 1-2.előadás

Jelek és rendszerek - 1-2.előadás Jelek és rendszerek - 1-2.előadás Bevezetés, rendszeranaĺızis az időtartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Irányítástechnika II. előadásvázlat

Irányítástechnika II. előadásvázlat Irányítástechnika II. előadásvázlat Dr. Bokor József egyetemi tanár, az MTA rendes tagja BME Közlekedés- és Járműirányítási Tanszék 2018 1 Tartalom Irányítástechnika II. féléves tárgytematika Az irányításelmélet

Részletesebben

Dr. Kuczmann Miklós. Ez a példatár a tervezett példatár nulladik verziója. További

Dr. Kuczmann Miklós. Ez a példatár a tervezett példatár nulladik verziója. További Dr. Kuczmann Miklós Példatár a Jelek és rendszerek című tárgyhoz 0. verzió Csak a könyvből kimaradt példák... Ez a példatár a tervezett példatár nulladik verziója. További példákat és megoldásokat az előadásokon

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 3. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük: . Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

Reichardt András okt. 13 nov. 8.

Reichardt András okt. 13 nov. 8. Példák és feladatok a Hálózatok és rendszerek analízise 2. tárgyhoz Reichardt András 2003. okt. 3 nov. 8. . fejezet Komplex frekvenciatartománybeli analízis Az alábbiakban a komplex frekvenciatartományban

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben