Irányítástechnika 2. előadás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Irányítástechnika 2. előadás"

Átírás

1 Irányítástechnika 2. előadás Dr. Kovács Levente

2 Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok leírása Alaptagok kapcsolása

3 Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok leírása Alaptagok kapcsolása

4 Tipikus vizsgálójelek és azok információtartalma Lineáris idő-invariáns rendszer felírása Tipikus bemenőjelek Kapcsolat a súlyfüggvény és az átmeneti függvény között Amplitúdó fázis függvény Nyquist diagram Különböző vizsgálójelek információtartalma

5 Lineáris idő-invariáns rendszer felírása Bármely lineáris idő-invariáns rendszer felírható a következő n-edrendű differenciálegyenlettel: m m m n n n n n n dt t x d B t x B t y A dt t dy A dt t y d A dt t y d A ) ( ) ( ) ( ) ( ) ( ) (

6 Tipikus bemenőjelek Dirac - impulzus x( t) ( t) Ha a bemenőjel dirac-impulzus, akkor a kimenőjel súlyfüggvény. y( t) w( t)

7 Tipikus bemenőjelek Egységugrás x( t) 1( t) Ha a bemenőjel egységugrás, akkor a kimenőjel átmeneti függvény. y( t) v( t)

8 Tipikus bemenőjelek Egység sebességugrás

9 Tipikus bemenőjelek Egység gyorsulásugrás

10 Tipikus bemenőjelek Szinuszos gerjesztő függvény

11 Tipikus bemenőjelek Véletlenszerű gerjesztés

12 Kapcsolat a súlyfüggvény és az átmeneti függvény között t dv dt t w v t w t t 0 dt

13 Amplitúdó fázis függvény n n m m A jw jwa A B jw jwb B jw X jw Y jw W ) ( ) ( n n m m A s sa A B s sb B s X s Y s W ) ( ) ( n m

14 Nyquist diagram

15 Különböző vizsgálójelek információtartalma Tetszés szerinti T periódusidejű periodikus függvénynek van Fourier-sora. Teljesen hasonlóan a nem periodikus függvényekre is felbontás írható. A legtöbb információt a rendszer súlyfüggvénye szolgáltatja.

16 Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok leírása Alaptagok kapcsolása

17 Laplace transzformáció, állapotegyenlet, átviteli függvény Modellek osztályozása Laplace transzformáció. Állapotegyenlet Átviteli függvény, megvalósíthatóság, pólusok, zérusok Lineáris rendszerek vs. nemlineáris rendszerek Linearizálás

18 Modellek osztályozása Bemenet-kimenet alapú matematikai modell Állapotteres leírás dx( t) Ax( t) Bu( t) dt y ( t) Cx( t) Du( t) Ha: j számú u bemenő jel k számú y kimenő jel x állapotváltozók száma n Akkor: A állapot mátrix (nn) B bemeneti mátrix (nj) C kimeneti mátrix (kn) D együttható mátrix (kj)

19 Laplace transzformáció Célja: differenciál egyenlet algebrai egyenletté való átalakítása (s operátor tartomány) ahol Fontos tulajdonság:

20 Állapotegyenlet

21 Átviteli függvény, megvalósíthatóság Állapotteres leírás Bemenet-kimenet alapú m < n : fizikailag megvalósítható (D = 0) m = n : fizikai megvalósítható határán van (D 0) m > n : fizikailag nem megvalósítható

22 Lineáris rendszerek vs. nemlineáris rendszerek A jelátvivő tagok matematikai modellje szerint: Lineáris szabályozás Ha a szabályozási kör minden tagjára érvényes a szuperpozíció elve Nemlineáris szabályozás Ha a szuperpozíció elve a szabályozási kör legalább egy tagjára nem érvényes emlineáris rendszerek állapotteres leírása f(x,u,t): az állapotváltozók függését leíró függvény Általánosságban nemlineáris függvény h(x,u,t): az kimenetek függését leíró függvény Általánosságban nemlineáris függvény

23 Lineáris rendszerek vs. nemlineáris rendszerek Példa nemlineáris rendszerre: víztartály Q 1 : a beömlő vízmennyiség [m 3 /s] Q 2 : a kiömlő vízmennyiség [m 3 /s] h: a vízoszlop magassága [m] A: a tartály keresztmetszete [m 2 ] a: a kiömlő nyílás keresztmetszete [m 2 ] v: a kiömlő víz sebessége m: a folyadékra és a kiömlő nyílásra jellemző állandó h Q 1 A a Q 2 A tartályból kiömlő vízmennyiség függ a víz sebességétől és a kiömlő nyílás keresztmetszetétől A kiömlő víz sebessége függ a tartályban lévő folyadék magasságától A tartályban lévő víz térfogatváltozása egyenlő a beömlő és kiömlő vízmennyiség különbségével

24 Lineáris rendszerek vs. nemlineáris rendszerek Példa nemlineáris rendszerre: víztartály Q 1 h A Feladat: Q 1 (t) =? a Q 2 Bemenő jel (irányító jel): Q 1 beömlő vízmennyiség Belső változó (állapotváltozó): h vízszint Egyben kimeneti jel is Az irányítás célja: állandó h vízszint Szintmérővel mérjük Zavaró jel a változó vízfogyasztás Egy csappal változtathatjuk a értékét

25 Lineáris rendszerek vs. nemlineáris rendszerek Példa nemlineáris rendszerre: víztartály Q 1 h A a Q 2

26 Linearizálás Taylor-sorba fejtés víztartály példa: Ha P munkapont környezetében munkaponti linearizálás Ekkor:

27 Összefoglalás Rendszeranalízis alapvető feladatai Fizikai / modellezni kívánt folyamat megismerése Bemenetek, kimenetek, állapotok szeparálása Lineáris vs. Nemlin. Rendszer Blokkdiagram alkotása Nyílt rendszer Zárt rendszer Átviteli függvény felírása

28 Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok leírása Alaptagok kapcsolása

29 zavarás d Ref. r hiba e Szabályozó beavatkozó / irányító jel u Folyamat kimenet y Feedback jel / visszacsatolás Érzékelő

30 Alapvető szabályozási követelmények Klasszikus szabályozások: stabilitás & minőség bizonytalanságok Jó jelkövetés zavarelhárítás u irányító jel szándékolt módosítása

31 Tagok leírásának lehetőségei U(s) Y(s) u(t): bemenet időfüggvénye y(t): kimenet időfüggvénye U(s): bemenet Laplace-transzformáltja Y(s): kimenet Laplace-transzformáltja Átviteli függvény Állapotteres leírás Zérus-Pólus-Erősítés

32 Átviteli függvény (transfer function) a számláló gyökei: a tag zérusai a nevező gyökei: a tag pólusai Az átviteli függvény az lineáris differenciálegyenlet Laplace-transzformáltja, ha a kezdeti feltételek nullák:

33 Állapotteres leírás (state-space) Egy tagot állapotegyenletével is jellemezhetünk Kezdeti állapot: az állapotteres leírás gazdagabb, mint az átviteli függvénnyel történő leírás (nem irányítható és nem megfigyelhető alrendszereket is tartalmazza) Az állapotegyenlet Lapalace-transzformáltja: Karakterisztikus polinom ( s) det( si A)

34 Zérus-Pólus-Erősítés (Zero- Pole-Gain) Az átviteli függvényt gyöktényezős alakra hozva: a gyökök valós számok vagy komplex konjugált párok lehetnek

35 Tagok leírása MATLAB-ban A Matlab Control Systems Toolbox segítségével a lineáris tagok mindhárom alakban vizsgálhatóak. átviteli függvény: transfer function (tf), állapotegyenlet: state-space (ss), gyöktényezs alak: zero-pole-gain (zpk) ss2tf(), tf2ss(), ss2zp(), zp2ss(), zp2tf(), tf2zp() áttérések conv() polinom szorzás

36 Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok leírása Alaptagok kapcsolása

37 Soros kapcsolás sys = series(sys1,sys2) A parancs a tagok szorzását jelenti: sys = sys2 * sys1

38 Párhuzamos kapcsolás sys = parallel(sys1,sys2) A parancs a tagok összeadását jelenti: sys = sys1 + sys2

39 Visszacsatolás Előre vezető ág / (1 plusz hurokerősítés) sys = feedback(sys1,sys2) A default feedback negatív visszacsatolást jelent. Pozitív visszacsatolás: sys = feedback(sys1,sys2,+1)

40 Példa r e 10 s 1 2 u 1 u 1 y s s 3 5 z 4 Mennyi az eredő átviteli függvény?

41 Példa W 2 (s) W 10 1 (s) W 4 (s) s 1 r e 2 u 1 u 1 y s W 3 (s) s 3 5 z W 5 (s) 4

42 Példa W 2 (s) W 10 1 (s) W 4 (s) s 1 r e 2 u 1 u 1 y s W 3 (s) s 3 5 W 5 (s) z 4 Párhuzamos kapcsolás W 23 ( s) W2 ( s) W3 ( s) 10 5 s 1 5 ( s 3) s 1 mo2=10; no2=[1 1]; mo3=5; no3=1; [p1,p2]=parallel(mo2,no2,mo3,no3);

43 Példa W 2 (s) W 10 1 (s) W 4 (s) s 1 r e 2 u 1 u 1 y s W 3 23 (s) (s) s 3 5 z W 5 (s) 4 Soros kapcsolás W 123 ( s) W1 ( s) W23 ( s) 2 5 ( s 3) s s 1 10 ( s 3) s ( s 1) mo1=2; no1=[1 0]; [s1,s2]=series(p1,p2,mo1,no1);

44 Példa W 2 (s) W 10 1 (s) W 4 (s) s 1 r e 2 u 1 u 1 y W s 123 (s) W 3 (s) s 3 5 z W 5 (s) 4 Soros kapcsolás W ( s) W123( s) W4 10 s ( s 1) 10( s 3) 1 ( s) s ( s 1) s mo4=1; no4=[1 3]; [s3,s4]=series(s1,s2,mo4,no4);

45 Példa W 10 1 (s) W 4 (s) s 1 r e 2 u 1 u 1 y s W 3 (s) W 1234 (s) s 3 5 z W 5 (s) 4 Negatív visszacsatolás W W ( s) 1W ( s) 10 s ( s 1) ( s) s ( s 1) ( s) W5 s 2 10 s 40 mo5=4; no5=1; [m,n]=feedback(s3,s4,mo5,no5)

46 Példa r e 10 s 1 2 u 1 u 1 y s s 3 5 z 4 W ( s) s 3 s 2 4s 10 s 40 10s s 120 Eredmény: m = n =

47 Köszönöm a figyelmet!

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Számítógépes gyakorlat Irányítási rendszerek szintézise

Számítógépes gyakorlat Irányítási rendszerek szintézise Számítógépes gyakorlat Irányítási rendszerek szintézise Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Szabályozás Irányítástechnika PE MIK MI BSc 1

Szabályozás Irányítástechnika PE MIK MI BSc 1 Szabályozás 2008.03.29. Irányítástechnika PE MIK MI BSc 1 Nyílt hatásláncú rendszerek Az irányító rendszer nem ellenőrzi a beavatkozás eredményét vezérlő rendszerek ahol w(s) bemenő változó / előírt érték

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Irányítástechnika. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Bevezető A tárgy célja Irányítástechnikai alapfogalmak alapismeretek módszerek megismertetése Irányítási rendszerek működésének megértéséhez,

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

3. témakör. Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása

3. témakör. Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása 3. témakör Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása Bevezetés Célunk a rendszer kimenő jelének meghatározása a bemenő jel és a rendszerjellemző függvény ismeretében. A rendszereket

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

Irányítástechnika 4. előadás

Irányítástechnika 4. előadás Iránítátechnika 4. előadá Dr. Kovác Levente 3. 4. 3. 3.5.. artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi

Részletesebben

Irányítástechnika Elıadás. Zárt szabályozási körök stabilitása

Irányítástechnika Elıadás. Zárt szabályozási körök stabilitása Irányítástechnika 2 7. Elıadás Zárt szabályozási körök stabilitása Irodalom - Csáki Frigyes, Bars Ruth: Automatika.1974 - Mórocz István: Irányítástechnika I. Analóg szabályozástechnika. 1996 - Benjamin

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Nemlineáris rendszerek

Nemlineáris rendszerek Nemlineáris rendszerek 2013. 09. 28. Irányítástechnika II. - VI BSc 1 Lineáris nemlineáris rendszerek Lineáris, időinvariáns, folytonos idejű bemenet/kimenet (I/O) modell: a y n n1 1 m a ahol u a bemenő

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

IRÁNYÍTÁSTECHNIKA II.

IRÁNYÍTÁSTECHNIKA II. IRÁNYÍTÁSTECHNIKA II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Alaptagok Nyquist és Bode diagramjai

Alaptagok Nyquist és Bode diagramjai Alaptagok Nyquist és Bode diagramjai Luspay Tamás, Bauer Péter BME Közlekedésautomatikai Tanszék 212. január 1. 1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Alaptagok Nyquist- és Bode-diagramjai

Alaptagok Nyquist- és Bode-diagramjai C Alaptagok Nyquist- és Bode-diagramjai C.1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik módja az átviteli függvények segítségével történik. Az átviteli függvényeket

Részletesebben

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Gerzson Miklós 2015. december 8. 2 Tartalomjegyzék Bevezetés 5 1. Kötelező kérdések 7 1.1. Kötelező kérdések a Kalman-féle

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

PILÓTA NÉLKÜLI REPÜLŐGÉP NEMIRÁNYÍTOTT OLDALIRÁNYÚ MOZGÁSÁNAK VIZSGÁLATA A ROBOTPILÓTÁK IRÁNYÍTÁSTECHNIKAI MINŐSÉGI KÖVETELMÉNYEI

PILÓTA NÉLKÜLI REPÜLŐGÉP NEMIRÁNYÍTOTT OLDALIRÁNYÚ MOZGÁSÁNAK VIZSGÁLATA A ROBOTPILÓTÁK IRÁNYÍTÁSTECHNIKAI MINŐSÉGI KÖVETELMÉNYEI Dr. Szegedi Péter PILÓTA NÉLKÜLI REPÜLŐGÉP NEMIRÁNYÍTOTT OLDALIRÁNYÚ MOZGÁSÁNAK VIZSGÁLATA A cikkben a Szojka-III pilóta nélküli repülőgép repülésmechanikai matematikai modelljei vizsgálatainak eredményeit

Részletesebben

DINAMIKUS RENDSZEREK OKTATÁSA VRML SEGÍTSÉGÉVEL. Juhász Ferencné - Juhász Ferenc Gábor Dénes Főiskola. Összefoglaló. Abstract

DINAMIKUS RENDSZEREK OKTATÁSA VRML SEGÍTSÉGÉVEL. Juhász Ferencné - Juhász Ferenc Gábor Dénes Főiskola. Összefoglaló. Abstract DINAMIKUS RENDSZEREK OKTATÁSA VRML SEGÍTSÉGÉVEL TEACHING OF DYNAMICAL SYSTEMS BY MEANS OF VRML Juhász Ferencné - Juhász Ferenc Gábor Dénes Főiskola Összefoglaló Az irányításelmélet tanításához, a rendszerelemzés

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Jelek és Rendszerek 2. Kidolgozott Témakörök

Jelek és Rendszerek 2. Kidolgozott Témakörök Gábor Norbert és Kondor Máté András 2012 január Előszó, figyelmeztetés, jogi nyilatkozat, stb. 1. Ez nem hivatalos jegyzet! Nem oktatók írták! Hibák előfordulahatnak! 2. Ez nem a hivatalos tananyag, vagy

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Irányítástechnika labor Elméleti összefoglaló

Irányítástechnika labor Elméleti összefoglaló Irányítástechnika labor Elméleti összefoglaló Irányítástechnikai lapfogalmak Az irányítás egy folyamatba történő beavatkozás adott cél megvalósítása érdekében. A folyamat változása külső, belső hatások

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november

Részletesebben

Ideális műveleti erősítő

Ideális műveleti erősítő Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri

Részletesebben

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel 1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel eltolt Dirac impulzusokból áll. Adja meg a hordozó jel I (s) T Laplace-transzformáltját és annak

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

PILÓTANÉLKÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNEK ELŐZETES MÉRETEZÉSE. Bevezetés. 1. Időtartománybeli szabályozótervezési módszerek

PILÓTANÉLKÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNEK ELŐZETES MÉRETEZÉSE. Bevezetés. 1. Időtartománybeli szabályozótervezési módszerek Szabolcsi Róbert Szegedi Péter PILÓTANÉLÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNE ELŐZETES MÉRETEZÉSE Bevezetés A cikkben a Szojka III pilótanélküli repülőgép [8] szakirodalomban rendelkezésre álló matematikai

Részletesebben

FIR és IIR szűrők tervezése digitális jelfeldolgozás területén

FIR és IIR szűrők tervezése digitális jelfeldolgozás területén Dr. Szabó Anita FIR és IIR szűrők tervezése digitális jelfeldolgozás területén A Szabadkai Műszaki Szakfőiskola oktatójaként kutatásaimat a digitális jelfeldolgozás területén folytatom, ezen belül a fő

Részletesebben

A 2009-es vizsgákon szereplő elméleti kérdések

A 2009-es vizsgákon szereplő elméleti kérdések Kivezérelhetőség és teljesítményfokozatok: A 2009-es vizsgákon szereplő elméleti kérdések 1. Ismertesse a B osztályú teljesítményfokozat tulajdonságait (P fmax, P Tmax, P Dmax(1 tr), η Tmax )! (szinuszos

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

EEG készülékek alacsonyfrekvenciás átvitelének vizsgálatára alkalmas mérőkészülék előállítása. Szepes Gábor műszaki informatikai szak 2012

EEG készülékek alacsonyfrekvenciás átvitelének vizsgálatára alkalmas mérőkészülék előállítása. Szepes Gábor műszaki informatikai szak 2012 Pázmány Péter Katolikus Egyetem Információs Technológiai Kar EEG készülékek alacsonyfrekvenciás átvitelének vizsgálatára alkalmas mérőkészülék előállítása Szepes Gábor műszaki informatikai szak 2012 Témavezetők:

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14 Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Szabályozástechnika II.

Szabályozástechnika II. TÁMOP-4.1.1.F-14/1/KONV-215-9 A GÉPÉSZETI ÉS INFORMATIKAI ÁGAZATOK DUÁLIS ÉS MODULÁRIS KÉPZÉSEINEK KIALAKÍTÁSA A PÉCSI TUDOMÁNYEGYETEMEN Jancskárné Anweiler Ildikó Szabályozástechnika II. Pécs 215 A tananyag

Részletesebben

Diagnosztika Petri háló modellek felhasználásával

Diagnosztika Petri háló modellek felhasználásával Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Programozható vezérlő rendszerek. Szabályozástechnika

Programozható vezérlő rendszerek. Szabályozástechnika - a legtöbb ipari rendszer tartalmaz valamiféle szabályozási feladatot (pozicionálás) - cél: a folyamat egyes paramétereinek megadott határokon belül tartása - a PLC ezeket képes lekezelni (analóg I/O)

Részletesebben

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1 Az irányítástechnika alapfogalmai 2008.02.15. 1 Irányítás fogalma irányítástechnika: önműködő irányítás törvényeivel és gyakorlati megvalósításával foglakozó műszaki tudomány irányítás: olyan művelet,

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben