DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1"

Átírás

1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

2 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n 1 dt a v t =b u t b du dt b d u m dt m MEGOLDÁS: homogén általános + inhomogén partikuláris magára hagyott rendszer gerjesztett rendszer Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 2

3 Harmonikus jelek u(t) harmonikus Y(jω ) v(t) harmonikus u harmonikus t =U 0 e j ω t v harmonikus t =V 0 ω e j ω t ϕ ω v harmonikus t =Y jω u harmonikus t Y jω = v t harmonikus u harmonikus t = b b jω b 0 1 m jω m a 0 a 1 jω a n jω n Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 3

4 u(t) Harmonikus válasz meghatározása diff. egyenlet v(t) u(t) harmonikus Y(jω ) v(t) harmonikus a n d n v m dt a dv n 1 dt a v t =b u t b du dt b d u m dt m Y jω = v t harmonikus u harmonikus t = b b jω b 0 1 m v harmonikus t =Y jω u harmonikus t jω m a 0 a 1 jω a n jω n Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 4

5 u(t) diff. egyenlet Megoldási lehetőségek v(t) differenciál-egyenlet u(t) harmonikus időtartománybeli megoldás Y(jω ) v(t) harmonikus TRANSZFORMÁCIÓ időtartomány INVERZ TRANSZFORMÁCIÓ operátoros tartomány algebrai egyenlet operátoros tartománybeli megoldás U(s) Y(s) V(s) Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 5

6 Ismeretelméleti alapok harmonikus analízis periodikus jelek leképezése harmonikus jelekkel: Fourier-sor periódusidő kiterjesztése: Fouriertranszformáció alkalmazás korlátai Laplace-transzformáció alapgondolata Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 6

7 Periodikus jelek periodikus jel közelítése: harmonikus komponensek összege (Fourier-sorba fejtés) Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 7

8 Fourier-sor f t =A 0 A k cos kω t B sin kω t 0 k 0 ω 0 = 2 π k=1 T T 2 A 0 = 1 T T 2 f t dt f t =A 0 k=1 T 2 A k = 2 T T 2 f t cos kω 0 t dt T 2 B k = 2 T T 2 C k sin ϕ k cos kω 0 t cosϕ k sin kω 0 t f t sin kω 0 t dt k=1,2,3, f t =A 0 k=1 C k sin kω 0 t ϕ k C k = A k 2 B k 2 ϕ k =arctg A k B k Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 8

9 A Fourier-sor komplex alakja f t = k= C k e j kω 0 t ϕ k T 2 C k = 1 T f t e j k ω 0 t dt T 2 C k az f(t) függvény vonalas frekvenciaspektruma Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 9

10 T periódus =150 T periódus = Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 10

11 Fourier-transzformáció periodikus függvényből nem periodikus függvény T periódus határátmenettel képezhető T periódus ω 0 0 a vonalas spektrum folytonossá válik F { f t }=F jω = f t e j ω t dt F 1 {F jω }= f t = 1 2 π F jω e j ω t dω Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 11

12 F { f t }=F jω = Az alkalmazás korlátai F 1 {F jω }= f t = 1 2 π f t e j ω t dt F jω e j ω t dω Fourier transzformáció inverz Fourier transzformáció f(t)-nek ki kell elégítenie a Dirichlet-feltételeket és abszolút integrálhatónak kell lennie f t dt K Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 12

13 1(t) transzformáltja e - σ t 1 1 (σ > 0) t 1 t dt=? NEM ABSZOLÚT INTEGRÁLHATÓ!!! ABSZOLÚT INTEGRÁLHATÓVÁ ALAKÍTÁS 0 < t t 1 t e σ t dt K Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 13

14 Laplace transzformáció féloldalas súlyozott Fourier transzformáció 0 f t e j ω t e σ t dt F s = 0 f t e j ω t e σ t dt= 0 f t e s t dt=l { f t } s=σ jω Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 14

15 Mintapélda 1. 1 t F s = 0 1 t e dt=[ s t e s t =0 1 s ]0 s =1 s Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 15

16 Mintapélda 2. e -at t>0 1 t F s = 0 e a t e s t dt=[ e a s t a s ]0 1 =0 a s = 1 s a Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 16

17 Néhány függvény Laplace-transzformáltja Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 17

18 Laplace-transzformációs szabályok 1. Laplace transzformált jelölése: L { f t }=F s Lineáris kombináció: L{ c 1 f 1 t c 2 f 2 t } =c 1 F 1 s c 2 F 2 s Eltolás: L { f t T }= 0 f t T e ts dt= 0 f τ e τ T s dτ= e st F s τ=t T Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 18

19 Laplace-transzformációs szabályok 2. Differenciálás: L{ df } dt = df 0 dt e s t dt=[ f t e s t ] 0 L{ d n f dt n } Integrálás: 0 u ' vdt=[uv ] 0 0 u v ' dt s 0 f t e s t dt=sf s f 0 =sn F s s n 1 f 0 s n 2 f ' 0 f n 1 0 L{ 0 t f τ dτ}= F s s Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 19

20 Laplace-transzformációs szabályok 3. Hasonlósági tétel: L { f a t }= 1 a F s a Konvolúció: L 1 { F 1 s F 2 s } = f 1 t f 2 t Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 20

21 Kezdeti- és végértéktétel lim t 0 f t =lim s F s s lim t f t =lim s 0 s F s Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 21

22 A Laplace-transzformáció alkalmazásai differenciálegyenlet megoldása átviteli függvény definíciója s-operátor értelmezése Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 22

23 Az átviteli függvény származtatása u(t) diff. egyenlet v(t) a n d n v dt n a 1 dv dt a 0 v t =b 0 u t b 1 du dt b m d m u dt m A differenciálegyenlet zérus kezdeti feltételek melletti Laplacetranszformálásával: V s a n s n a 1 s a 0 =U s b m s m b 1 s b 0 Y s = L {v t } L {u t } = V s U s = b s m b m 1 s b 0 a n s n a 1 s a 0 U(s) Y(s) V(s) V s =Y s U s Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 23

24 Az átviteli függvény alkalmazása dv dt v t =3 u t 10 s V s V s =3 U s v 0 =0 V s 10 s 1 =3 U s Y s = V s U s = 3 10 s 1 Feladat: v(t) meghatározása különböző u(t) gerjesztések esetén Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 24

25 Az átviteli függvény alkalmazása 2. u t =1 t U s = 1 s Y s = V s U s = 3 10 s 1 V s = 3 10 s 1 1 s = a 1 10 s 1 a 2 s = a s a 10 s = a 10 a 1 2 s a 2 s 10 s 1 s 10 s 1 a 2 =3 a =0 a 1 = 30 V s = s 1 3 s = 3 1 s s e a t =L 1 { 1 s a} 1 t =L 1 { 1 s} v t =L 1 {V s }= 3 e 0. 1 t 3=3 1 e t Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 25

26 Az átviteli függvény alkalmazása 3. u t =δ t U s =1 Y s = V s U s = 3 10 s 1 V s = 3 10 s 1 1=0.3 1 s 0.1 e a t =L 1 { 1 s a} v t =L 1 {V s }=0.3 e 0. 1 t t 10 =0.3 e Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 26

27 Kifejtési tétel F s = b m sm b 1 s b 0 a n s n a 1 s a 0 = b s m b m 1 s b 0 s s 1 s s 2 s s n s i egyszeres gyök! n F s = i=1 A i s s i A i =lim s s i F s s s i Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 27

28 Y(s) és Y(j ) kapcsolata Y s = L {v t } L {u t } = V s U s = b b s b s m 0 1 m a 0 a 1 s a n s n s= jω helyettesítéssel Y jω = v t harmonikus u harmonikus t = b b jω b 0 1 m jω m a 0 a 1 jω a n jω n Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 28

29 Súlyfüggvény információtartalma u(τ ) u(t) t v t = 0 u τ w t τ dτ dτ τ w(τ ) t w(t-τ ) τ Y s = L {v t } L {u t } = L {w t } L {δ t } =W s 1 δ (t) U(s)=1 diff. egyenlet Y(s) w(t) V(s)=W(s) Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 29

30 Átviteli függvények alkalmazása V 1 (s) U(s) V 1 (s)=u 2 (s) V(s) U(s) Y 1 (s) + V(s) Y 1 (s) Y 2 (s) Y 2 (s) V 2 (s) + Y soros s =Y 1 s Y 2 s Y párhuzamos s =Y 1 s Y 2 s U(s) + - U 1 (s) V 2 (s) Y 1 (s) Y 2 (s) V(s) U 1 s =U s V 2 s =U s V s Y 2 s V s =U 1 s Y 1 s = U s V s Y 2 s Y 1 s V s 1 Y 1 s Y 2 s =U s Y 1 s Y 1 s Y negatív s = visszacsatolás 1 Y 1 s Y 2 s Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 30

31 Összetett rendszerek ábrázolása b Y 3 d a b Y 1 c e hatásvázlat f Y 2 e d Y 3 1 jelfolyamábra 1 Y 1 a b c 1 e -1 f Y Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 31

32 Hatásvázlatok egyszerűsítése Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 32

33 Hatásvázlatok egyszerűsítése - példa 1. azonos átalakítás = változatlan jeltartalom Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 33

34 Hatásvázlatok egyszerűsítése - példa Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 34

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Jelek és rendszerek - 7.előadás

Jelek és rendszerek - 7.előadás Jelek és rendszerek - 7.előadás A Laplace-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Jelek és rendszerek - 12.előadás

Jelek és rendszerek - 12.előadás Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Irányítástechnika Elıadás. Zárt szabályozási körök stabilitása

Irányítástechnika Elıadás. Zárt szabályozási körök stabilitása Irányítástechnika 2 7. Elıadás Zárt szabályozási körök stabilitása Irodalom - Csáki Frigyes, Bars Ruth: Automatika.1974 - Mórocz István: Irányítástechnika I. Analóg szabályozástechnika. 1996 - Benjamin

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.

Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény. 8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az

Részletesebben

Az ideális határesetek, mint például tömegpont, tökéletesen merev testek pillanatszerű

Az ideális határesetek, mint például tömegpont, tökéletesen merev testek pillanatszerű Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika 1 jegyzetéből 1 1. fejezet Matematikai bevezető 1.1. Dirac-delta Az ideális határesetek, mint például tömegpont, tökéletesen merev testek

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése

Részletesebben

Fourier transzformáció

Fourier transzformáció Fourier transzformáció A szeizmikus hullámok tanulmányozása során igen nagy jelentősége van a hullámok frekvencia tartalmának. Ezt használjuk a hullámok alakjának mintavételezésekor, lineáris szűrések

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2014. május 8. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Az előadásokon ténylegesen elhangzottak rövid leírása

Az előadásokon ténylegesen elhangzottak rövid leírása TTK, Matematikus alapszak, Differenciálegyenletek (előadás, gyakorlat) Előadás BMETE93AM03; Gyakorlat BME TE93AM04. Követelmény: Előadás 4/0/0/v/4; Gyakorlat 0/020/f/2 Tananyag (általános megjegyzések).

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

3. témakör. Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása

3. témakör. Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása 3. témakör Rendszerek idő, frekvencia-, és komplex frekvenciatartományi leírása Bevezetés Célunk a rendszer kimenő jelének meghatározása a bemenő jel és a rendszerjellemző függvény ismeretében. A rendszereket

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011 8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon

Részletesebben

Számítógépes gyakorlat Irányítási rendszerek szintézise

Számítógépes gyakorlat Irányítási rendszerek szintézise Számítógépes gyakorlat Irányítási rendszerek szintézise Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Alaptagok Nyquist és Bode diagramjai

Alaptagok Nyquist és Bode diagramjai Alaptagok Nyquist és Bode diagramjai Luspay Tamás, Bauer Péter BME Közlekedésautomatikai Tanszék 212. január 1. 1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

jelfeldolgozásba II.

jelfeldolgozásba II. TÁMOP-4.1.1.F-14/1/KONV-215-9 A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi Tudományegyetemen Bevezetés a számítógépes jelfeldolgozásba II. Sári Zoltán Pécs 215

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben