Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás"

Átírás

1 SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

2 Gyakorlat SZDT-01 p. 2/23

3 Kísérlet, esemény, valószínűség SZDT-01 p. 3/23

4 SZDT-01 p. 4/23 Fogalmak Kísérlet: minden olyan tevékenység, amit valamilyen cél érdekében hajtunk végre és amely azonos körülmények mellett tetszőlegesen sokszor megismételhető, de az ismétlésekben az eredmény más lehet pl. otthoni vérnyomás-ellenőrzés reggelente és este Kísérlet: jelenségek megfigyelése pl. megfigyeljük az 50 éven felüli dohányzók körében egy adott időszak alatt a tüdőrákos megbetegedések számát Elemi esemény: egy kísérlet lehetséges kimenetelei pl. a mért vérnyomásérték normális vagy magas Ha két esemény, A és B olyan kapcsolatban van egymással, hogy A csak akkor következhet be, ha B is bekövetkezik, akkor az A esemény maga után vonja a B eseményt: A B pl. a HIV-fertőzés (A esemény) maga után vonja az AIDS-betegség (B esemény) kifejlődését Eseménytér: egy kísérlet összes elemi eseményének halmaza: Ω lehetetlen esemény: O biztos esemény: I ellentett (komplementer) esemény: A

5 SZDT-01 p. 5/23 Eseményalgebra Összeadás: A=egy baleset során az egyik kéz elvesztése, B=az egyik láb elvesztése, C=munkaképesség csökkenése A + B = C (C akkor következik be, ha A vagy B bekövetkezik) Kivonás: A esemény teljesül, de B nem: A B = F = AB Szorzás: A és B események szorzata az az esemény, amely csak akkor következik be, ha A és B is bekövetkezik: C = AB Összetett esemény: A esemény öszetett vagy felbontható, ha legalább két különböző esemény összegeként egyértelműen előállítható: D = A + B + C Teljes eseményrendszer: A 1,...A n teljes eseményrendszert képeznek, ha igazak az alábbi feltételek: A 1 + A A n = I A i A j =, ha i j i = 1,...,n és j = 1,...,n

6 SZDT-01 p. 6/23 A valószínűség fogalma 1. 0 P(A) 1 2. P(0) = 0 lehetetlen esemény 3. P(I) = 1 biztos esemény 4. Ha az A és B események, akkor az A és B eseményekre igaz: P(A + B) = P(A) + P(B) 5. Ha az A 1,A 2,...,A n események páronként kizárják egymást, akkor igaz. P(A 1 + A A n ) = P(A 1 ) + P(A 2 ) P(A n ) Feltételes valószínűség: A és B két esemény és P(B) 0: P(A B) = P(AB) P(B)

7 SZDT-01 p. 7/23 Feladatokhoz: Megfigyelési eredmények nemek szerinti bontásban tüdőrákra vonatkozóan Nem alakult ki Kialakult Összes Férfi Nő Összes

8 SZDT-01 p. 8/23 Feladatokhoz: Megfigyelési eredmények dohányzási szokás szerint tüdőrákra vonatkozóan Dohányzási szokás Nem alakult ki Kialakult Összes Nem Mérsékelt Erős Összes

9 SZDT-01 p. 9/23 A teljes valószínűség tétele Ha a B 1,B 2,...,B n események teljes eseményrendszert alkotnak és P(B i ) 0, akkor tetszőleges A esemény valószínűségére igaz: P(A) = n i=1 P(A B i) P(B i ) az A esemény valószínűsége a B i események feltétele mellett meghatározható. Feladat: Egy gyógyszertári aszisztens megfigyelte, hogy a leszállított lázmérők között hibásak is vannak. Megfigyelése szerint egy csomagban 0-tól 3-ig fordul elő sérült lázmérő. Véletlenül kiválasztva egy csomagot a 25 lázmérőből kivesz 3 darabot. Mi a valószínűsége annak, hogy a kiválasztott lázmérők nem sérültek?

10 SZDT-01 p. 10/23 Bayes-tétel Ha a B 1,B 2,...,B n események teljes eseményrendszert alkotnak és P(B i ) 0 és egy tetszőleges A eseményre P(A) 0, akkor a B i eseményekre igaz: P(B i A) = P(A B i ) P(B i ) n k=1 P(A B k) P(B k ) a B i események valószínűsége az A esemény bekövetkezése esetén mint feltétel mellett a formula segítségével meghatározható. Feladat: Egy nehéz fémeket feldolgozó ipari környezetben a férfiak és nők száma azonos. Egy tüdőgyógyász szerint 100 férfi közül 15 és minden 100 nő közül 7 légzési panaszokkal kűzd. Mi a valószínűsége annak, hogy közülük kiválasztva egy személyt nő lesz?

11 Valószínűségi változó,várható érték, szórás SZDT-01 p. 11/23

12 SZDT-01 p. 12/23 Valószínűségi változó A biometriai vizsgálatok során megfigyelt vagy mért értékek véletlentől függő mennyiségek, amelyekhez számértékeket rendelünk. Ezeket a véletlen által befolyásolt értékeket közös néven valószínűségi változóknak nevezzük. pl. vérnyomásmérés valószínűségi változó, mert a mért értéket több tényező befolyásolhatja (a készülék állapota, fronthatás stb.), az értékben csak bizonyos valószínűség mellett lehetünk biztosak Pontosabban: ha egy eseménytér (Ω) elemeihez számokat rendelünk, akkor az eseményeken egy függvényt értelmezhetünk (ξ valószínűségi változó) pl. adott egy populáció, amelyet a végbélrák (A) kialakulásának szempontjából vizsgálunk; az Ω 2 elemű: lesz vagy nem lesz végbélrák (k = 1, 2) A valószínűségi változó az egyes eseményekhez rendelt valószínűségeket fogja sorra felvenni; minden esemény valószínűsége: 1 2 p k = P(A k ) = P(ξ = k) = 1 2, k = 1,2

13 SZDT-01 p. 13/23 Diszkrét valószínűségi változó Ha az ξ valószínűségi változó értékkészlete véges vagy megszámlálhatóan végtelen x k számsorozat, akkor a ξ-t diszkrét valószínűségi változónak nevezzük. Az egyes események valószínűségei: p k = P(A k ) = P(ξ = x k ) Az így meghatározott valószínűségeket a ξ változó eloszlásának nevezzük. pl. a 4,5 mmol/l vércukorérték milyen valószínűséggel fordul elő egy betegnél a vizsgálat során. A korábbi végbélrák előfordulásánál: 2 k=1 p k = 2 k=1 P(A k) = 2 k=1 P(ξ = x k) = = 1 Egy ξ valószínűségi változó eloszlásfüggvénye: F(x) = P(ξ < x) megadja annak valószínűségét, hogy a ξ milyen valószínűséggel vesz fel egy tetszőleges x értéknél kisebb értéket

14 SZDT-01 p. 14/23 Folytonos valószínűségi változó Értékkészlete végtelen vagy nem megszámlálhatóan végtelen Pl. vérnyomásértékek Az ilyen típusú változó eloszlásfüggvényének meghatározása nehezebb az egyes tartományok valószínűségének megadása közvetlenül nem lehetséges bevezetésre került a sűrűségfüggvény (minden szakasz valószínűsége megadható a szakaszhoz tartozó függvénygörbe alatti terület (integráljának) nagyságával sűrűségfügvény: f(x)

15 SZDT-01 p. 15/23 Valószínűségi változók várható értéke Ha egy kísérletet sokszor megismétlünk és mindegyik kísérletet egymástól függetlenül hajtjuk végre, akkor a valószínűségi változónak az egyes kísérletek során felvett értékei egy jól meghatározott érték körül ingadoznak. Diszkrét valószínűségi változó esetén: M(ξ) = n k=1 p kx k Feladat: Egy biztosítótársaság adatai szerint egy 30 éves ember 0, 985 valószínűséggel él meg egy évet és 0,015 valószínűséggel hal meg egy éven belül. Ha egy ilyen korú ember Ft-os életbiztosítást köt, akkor Ft-ot kap, ha megéli a biztosítástól számított egy évet. Mi lesz a biztosítótársaság várható nyeresége?

16 SZDT-01 p. 16/23 Valószínűségi változók szórása Egy valószínűségi változó értékeinek a várható érték körüli szóródását nevezzük a változó szórásának: D(ξ) Variancia: V ar(ξ) = D 2 (ξ) = M[(ξ M(ξ)) 2 ] = M(ξ 2 ) [M(ξ)] 2 Diszkrét valószínűségi változó esetén: V ar(ξ) = D 2 (ξ) = n k=1 p kx 2 k ( n k=1 p kx k ) 2

17 Nevezetes diszkrét eloszlások SZDT-01 p. 17/23

18 SZDT-01 p. 18/23 Binomiális eloszlás Végezzünk el egy kísérletet n-szer egymástól függetlenül. A kísérlet során egy A esemény bekövetkezésének valószínűsége legyen P(A) = p P(A) = q = 1 p p k = P(ξ = k) = ( n k) p k q n k, (k = 0,1,2,... n) A ξ valószínűségi változó eloszlását binomiális eloszlásnak nevezzük, amelynek várható értéke: M(ξ) = n p szórása: D(ξ) = n p q Feladat: Egy város lakóinak egyhatod része szenved egy bizonyos betegségben. Találomra egyenként kiválasztunk 5 főt úgy, hogy mindig a teljes létszámból választunk. Határozzuk meg annak valószínűségét, hogy a kiválasztottak egyike sem beteg, vagy 1, 2, 3, 4, illetve 5 ember beteg.

19 SZDT-01 p. 19/23 Poisson-eloszlás p k = P(ξ = k) = λk k! e λ, (k = 0,1,2,... n) eloszlást a ξ valószínűségi változó Poisson-eloszlásának nevezzük, ahol λ > 0 egy tetszőleges valós szám Várható értéke: M(ξ) = λ Szórása: D(ξ) = λ pl.: lehulló hópelyhek száma egy adott tartományon baktériumok száma egy adott térfogatban balesetek száma egy időintervallumban adott idő alatt lezajló események száma Feladat: Egy kórház parkolója 300 autó befogadására alkalmas. Annak valószínűsége, hogy autó érkezik a parkolóba egy meghatározott percben, 0,04. Határozzuk meg annak valószínűségét, hogy az adott percben 10-nél kevesebb autó érkezik a parkolóba.

20 Nevezetes folytonos eloszlások SZDT-01 p. 20/23

21 SZDT-01 p. 21/23 Egyenletes eloszlás Sűrűségfüggvénye: 0, ha x a, f(x) = 1, ha a < x b, b a 0, ha x > b Eloszlásfüggvénye: F(x) = P(ξ < x)= Várható értéke: M(ξ) = a+b 2 Szórása: D(ξ) = b a 12 0, ha x a, x a, ha a < x b, b a 1, ha x > b Feladat: Egy műszer a környezeti hőmérséklettől függően 6 10 s múlva lesz üzemképes. Legyen ξ a bekapcsolástól a működésig eltelt idő egyenletes eloszlású valószínűségi változó. Határozzuk meg az eloszlás jellemzőit és a várható értékekhez tartozó valószínűségét.

22 SZDT-01 p. 22/23 Exponenciális eloszlás Sűrűségfüggvénye: 0, ha x 0, f(x) = λe λx, ha x > 0 Eloszlásfüggvénye: F(x) = P(ξ < x)= 0, ha x 0, 1 e λx, ha x > 0 Várható értéke: M(ξ) = 1 λ Szórása: D(ξ) = 1 λ Pl. alkatrészek élettertama radioaktív bomlási folyamatok Feladat: Egy röntgenberendezés működési ideje a meghibásodásig exponenciális eloszlású. A folyamatot leíró valószínűségi változó várható értéke legyen 400 óra. Határozzuk meg a ξ valószínűségi változó sűrűség- és eloszlásfüggvényét.

23 SZDT-01 p. 23/23 Normális eloszlás Egy tetszőleges ξ valószínűségi változó normális eloszlású, ha sűrűségfüggvényére igaz, hogy f(x) = 1 σ (x µ)2 e 2π 2σ 2 Az eloszlás várható értéke: M(ξ) = µ Szórása: D(ξ) = σ 1. Feladat: Tegyük fel, hogy a lakosság körében a fehérvérsejtszám várható értéke 8000, a szórása 1200 és az értékek normális eloszlást követnek. Várhatóan a lakosság hány %-a esik a 7000 és érték közé? 2. Feladat: Az SE-en az egyik tárgyból a hallgatók 30%-a rendszerint megbukik a teszt során. A pontszámok eloszlása normálisnak tekinthető 72-es átlaggal és 6 pont szórással. Hány pontot kell szereznie egy hallgatónak, hogy biztosan átmenjen a vizsgán?

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/27 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/27 SZDT-01

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Valószínűségszámítás

Valószínűségszámítás European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Területi sor Kárpát medence Magyarország Nyugat-Európa

Területi sor Kárpát medence Magyarország Nyugat-Európa Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

BME Nyílt Nap november 21.

BME Nyílt Nap november 21. Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5 Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János Erdei János Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás KVANTITATÍV MÓDSZEREK

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta Valószínűségi változók (véletlen változók, random variables) Változó: Névvel ellátott érték. (Képzeljünk el egy fiókot. A fiók címkéje a változó neve, a fiók tartalma pedig a változó értéke.) Valószínűségi

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

1. Előszó. 2. Valószínűségszámítás

1. Előszó. 2. Valószínűségszámítás 1. Előszó Ez a jegyzet a BME Építőmérnök hallgatóinak számára az A3 előadáshoz készült. Ennek a tárgynak előfeltétele az A1 tárgy, ami az egy változós kalkulus, és az A2 tárgy, ami a többváltozós kalkulusból

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK KOMBINATORIKA Példa: a) Hányféle módon rakható sorba egy csomag Magyar kártya 3 lapja? Nyilván 3! féle módon. Ez nagyon nagy szám, 3!,63 0 35. b) Hányféle módon

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17 Valószínűségszámítás Földtudomány szak, 2015/2016. tanév őszi félév Backhausz Ágnes (ELTE TTK Valószínűségelméleti és Statisztika Tanszék)1 Tartalomjegyzék 1. Valószínűségi mező 3 1.1. Példák valószínűségi

Részletesebben

Nevezetes diszkre t eloszlá sok

Nevezetes diszkre t eloszlá sok Nevezetes diszkre t eloszlá sok Szűk elméleti összefoglaló Binomiális eloszlás: Jelölés: X~B(n, p) vagy X B(n, p) Tipikus használata: Egy kétféle kimenetelű (valami beteljesül vagy sem) kísérletet elvégzünk

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Alapvető karbantartási stratégiák

Alapvető karbantartási stratégiák Alapvető karbantartási stratégiák MBA képzés 2009 Erdei János 4. Tervszerű karbantartás teljesítőképess pesség 00% Teljesítm tménytartalék-diagram kiesési si ciklikus állapotfüggő teljesítménymaradék t

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt 1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I.

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. Dr. Kovács Zsolt egyetemi tanár Megbízhatóság-elméleti alapok A megbízhatóságelmélet az a komplex tudományág, amely a meghibásodási

Részletesebben

Biometria. Gergó Lajos 2012.

Biometria. Gergó Lajos 2012. Biometria Gergó Lajos 2012. Tartalomjegyzék 1. Valószínűségszámítási bevezető 4 1.1. Bevezető példák, definíciók................. 4 1.2. Valószínűségi változó.................... 6 1.2.1. Normális eloszlású

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben