36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25"

Átírás

1 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk; 5 0, d prímszámot dobunk? = 0,5. BKSS 4... Két szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a legalább az egyiken -os áll; 0, b a dobott számok minimuma ; 0,9 c a dobott számok maximuma ; 5 0,4 d a dobott számok összege kisebb, mint 5; 0, e a dobott számok legnagyobb közös osztója? 0,9. BKSS Egy szabályos pénzdarabot ötször feldobunk. Mennyi annak a valószínűsége, hogy a dobunk fejet is és írást is; 0 = 0,95 b legalább két fejet dobunk; = 0,5 c több írást dobunk, mint fejet; = 0,5 d nem dobunk két fejet egymás után; = 0,405 e dobunk három fejet egymás után? = 0,5 4. A lapos magyar kártyából 4 lapot találomra kihúzunk. Mennyi annak a valószínűsége, hogy a piros ász is a négy lap között lesz? 4 = 0,5 5. Egy kockát hatszor egymás után feldobunk. Mennyi annak a valószínűsége, hogy a az,,,4,5, számok mindegyike szerepelni fog;! 0,054 b az első dobás eredménye -os, a többi pedig ettől különböző; 55 0,0 c az első két dobás eredménye -os, a többi pedig a -tól is és egymástól is különböző; 5 4 0,005 d két dobás eredménye -os, a többi pedig ettől különböző? 5 4 0,. BKSS Egy dobozban 0 cédula van -től 0-ig megszámozva. Találomra kiveszünk 5 cédulát. Mennyi annak a valószínűsége, hogy a kihúzott számok mindegyike -nál nagyobb? ,05. BKSS 4...a lapos magyar kártyából lapot találomra kihúzva mennyi annak a valószínűsége, hogy a kihúzott lapok különböző színűek? 4 0,4. BKSS 4... Egy szabályos dobókockát négyszer feldobunk. Mennyi annak a valószínűsége, hogy a különböző számokat dobunk; 5 4 0, 4 b a harmadik dobásnál dobunk először -ost; 5 5 0, 4 c nem dobunk két hatost egymás után; 9 0,9 4 d a dobott számok maximuma 4? ,5

2 Visszatevéses és visszatevés nélküli mintavétel. BKSS alkatrész közül 5 selejtes. Mennyi annak a valószínűsége, hogy 0 alkatrészt találomra kiválasztva azok között selejtes lesz? ,00. BKSS 4... lapos magyar kártyából 4 lapot találomra kiválasztva mennyi annak a valószínűsége, hogy a kihúzott lapok között a pontosan két piros lesz; ,5 b legalább egy ász lesz; 4 4 0,4 c legfeljebb egy zöld lesz? ,4. BKSS 4... Mennyi annak a valószínűsége, hogy az ötös lottón egy találomra kitöltött lottószelvénnyel pontosan k találatot érünk el? k=0,,,,4,5 5 k 5 k BKSS Egy urnában 5 piros és fehér golyó van. Az urnából 0-szer húzunk úgy, hogy a kihúzott golyót mindig visszatesszük. Mennyi annak a valószínűsége, hogy a pontosan piros golyót húzunk; 0 5 0,0 b legalább egy fehér golyót húzunk 5 0 0, BKSS Bizonyos típusú tranzisztorok %-a selejt. Mennyi annak a valószínűsége, hogy 0 db tranzisztort vásárolva azok között a selejt lesz? 0 0,0 0,9 0,00 b lesz selejt? 0,9 0 0,. BKSS Mennyi a valószínűsége, hogy egy tízgyermekes családban pontosan 4 lány van, ha egy fiúgyermek születésének valószínűsége 0,5 és egy leánygyermek születésének valószínűsége 0,49? 0 4 0,49 4 0,5 0,. BKSS Egy dobozban 0 kártya van. Húsz kártyán van A betű, tíz kártyán B betű és harmincon C betű. Egymás után kihúzunk 5 kártyát visszatevéssel. Mennyi annak a valószínűsége, hogy a pontosan -szor húzunk A betűt; ,4 5 5 b legalább kétszer húzunk B betűt; ,9 c páros sokszor húzunk C betűt? 0,5. BKSS Egy céltáblára 5 fiú ad le egy-egy lövést. Mindenki 0, valószínűséggel talál bele a 0-es körbe. Mennyi a valószínűsége, hogy a pontosan 5 találat lesz a 0-es körbe; 5 5 0, 5 0,4 0 0,04 b legfeljebb 4 találat lesz a 0-es körbe; 0,0094 c legalább két találat lesz a 0-es körbe? 0, BKSS Mennyi annak a valószínűsége, hogy egy szabályos dobókockával dobva a hatodik dobásnál dobunk a először -ost; 5 5 0,0 b másodszor -os; ,0 c harmadszor -ost? 5 5 0,0

3 Valószínűségszámítás II. Diszkrét valószínűségi változók és nevezetes eloszlások Várható érték - Szórás - Eloszlásfüggvény. BKSS Egy telefonközpontba perc alatt átlagosan 5 hívás érkezik be. Ha adott időtartam alatt beérkező hívások száma Poisson-eloszlású, mennyi annak a valószínűsége, hogy perc alatt a pontosan hívás érkezik be; 5! e 5 0,04 b legfeljebb hívás érkezik be; 0,5 c legalább hívás érkezik be? 0,99 d a várhatónál több hívás érkezik be? 0,4. BKSS Egy 400 oldalas könyvben 00 sajtóhiba van. Mennyi annak a valószínűsége, hogy 0 véletlenszerűen kiválasztott oldalon nem lesz sajtóhiba, ha feltesszük, hogy a sajtóhibák száma Poisson-eloszlású valószínűségi változó? 0, 00. Számolja ki az alábbi valószínűségi változók várható értékét és szórását! 0 a ξ M ξ = 5,5 D ξ, 0 b ξ M ξ = 0, D ξ,45 4. Egy csomag magyar kártyából találomra kihúzunk egy lapot. Jelölje ξ a kihúzott lap szokásos pontértékét. alsó:, felső:, király: 4, ász:, hetes:, nyolcas:, kilences: 9, tizes: 0 Adja meg ξ eloszlását, várható értékét, szórását! ξ M ξ =,5 D ξ,5 5. Variációk egy dobozra, három piros és négy fehér golyóra Egy dobozban piros és 4 fehér golyó van. Adjuk meg az alább definiált valószínűségi változók eloszlását, várható értékét, szórását, eloszlásfüggvényét! a Addig húzunk visszatevés nélkül, amíg piros nem lesz. Jelölje ξ a húzott golyók számát! 4 5 ξ 5 0 Mξ = Dξ = 5, x 5 5 < x 5 5 < x 5 < x < x 5 5 < x b Két golyót húzunk visszatevés nélkül. Jelölje ξ a pirosak számát a kihúzott golyók között. Hipergeometrikus eloszlás 0 ξ Mξ = Dξ 0, 0 x 0 0 < x < x < x

4 c Két golyót húzunk visszatevéssel. Jelölje ξ a pirosak számát. Binomiális eloszlás 0 ξ 4 9 Mξ = 4 Dξ = 49 0, x < x < x < x d Addig húzunk visszatevés nélkül, amíg két különböző színű golyó nem lesz a kihúzottak között. Jelölje ξ a húzott golyók számát! 4 5 ξ Mξ = 5 =, Dξ = 5 = 0, x 0 5 < x 0 5 < x < x 5 5 < x e Addig húzunk visszatevés nélkül, amíg két azonos színű golyó nem lesz a kihúzottak között. Jelölje ξ a húzott golyók számát! ξ 4 Mξ =,5 Dξ = 49 0,49 0 x < x < x f Két golyót húzunk visszatevéssel. Legyen ξ értéke 0, ha a két kihúzott golyó különböző színű, és legyen ez az érték, ha a kihúzott golyók azonos színűek. Indikátor-változó eloszlása 0 ξ 4 Mξ = 0,4 Dξ = 49 0,49 0 x < x < x. Egy szabályos dobókockával ötször dobunk egymás után. Jelölje ξ valószínűségi változó azt, hogy hányszor dobtunk -ost. Számolja ki ξ várható értékét és szórását! M ξ = 5 0, D ξ = 5 0,. Egy ξ valváltozó Poisson-eloszlású λ =, 5 paraméterrel. Határozza meg ξ eloszlását, várható értékét és szórását. Milyen valószínűséggel vesz fel ξ a várható értékénél kisebb értéket? Pξ <,5 0,54. Bizonyos típusú kávéfőzők 5%-a selejt. -at veszünk. Jelölje ξ a megvásárolt kávéfőzők között a selejtesek számát. Adja meg ξ eloszlását, várható értékét, szórását. Mennyi a valószínűsége, hogy a lesz selejtes a vásároltak között; b -nél kevesebb selejt lesz a vásároltak között? 0 ξ 0 0,05 0 0,95 0,05 0,95 0,05 0,95 0,05 0, Kiszámolt értékekkel: ξ 0, 55 0, 55 0, 005 0, 0005

5 Mξ = n p = 0,05 = 0,5 Dξ = n p q = 0,05 0,95 0, Plesz selejtes 0, 4 P-nél kevesebb selejtes 0, 995 Valószínűségszámítás III. Folytonos valószínűségi változók eloszlásfüggvénye, sűrűségfüggvénye. BKSS 4... Igazolja, hogy Fx eloszlásfüggvény. Írja fel az Fx eloszlásfüggvényű ξ valószínűségi változó sűrűségfüggvényét és számolja ki a felírt valószínűségeket! megj.: F eloszlásfv, ha a köv. tulajdonságok mindegyike teljesül: D F = R, 0 Fx, F monoton növő, F minden pontban balról folytonos, lim 0, lim x x a ex + e x < x <, Pξ > 0, Pln ξ ln D F = R F x = ex + e x = + ex + e x = + e } {{ x } 0< < 0 < Fx < e x + e x > 0 F szigorúan monoton növő tehát monoton növő is. F folytonos függvény, ezért F balról folytonos minden pontban. lim lim x x F sűrűségfüggvénye: fx = F x = e x + e x = 0 = 0 lim lim x x e x + e x < x < Pξ > 0 = Pξ 0 = Pξ < 0 = F0 = Pln ξ ln = Fln Fln = eln 0 ha x b arccos x ha < x π ha < x P D F = R + e x = 0 = e0 + e 0 = = 0,5 + e ln eln + e ln = + + = 0,0 ξ <, P ξ, P < ξ 0 0 arccos x π 0 π arccos x 0 arccos x 0 Fx π Az előző pont miatt F monotonitásához elég azt belátni, hogy F monoton növő a ],[ intervallumon: I. mo. arccos x szig. mon. csökkenő π arccos x szig. mon. csökkenő π arccos x szig. mon. növő π arccos x szig. mon. növő. II. mo. π arccos x = > 0, ha < x <. π x F folytonos a ], [, ],[, ], [ intervallumokon, tehát itt balról is folytonos. Belátjuk, hogy F balról folytonos továbbá az x = ill. x = helyeken.

6 is tehát, hogy ezeken a helyeken a baloldali határérték megegyezik a helyettesítési értékkel: lim lim 0 = 0 = F lim lim π arccos x = = F x x x x lim lim 0 = 0 x x lim lim = x x 0 ha x < F sűrűségfüggvénye: fx = F x = ha < x < π x 0 ha < x megj.: / D f, / D f P ξ < = P ξ = x0 ha x 0 < x c x P ξ < x 0, P 0 < ξ < x 0 0 ha x x 0 x 0 > 0 valós állandó F eloszlásfv: bizonyítás, mint fent. HF x F sűrűségfüggvénye: fx = F 0 x ha x > x 4 0 x = 0 ha x x 0 d P ξ < x 0 = = 0,5 P 0 < ξ < x 0 = 0 ha x < x x + ha x P < ξ, P 0 < ξ < F eloszlásfv: bizonyítás, mint fent. HF 0 ha x < F sűrűségfüggvénye: fx = F x = x+ ha < x x 0 P < ξ 0 = P < ξ = P 0 < ξ < =. BKSS 4... Határozza meg az A és B állandókat úgy, hogy Fx eloszlásfüggvény legyen! a A + B arctg x < x < A =, B = π 0 ha x < 0 b A =, B = A + Be x ha 0 x Várható érték és szórás. BKSS 4... Egy ξ valváltozó sűrűségfüggvénye fx. Számolja ki ξ várható értékét és szórását! a fx = x 4 ha x Mξ = Dξ = 0 ha x <

7 e x ha 0 x b fx = 0 ha x < 0 x + ha 0 x c fx = 0 máshol Mξ = Dξ = Mξ = Dξ = Nevezetes folytonos valószínűségi változók 4. BKSS 4... Legyen ξ normális eloszlású valószínűségi változó, amelynek várható értéke m és szórása σ! a Számolja ki a P ξ > 0, valószínűséget, ha m = 0 és σ = 0,! 0,045 Milyen x értékre teljesül a P x ξ = 0, 0 egyenlőség? x = 0, 5 b Számolja ki a P ξ valószínűséget, ha m = és P ξ > = 0,5! 0,4 c Számolja ki az m és σ értéket, ha m = 4σ és P ξ < = 0,0! m = 4, σ = d Számolja ki a P ξ > valószínűséget, ha σ = és P ξ = 0,4! 0, e Számolja ki a P ξ < 0,5 valószínűséget, ha P ξ < = 0,4 és P < ξ = 0,0! 0, 5. BKSS Egy repülőgép egy 00 m magasságú légifolyosóban repül. A repülőgép repülési magasságának a légifolyosó közepétől való eltérése 0 m várható értékű és 50 m szórású normális eloszlású valószínűségi változó. Mennyi annak a valószínűsége, hogy a repülőgép a légifolyosóban halad? 0,45. BKSS 4..5 Egy gyártmány mérethibája - azaz a névleges mérettől való eltérése - 0 várható értékű, normális eloszlású valószínűségi változó. Annak a valószínűsége, hogy a mérethiba abszolútértéke meghaladja a mm-t: 0,. Mennyi annak a valószínűsége, hogy a mérethiba abszolútértéke 0 mm-nél kisebb? 0,. BKSS 4... Legyen ξ egyenletes eloszlású valószínűségi változó az ];4[ intervallumon. Írja fel ξ sűrűségfüggvényét, eloszlásfüggvényét, várható értékét és szórását! 0 ha x fx = ha < x 4 0 ha 4 < x 0 ha x x ha < x 4 ha 4 < x Mξ = 5 Dξ =. BKSS 4... Egy benzinkútnál a tapasztalatok alapján annak a valószínűsége, hogy a tankolásra percnél tovább kell várni, 0,. Ha a várakozási idő exponenciális eloszlású valószínűségi változó, mennyi annak a valószínűsége, hogy a benzinkúthoz érkezve percen belül elkezdhetünk tankolni? 0,5 9. Egy ξ valváltozó jelentse annak az útnak a hosszát, amelyet egy gépkocsi az első műszaki hibáig megtesz kmben. Tegyük fel, hogy ξ exponenciális eloszlású és várható értéke: 500km. Írja fel ξ sűrűség- és eloszlásfüggvényét! Mennyi annak a valószínűsége, hogy ξ a várható értékénél kisebb értéket vesz fel? fx = 0 ha x e 500 x ha 0 < x 0 ha x 0 e 500 x ha 0 < x Mξ = 500 P ξ < Mξ = e 0, 0. Bizonyos típusú izzólámpák tönkremeneteléig eltelt égési időtartam hossza órában exponenciális eloszlású, 000 óra szórású ξ valószínűségi változó. M ξ =? fx =?? Mennyi a valószínűsége, hogy egy kiszemelt izzólámpa 000 órán belül még nem megy tönkre? Mξ = 000 fx = 0 ha x e 000 x ha 0 < x 0 ha x 0 e 000 x ha 0 < x

8 Pξ 000 = e 0,05

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

24. Valószínűség-számítás

24. Valószínűség-számítás 24. Valószínűség-számítás I. Elméleti összefoglaló Események, eseménytér A valószínűség-számítás a véletlen tömegjelenségek vizsgálatával foglalkozik. Azokat a jelenségeket, amelyeket a figyelembe vett

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet KVANTITATÍV MÓDSZEREK Példatár megoldásokkal Dr. Kövesi János Dr. Tóth Zsuzsanna Eszter Budapest

Részletesebben

Tómács Tibor. Matematikai statisztika gyakorlatok

Tómács Tibor. Matematikai statisztika gyakorlatok Tómács Tibor Matematikai statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika gyakorlatok Eger, 2012 Szerző: Dr. Tómács Tibor főiskolai

Részletesebben

VAL OSZ IN } US EGSZ AM IT AS es MATEMATIKAI STATISZTIKA feladatgy}ujtemeny Programozo matematikus, szamtastechnika levelez}o es tanarszakos hallgatok reszere Kesztette: Nagy Marta, Sztrik Janos es Tar

Részletesebben

Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz

Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz (zárójelben: tervezett tanóraszám; egy tanóra = 45 perc) A félév folyamán a táblázat

Részletesebben

TTK dékáni szünet Gy4 [3. HF]

TTK dékáni szünet Gy4 [3. HF] Félévi időbeosztás [házi feladat beadási határidőkkel] Figyelem! Ez a file az év során változhat, pld a HF beadási határidőket a gyakvezérek esetleg módosíthatják! Valószínűségszámítás matematikusoknak

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

1. modul Mennyire lehetséges?

1. modul Mennyire lehetséges? MATEMATIKA C évfolyam modul Mennyire lehetséges? Készítette: Kovács Károlyné Matematika C évfolyam modul: Mennyire lehetséges? Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Gyakorló feladatok A sztochasztika alapjai kurzushoz

Gyakorló feladatok A sztochasztika alapjai kurzushoz Gyakorló feladatok A sztochasztika alapjai kurzushoz 1. Kombinatorikus valószín ség 1.1. Egy vendégl egyik asztalánál 9 vendég ül, és mindenki rendel egy italt, összesen 3 sört, 4 vörös és 2 fehér bort.

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Érettségi feladatok: Kombinatorika, valószínűség számítás. I. Általános (logika, skatulya elv stb.)

Érettségi feladatok: Kombinatorika, valószínűség számítás. I. Általános (logika, skatulya elv stb.) 1 /11 oldal I. Általános (logika, skatulya elv stb.) 2006. okt./3 Októberben az iskolában hat osztály nevezett be a focibajnokságra egy-egy csapattal. Hány mérkőzést kell lejátszani, ha mindenki mindenkivel

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok 1 1. Mi a különbség a minta és a populáció közt? 2. Mikor azonos a minta a populációval? 3. Milyen

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Valószínűségszámítás statisztika

Valószínűségszámítás statisztika Valószínűségszámítás statisztika és 9 0. évfolyam Szerkesztette: Hraskó András 05. augusztus 4. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen?

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? 2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát indokolja! 2004 II. feladatlap / 17.feladat:

Részletesebben

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás Gazdasági matematika 2: Valószínűségszámítás Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás

Részletesebben

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül.

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. WASABI Játékszabály A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. A JÁTÉK ELŐKÉSZÜLETEI A játék kezdetén minden játékos kap 4 kockát,

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Sztochasztikus modellek feladatok

Sztochasztikus modellek feladatok Sztochasztikus modellek feladatok 1. Valószínűségi változók és vektorváltozók; feltételes eloszlás és feltételes várható érték Diszkrét és folytonos valószínűségi változók, feltételes eloszlás 1. Feldobunk

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából Permutációk: 1) Egy sakkverseny döntőjébe 6 játékos került be. Hányféleképp alakulhat a játékosok sorrendje, ha a döntőben mindenki azonos esélyekkel indul? 2) A Mekk Elek név betűiből hányféle (nem feltétlen

Részletesebben

A százalékarányok pontossága

A százalékarányok pontossága 21. fejezet A százalékarányok pontossága Az ilyesfajta problémák megoldásánál az a fő dolog, hogy képesek legyünk visszafelé okoskodni. Igen hasznos képesség ez, és nagyon is könnyű, csak az emberek nemigen

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

A játék célja. A játék elemei

A játék célja. A játék elemei akong-ban a játékosok Kalandorok bőrébe bújnak és a Kambodzsai dzsungelben igyekeznek minél több mesés Smaragdot összegyűjteni. Ehhez nincs egyebük, mint a hátizsákjuk és a bátorságuk. A dzsungel telis-tele

Részletesebben

Kombinatorika. 1. Ismétlés nélküli permutáció

Kombinatorika. 1. Ismétlés nélküli permutáció Kombinatorika A kombinatorika keretén belül tanuljuk: ismétlés nélküli permutációk, ismétléses permutációk, ismétlés nélküli variációk, ismétléses variációk, ismétlés nélküli kombinációk, ismétléses kombinációk.

Részletesebben

Orosz Gyula Markov láncok Feladatgyűjtemény http://matek.fazekas.hu/portal/tanitasianyagok/orosz_gyula/mar/ 11. Feladatgyűjtemény

Orosz Gyula Markov láncok Feladatgyűjtemény http://matek.fazekas.hu/portal/tanitasianyagok/orosz_gyula/mar/ 11. Feladatgyűjtemény 11. Feladatgyűjtemény A fejezet első részében összefoglalási igénnyel felsoroljuk a cikk korábbi (kitűzött és megoldott) feladatait; a második részben néhány gyakorló feladatot tűzünk ki. Feladatok a 2.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Kombinatorika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Kombinatorika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Kombinatorika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT MATEMATIKA ÉRETTSÉGI 0. október 5. EMELT SZINT ) Oldja meg a valós számok halmazán a következő egyenleteket! a) b) ( )( ) I. ( pont) (7 pont) a) A négyzetgyök függvény értelmezési tartománya és értékkészlete

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

Válassz egy rúna kártyát a dobott pakliból és vedd a kezedbe!

Válassz egy rúna kártyát a dobott pakliból és vedd a kezedbe! Válassz egy Viking telepest! Amelyik Vikingé az ember, az dob EGY kockával. Ha ez nagyobb, mint a kikötő értéke, a telepes túlélte, egyébként le kell venni. Megj: A kikötő értéke 1-el csökken, ha van áru

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA Czenky Márta MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA ABSZTRAKT Saját oktatói gyakorlatunkban a Moodle rendszer használata az évek során kiszorította az elméleti ismeretek számonkérésében a papír

Részletesebben

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt

Részletesebben

Érettségi feladatok: Kombinatorika, valószínűség számítás

Érettségi feladatok: Kombinatorika, valószínűség számítás Érettségi feladatok: Kombinatorika, valószínűség számítás 2003. Próba 6. Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát

Részletesebben

MATEMATIKA C 7. évfolyam 3. modul SZÁZADOS

MATEMATIKA C 7. évfolyam 3. modul SZÁZADOS MATEMATIKA C 7. évfolyam 3. modul SZÁZADOS Készítette: Kovács Károlyné MATEMATIKA C 7. ÉVFOLYAM 3. MODUL: SZÁZADOS TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Sorozatban gyártott termékek minőségellenőrzése

Sorozatban gyártott termékek minőségellenőrzése Gyártásközi minőség-ellenőrzés Késztermék minőség-ellenőrzése Sorozatban gyártott termékek minőségellenőrzése Gyártásközi minőség-ellenőrzés Késztermék minőség-ellenőrzése Minőségellenőrzés a cári Oroszországban

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

EMELTSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

EMELTSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE EMELTSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2014.06.27. Bevezetés,, A matematikához nem vezet királyi út. (Eukleidész) Korábban elkészítettem a közép szintű matematika

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

2. 2004 Egy dobókocka 6 lapja közül háromra 1, 2, illetve 3 pöttyöt teszünk, a másik három lapját fehérre, pirosra,

2. 2004 Egy dobókocka 6 lapja közül háromra 1, 2, illetve 3 pöttyöt teszünk, a másik három lapját fehérre, pirosra, 1. 2003 Legalább hány tanuló jár abba az iskolába, ahol a tanulók megkérdezése nélkül is biztosan tudjuk, hogy van három olyan diák, aki ugyanazon a napon ünnepli a születésnapját? (4p) Az iskolában 3

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

CORVINUS EGYETEM Tájépítészeti Kara. Perczelné dr. Zalai Magdolna - Barabásné dr. Martos Júlia BIOMETRIA MATEMATIKA II. PÉLDATÁR 2004.

CORVINUS EGYETEM Tájépítészeti Kara. Perczelné dr. Zalai Magdolna - Barabásné dr. Martos Júlia BIOMETRIA MATEMATIKA II. PÉLDATÁR 2004. 1 CORVINUS EGYETEM Tájépítészeti Kara Perczelné dr. Zalai Magdolna - Barabásné dr. Martos Júlia BIOMETRIA MATEMATIKA II. PÉLDATÁR 2004. 2 1. Kombinatorika és eseményalgebra Ebben a fejezetben egyszerűbb

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben