Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27"

Átírás

1 Vektorterek Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

2 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek Wettl Ferenc Vektorterek február / 27

3 Egyenletrendszerek Sormodell x + y = 3 x + 2y = 3 x + 2y = 3 x + 2y = 4 az 2x + 4y = 7 és az 2x + 4y = 6 Wettl Ferenc Vektorterek február / 27

4 Egyenletrendszerek Sormodell 3D-ben Wettl Ferenc Vektorterek február / 27

5 Egyenletrendszerek Oszlopmodell x + y = 3 x + 2y = 4 x + 2y = 3 x + 2y = 3 2x + 4y = 7 és 2x + 4y = 6 [ ] 1 x + 1 [ ] 1 y = 2 [ 3 4 ] [ ] 1 2 x + [ ] 2 y = 4 [ 3 7 ] [ ] 1 2 x + [ ] 2 y = 4 [ ] 3. 6 Wettl Ferenc Vektorterek február / 27

6 Algebrai struktúrák Test Számolunk, mint a valós számokkal! D Egy legalább kételem F halmazt testnek (algebrai testnek) nevezünk, ha 1. értelmezve van F elempárjain egy összeadás és egy szorzás nev bináris m velet, 2. az összeadás kommutatív, asszociatív, létezik nullelem és minden elemnek létezik ellentettje (additív inverze), 3. a szorzás kommutatív, asszociatív, létezik egységelem és a nullelemen kívül minden elemnek létezik multiplikatív inverze (reciproka), 4. az összeadás a szorzásra nézve disztributív. Á a nullelem és az egységelem szükségképpen különböz. Á 0a = a0 = 0. P R, Q, C, Z p (prím modulusú maradékosztályok, más jelölések: F p, GF(p)). Wettl Ferenc Vektorterek február / 27

7 Algebrai struktúrák Gy r Számolunk, mint az egészekkel. D Ha a testnél deniált szorzás csak asszociatív, gy r r l, D ha kommutatív is, kommutatív gy r r l, D ha az asszociativitás mellett van egységeleme is, egységelemes gy r r l beszélünk. P Minden test gy r. P Z egységelemes kommutatív gy r, N nem gy r. P A páros számok kommutatív gy r t alkotnak, de ez nem egységelemes. P A Z m egységelemes kommutatív gy r, és pontosan akkor test, ha m prím. P A valós együtthatós polinomok egységelemes kommutatív gy r t alkotnak. Wettl Ferenc Vektorterek február / 27

8 Vektortér Vektortér Azt mondjuk, hogy a V halmaz az F test fölötti vektortér, ha értelmezve van rajta két m velet ((vektor)összeadás, skalárral szorzás), melyekre 1. x, y V : x + y = y + x (kommutatív). 2. x, y, z V : (x + y) + z = x + (y + z) (asszociatív) V, hogy x V : 0 + x = x (zéruselem). 4. x V y V : x + y = 0 (additív inverz). 5. c, d F, x V : (cd)x = c(d x) (szorzások kompatibilitása). 6. xv : 1x = x (egységelemmel szorzás). 7. c, d F, x V : (c + d)x = cx + d x (disztributivitás). 8. c F, x, y V : x(x + y) = cx + cy (disztributivitás). Wettl Ferenc Vektorterek február / 27

9 Vektortér Vektortér alaptulajdonságai Á Minden vektortérnek egyetlen zérusvektora van. Á Minden x V vekornak egyetlen additív inverze van: x = ( 1)x. Á Ha c F és x V, akkor cx = 0 c = 0 vagy x = 0. P Az F n a szokásos összeadással és skaláris szorzással F fölötti vektortér. P Az F-beli végtelen (x 1, x 2,..., x n,... ) sorozatok halmaza vektortér. P Valós vektortér: F = R, komplex vektortér: F = C. P Az F test fölötti (F-beli együtthatós) egyváltozós polinomok F[x] halmaza vektortér. P Az n-nél kisebb fokú polinomok F[x] n halmaza vektortér. P Ha X egy tetsz leges halmaz, és F egy test, akkor az összes X F függvények F X -szel jelölt halmaza F fölötti vektortér. P Ha X egy R-beli nem üres halmaz, akkor az X -en értelmezett folytonos függvények C(X ), illetve az X -en dierenciálható függvények D(X ) halmaza vektortér. Wettl Ferenc Vektorterek február / 27

10 Vektortér Altér D az F test fölötti V vektortérnek W altere, ha W V és W zárt a két m veletre. Jel: W V. K 0 W, P origón átmen egyenes a síkban (térben) P origón átmen sík a térben Wettl Ferenc Vektorterek február / 27

11 Vektortér Altér P szimmetrikus mátrixok F n n -ben P fels háromszög-mátrixok F n n -ben P diagonális mátrixok F n n -ben P legföljebb másodfokú polinomok a polinomok (vagy pl. a legföljebb negyedfokúak) terében P R-en dierenciálható valós függvények az R-en folytonos valósok terében Á minden vektortérnek altere saját maga és a zérustér (Z = {0}) Á alterek metszete altér Á alterek uniója pontosan akkor altér, ha az egyik altere a másiknak M Az R ugyan részteste C-nek, de R n nem altere a C n vektortérnek. Wettl Ferenc Vektorterek február / 27

12 Vektortér Levéldiagram U W V W 0 Z = {0} Wettl Ferenc Vektorterek február / 27

13 Vektortér Mátrixhoz tartozó alterek P A F m n mátrixra S(A) F n, O(A) F m (sor-, oszloptér) P homogén lineáris egyenletrendszer megoldásai (Ax = 0, Ay = 0 A(cx) = 0, A(x + y) = 0) K azon b vektorok, melyekre Ax = b megoldható, alteret alkotnak (ez megegyezik A oszlopterével) K F m n -es mátrix nulltere F n altere (N (A) F n ) T Elemi sorm veletek közben a sortér nem változik, az oszlopvektorok meg rzik az eredeti lineáris kapcsolataikat. K Legyen B az A mátrix egy lépcs s alakja. Ekkor 1. A és B sortere megegyezik, 2. az A oszlopvektorai között lév lineáris kapcsolatok azonosak a B ugyanolyan sorszámú oszlopai közti lineáris kapcsolatokkal, 3. B nemzérus sorvektorai lineárisan függetlenek, 4. a f elemek oszlopvektorai A-ban és B-ben is lineárisan függetlenek. Wettl Ferenc Vektorterek február / 27

14 Vektortér Kifeszített altér D a v i V (i = 1,..., k) vektorok által kifeszített altér: span(v 1, v 2,..., v k ) = { c 1 v 1 + c 2 v c k v k : c 1, c 2..., c k F }. Á span(v 1, v 2,..., v k ) F n (tehát altér) Á span(v 1, v 2,..., v k ) a minimális altér azok között, melyek tartalmazzák a v 1, v 2,..., v k vektorokat. P Minden A F m n mátrix az E ij mátrixok lineáris kombinációja, amelyben az i-edik sor j-edik elem 1, a többi 0. P Minden legföljebb n-edfokú polinom az 1, x, x 2,...,x n lineáris kombinációja. P a T = [t i j ] n 1 i,j=0 Toeplitz mátrix a 2n 1 darab T k = [δ i j,k ] n 1 i,j=0 mátrixok lineáris kombinációja, ahol δ i,j a Kronecker-delta: { 1, ha i = j δ i,j = 0, ha i j Wettl Ferenc Vektorterek február / 27

15 Vektortér An altér J W V, u V, W + u = {w + u : w W} D a W + u an altér M ez nem altér, ha u / W. Á Az Ax = b egyenletrendszer pontosan akkor oldható meg, ha b el áll az A oszlopainak lineáris kombinációjaként (b benne van A oszlopterében). A lineáris kombináció együtthatói megegyeznek a megoldásvektor koordinátáival. T Az Ax = b összes megoldása = az Ax = b valamelyik megoldása + az Ax = 0 összes megoldása K Az Ax = b összes megoldása egy an alteret alkot, ami nem altér, ha b 0. Wettl Ferenc Vektorterek február / 27

16 Bázis, dimenzió Bázis D A V vektortér bázisán olyan vektorrendszert értünk, mely 1. lineárisan független, 2. generátorrendszer (mely kifeszíti V-t). P Az e 1 = (1, 0,..., 0), e 2 = (0, 1,..., 0),..., e n = (0, 0,..., 0, 1) vektorokból álló halmazt F n standard bázisának nevezzük. Á A zérustérnek nincs bázisa P Az E ij mátrixok bázist alkotnak F m n -ben P A legföljebb n-edfokú polinomok terének {1, x, x 2,..., x n } egy bázisa. Wettl Ferenc Vektorterek február / 27

17 Bázis, dimenzió Bázis meghatározása els megoldás Példa (Altér bázisának meghatározása) Határozzuk meg az (1, 1, 0, 2), (2, 3, 3, 2), (1, 2, 3, 0) és (1, 3, 6, 2) vektorok által kifeszített altér egy bázisát! Megoldás Sorvektorokkal: A bázis vektorai (1, 1, 0, 2), (0, 1, 3, 2). Wettl Ferenc Vektorterek február / 27

18 Bázis, dimenzió Bázis meghatározása második megoldás Megoldás oszlopvektorokkal: Tehát az adott négy vektor közül az els kett, azaz az (1, 1, 0, 2) és (2, 3, 3, 2) vektorok bázist alkotnak. Ha a megadott vektorokat más sorrendben írjuk a mátrixba, másik bázist kaphatunk. Wettl Ferenc Vektorterek február / 27

19 Bázis, dimenzió Felírás bázisvektorok lineáris kombinációjaként Megoldás a redukált lépcs s alakból: Ennek alapján: = Wettl Ferenc Vektorterek február / 27

20 Bázis, dimenzió Koordinátás alak e bázisban Példa (Vektor koordinátás alakja a B bázisban) Jelölje B = {(1, 1, 0, 2), (2, 3, 3, 2)} a bázist. A redukált lépcs s alak nemzérus soraiból [ ] kapjuk a négy vektor koordinátás alakjait: [ ] [ ] 1 0 v 1 =, v 2 =, v 3 = 0 1 B B [ ] 1, v 4 = 1 B [ ] 3. 2 B Wettl Ferenc Vektorterek február / 27

21 Bázis, dimenzió Bázis és dimenzió Állítás (Bázis ekvivalens deníciói) Legyen U vektortér, és legyen B = {v 1, v 2,..., v k } U vektorok egy halmaza. A következ állítások ekvivalensek: B lineárisan független vektorokból áll és kifeszíti az U alteret, B minimális méret halmaz, mely kifeszíti U-t; B maximális méret, független vektorokból álló halmaz U-ban. Tétel (Bázis-tétel) Ha a V vektortérnek van n-elem bázisa, akkor minden bázisa n-elem. Deníció (Dimenzió) A V vektortér n-dimenziós, ha van n-elem bázisa. (véges dimenziós vektortér) Wettl Ferenc Vektorterek február / 27

22 Bázis, dimenzió Mátrix, rang, dimenzió Állítás (Dimenzió = rang) Egy mátrix rangja, sorterének dimenziója és oszlopterének dimenziója megegyezik. (Ebb l következ leg r(a) = r(a T ).) Tétel (Dimenziótétel) Bármely A F m n mátrix esetén a sortér dimenziójának és a nulltér dimenziójának összege n. Képlettel: dim(s(a)) + dim(n (A)) = n. Wettl Ferenc Vektorterek február / 27

23 Valós mátrixok és egyenletrendszerek Valós mátrixok sor- és nulltere Deníció (Mer leges altér és mer leges kiegészít altér) egy vektortér két altere mer leges, ha bárhogy választva egy vektort az egyik altérb l, és egy másikat a másik altérb l, azok mer legesek egymásra. Egy W altérre mer leges vektorok alterét a W mer leges kiegészít alterének nevezzük és W -pel jelöljük (W perp). Tétel (A lineáris algebra alaptétele) Minden valós mátrix sortere és nulltere mer leges kiegészít alterei egymásnak. K S(A) = N (A), N (A) = S(A). K O(A) = N (A T ). K Minden x vektor egyértelm en el áll egy sortérbe és egy nulltérbe es vektor összegeként. Wettl Ferenc Vektorterek február / 27

24 Valós mátrixok és egyenletrendszerek Valós együtthatós egyenletrendszer megoldásai Tétel (Lineáris egyenletrendszer megoldásai) Minden valós együtthatós megoldható (konzisztens) lineáris egyenletrendszerre igazak a következ állítások: egyetlen megoldása esik az együtthatómátrix sorterébe; a sortérbe es megoldás az összes megoldás közül a legkisebb abszolút érték ; az összes megoldás el áll úgy, hogy a sortérbe es megoldáshoz hozzáadjuk a homogén rész összes megoldását. Wettl Ferenc Vektorterek február / 27

25 Valós mátrixok és egyenletrendszerek A sortérbe es megoldás megkeresése Példa (Lineáris egyenletrendszer sortérbe es megoldása) Határozzuk meg az x + y + z + 3u + 2w = 4 x + 2y + z + 5u + 2w = 5 2x + 3y + z + 8u + 3w = 7 2x + 3y + 2z + 8u + 4w = 9 egyenletrendszer minimális abszolút érték megoldását! Wettl Ferenc Vektorterek február / 27

26 Valós mátrixok és egyenletrendszerek A redukált lépcs s alak: = Így a megoldás: (x, y, z, u, w) = (1, 1, 2, 0, 0) + ( 1, 2, 0, 1, 0)u + ( 1, 0, 1, 0, 1)w. Wettl Ferenc Vektorterek február / 27

27 Valós mátrixok és egyenletrendszerek A redukált lépcs s alak szerinti egyenletrendszerhez ezt kell adni: Így a kiegészített egyenletrendszer: x 2y + u = 0 x z + w = / = / / /17, /17 tehát a keresett megoldás 1 /17( 4, 5, 19, 6, 15). Wettl Ferenc Vektorterek február / 27

A lineáris algebra forrásai: egyenletrendszerek, vektorok

A lineáris algebra forrásai: egyenletrendszerek, vektorok A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. 1 / 75 Tartalom 1 Vektor A 2- és 3-dimenziós tér

Részletesebben

Alkalmazott algebra. Vektorterek, egyenletrendszerek :15-14:00 EIC. Wettl Ferenc ALGEBRA TANSZÉK

Alkalmazott algebra. Vektorterek, egyenletrendszerek :15-14:00 EIC. Wettl Ferenc ALGEBRA TANSZÉK B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Vektorterek,

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (el adásvázlat, április 15.) Maróti Miklós Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA LINEÁRIS ALGEBRA NAGY ATTILA 20160515 Tartalomjegyzék 1 Algebrai struktúrák 5 2 Lineáris tér (vektortér) 13 21 A vektortér fogalma 14 22 Vektorok lineáris függetlensége és függősége 18 23 Generátorrendszer,

Részletesebben

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA LINEÁRIS ALGEBRA NAGY ATTILA 20160515 Tartalomjegyzék 1 Algebrai struktúrák 5 2 Lineáris tér (vektortér) 13 21 A vektortér fogalma 14 22 Vektorok lineáris függetlensége és függősége 18 23 Generátorrendszer,

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet   takach/ február 15 Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság 1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

SE EKK EIFTI Matematikai analízis

SE EKK EIFTI Matematikai analízis SE EKK EIFTI Matematikai analízis 2. Blokk A számelmélet a matematikának a számokkal foglalkozó ága. Gyakran azonban ennél sz kebb értelemben használják a számelmélet szót: az egész számok elméletét értik

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Mátrixok jellemzése. 4. fejezet Mátrixhoz tartozó alterek

Mátrixok jellemzése. 4. fejezet Mátrixhoz tartozó alterek 4 fejezet Mátrixok jellemzése Az előző fejezetben megismerkedtünk a mátrixműveletekkel, azok tulajdonságaival Ebben a fejezetben a mátrixok különféle jellemzőit vizsgáljuk, melyek segítségével arról a

Részletesebben

A gyakorlati jegy

A gyakorlati jegy . Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Lineáris leképezések H607 2018-02-05, 07, 09 Wettl

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet. 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,

Részletesebben

Lineáris algebra. Wettl Ferenc, BME , 0.2 változat. Tartalomjegyzék. Geometriai szemléltetés. (tömör bevezetés) Az egyenletek szemléltetése

Lineáris algebra. Wettl Ferenc, BME , 0.2 változat. Tartalomjegyzék. Geometriai szemléltetés. (tömör bevezetés) Az egyenletek szemléltetése Lineáris algebra (tömör bevezetés) Wettl Ferenc, BME 2007-03-24, 02 változat Tartalomjegyzék Geometriai szemléltetés 1 Az egyenletek szemléltetése 1 Az egyenletrendszer vektoregyenlet alakja 2 Egyenletrendszerek

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

1. Mit jelent az, hogy egy W R n részhalmaz altér?

1. Mit jelent az, hogy egy W R n részhalmaz altér? Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben