1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
|
|
- Zalán Király
- 6 évvel ezelőtt
- Látták:
Átírás
1 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az egyenletnek nincs megoldása. Megjegyzés Tehát semmilyen x számra nem igazak a fenti egyenlőségek. Mégis helyesnek éreztük a fenti átalakítást. Formálisan számoltunk az x-et tartalmazó kifejezésekkel, korábban megtanult átalakítási szabályok szerint. A polinom szemléletes fogalma. Meta-definíció Polinomnak nevezünk egy olyan formális kifejezést, amely (komplex) számokból, és az x betűből készül ismételt összeadás, kivonás és szorzás segítségével. Az x neve határozatlan (vagy változó). Példa ( (ix x 2 )(x 23) + 2x 7 ) x 3 8 egy polinom. A zárójeleket a disztributivitás segítségével felbonthatjuk, majd x hatványai szerint rendezhetünk. Az eredmény: x 6 (46 + 2i)x 5 + ( i)x 4 + ( i)x 3 ( i)x 2 (28 322i)x (MAPLE program!) A polinom definíciója. Kényelmes definíció Egyhatározatlanú polinomnak nevezzük az f (x) = a 0 + a 1 x + a 2 x a n x n formális kifejezéseket, ahol n 0 egész szám és a 0,...,a n komplex számok. Az x neve határozatlan. Az a j x j a polinom egy tagja, az x j együtthatója a j. Az a 0 = a 0 x 0 a konstans tag. Fontos! Két polinom akkor egyenlő, ha együtthatóik megegyeznek (x j együtthatója ugyanaz a két polinomban minden j 0-ra). x 2 1 = 0 x x x + ( 1) és x 3 1 = 1 x x x + ( 1) nem egyenlők, mert például az x 3 együtthatója más a két polinomban.
2 A nullapolinom. A nullapolinom az a polinom, amelynek minden együtthatója nulla. Ugyanúgy 0 jelöli, mint a 0 számot. Minden c komplex számot polinomnak tekintünk (amelyben x j együtthatója nulla minden j 1 esetén, konstans tagja pedig c). Ezek a konstans polinomok. C[x]: a komplex együtthatós polinomok halmazának jele. R[x]: a valós együtthatós polinomok halmazának jele. Q[x]: a racionális együtthatós polinomok halmazának jele. Z[x]: az egész együtthatós polinomok halmazának jele. A határozatlan jele más is lehet: R[y], Z[u]. Példa: πy R[y], de πy / Q[y]. 2. Műveletek polinomok között Polinomok kibővítése nulla tagokkal. A nulla együtthatójú tagokat igény szerint írjuk ki: a 0 + a 1 x + a 2 x a n x n = = a 0 + a 1 x + a 2 x a n x n + 0 x n x n Megállapodunk abban, hogy 0 = a n+1 = a n+2 =... Így bármely két polinomot ugyanannyi taggal írhatunk fel: f (x) = a 0 + a 1 x + a 2 x a n x n Példa g(x) = b 0 + b 1 x + b 2 x b n x n. x 2 x + 1 = 0 x x 2 1 x + 1 x = 1 x x x + 1. Polinomok összege, különbsége, ellentettje. Legyen f (x) = a 0 + a 1 x + a 2 x a n x n g(x) = b 0 + b 1 x + b 2 x b n x n. E polinomok összege és különbsége: ( f + g)(x) = (a 0 + b 0 ) + (a 1 + b 1 )x (a n + b n )x n ( f g)(x) = (a 0 b 0 ) + (a 1 b 1 )x (a n b n )x n. 2
3 Az f C[x] ellentettje h, ha f + h = 0. Az ellentett jele h = f. Az f (x) = a 0 + a 1 x a n x n (egyetlen) ellentettje h(x) = ( f )(x) = ( a 0 ) + ( a 1 )x ( a n )x n. A kivonás az ellentett hozzáadása: g f = g + ( f ). Példa polinomok szorzatára. Kérdés Hogyan definiáljuk az (a 0 + a 1 x)(b 0 + b 1 x + b 2 x 2 ) szorzatot? Például mi legyen x 2 együtthatója? Állítás (Kiss-jegyzet, Gyakorlat) Az (u 1 + u u n )(v v m ) eredménye az nm darab u j v l tag összege (1 j n és 1 l m). A két zárójelből kiveszünk egy-egy tagot az összes lehetséges módon, ezeket összeszorozzuk, a szorzatokat összeadjuk. x 2 -es tag kétféleképpen keletkezhet: a 0 (b 2 x 2 ) és (a 1 x)(b 1 x). Ezért x 2 együtthatója a 0 b 2 + a 1 b 1. A végeredmény: a 1 b 2 x 3 + (a 0 b 2 + a 1 b 1 )x 2 + (a 0 b 1 + a 1 b 0 )x + a 0 b 0. Polinomok szorzatának definíciója. (a 0 + a 1 x a n x n )(b 0 + b 1 x b m x m )-ben x k együtthatója legyen c k = a 0 b k + a 1 b k a k b 0. Magyarázat x k -os tag akkor keletkezik (a j x j )(b l x l )-ből, ha j + l = k. Példa Az x n+m együtthatója a 0 b n+m a n 1 b m+1 + a n b m + a n+1 b m a n+m b 0. Tudjuk, hogy l > m esetén b l = 0. Így az első n tag nulla. Tudjuk, hogy j > n esetén a j = 0. Így az utolsó m tag nulla. Vagyis x n+m együtthatója a n b m. 3. Polinomok foka Polinom foka. Ha f (x) = a 0 +a 1 x+...+a n x n, ahol a n 0, akkor f foka n. Jele: gr( f ). Tehát a fok a legnagyobb olyan kitevő, amelyhez tartozó együttható nem nulla. A nullapolinomnak nincs foka. Az f (x) k-adfokú tagja a k x k, főtagja a n x n, főegyütthatója a n. Az f (x) normált polinom, ha főegyütthatója 1. 3
4 Tétel Szorzásnál a fokok összeadódnak: gr( f g) = gr( f ) + gr(g). Bizonyítás f (x) = a 0 + a 1 x a n x n és g(x) = b 0 + b 1 x b m x m esetén láttuk, hogy x n+m együtthatója a n b m. Ez nem nulla, ha a n és b m nem nulla. Magasabb fokú tag nem keletkezik. A szorzat foka: következmények. Következmények (1) A polinomok szorzása nullosztómentes. (2) Egy f polinomnak pontosan akkor van reciproka polinomok között, ha nem nulla konstans polinom. Bizonyítás (1): Láttuk, hogy ha f és g nem nulla, akkor f g-nek van nem nulla együtthatója, így f g sem nulla. (2): Ha f g = 1, akkor 0 = gr(1) = gr( f g) = gr( f )+gr(g). Ezért gr( f ) = gr(g) = 0, azaz mindkettő nem nulla konstans. Megfordítva, ha c 0 konstans, akkor reciproka, azaz 1/c is (konstans) polinom. Házi feladat: Igazoljuk, hogy f g konstans tagja f és g konstans tagjainak szorzata. Összeg foka. Tétel Két polinom összegének a foka legfeljebb akkora, mint a két polinom fokai közül a nem kisebb: gr( f + g) max(gr( f ), gr(g)). Ha a két polinom foka különböző, akkor egyenlőség áll. Példa 2 = gr(x 2 + 1) = gr( x 2 + x) > gr ( (x 2 + 1) + ( x 2 + x) ) = 1. Bizonyítás f (x) = a 0 + a 1 x a n x n és g(x) = b 0 + b 1 x b n x n, ahol feltehetjük, hogy például a n nem nulla, azaz gr( f ) = n. Ha b n = 0, akkor gr(g) < n, és f + g főegyütthatója a n, azaz gr( f + g) = gr( f ) = n. Ha b n 0, akkor gr( f ) = gr(g) = n. Ekkor a n + b n = 0 is lehet, amikor gr( f + g) < gr( f ) = gr(g). 4
5 A műveleti tulajdonságok. Polinomokkal a szokásos módon számolhatunk. Tétel (HF ellenőrizni) Tetszőleges f, g, h C[x] polinomokra érvényesek az alábbiak. (1) ( f + g) + h = f + (g + h) (az összeadás asszociatív). (2) f + g = g + f (az összeadás kommutatív). (3) f + 0 = 0 + f = f (az ilyen tulajdonságú elem a nullelem). (4) Minden f -nek van ellentettje. (5) ( f g)h = f (gh) (a szorzás asszociatív). (6) f g = g f (a szorzás kommutatív). (7) f 1 = 1 f = f (a konstans 1 polinom egységelem). (8) Az f -nek akkor van reciproka, ha nem nulla konstans. (9) ( f + g)h = f h + gh (disztributivitás). 4. A szumma és produktum jelölés Összegek tömör alakja. Az a 1 +a a n összeget így rövidítjük: n a j. A szumma jel utáni kifejezéseket kell összeadni a j azon értékeire, amit a jel alatt és fölött megadunk. j=1 Példák 9 a j j = a6 6 + a7 7 + a8 8 + a9 9. (A j hattól kilencig fut.) j=6 a j + b j = a 3 + b 3 + a 4 + b 4. 2< j<5 jk = = 47. 2< j<k<6 p 2 = = 87. p < 10 prím 5
6 Polinomok szorzata szummás jelöléssel. A binomiális tétel szummás alakja (a + b) n = a n + ( n) 1 a n 1 b ( n ) n 1 ab n 1 + b n = n Állítás esetén ( f g)(x) = m+n j=0 f (x) = a 0 + a 1 x + a 2 x a n x n = g(x) = b 0 + b 1 x + b 2 x b m x m = k=0 A produktum jelölés. c k x k, ahol c k = k a j b k j = j=0 j+l=k ( n ) j a n j b j. n a j x j j=0 m b l x l l=0 a j b l. A produktum jelölés hasonló a szumma jelöléshez, csak összeadás helyett szorozni n n kell. Példák: a j = a 2 a 3...a n. j = n = n!. j=2 j=1 Megállapodás Egytagú összeg és szorzat az egyetlen tagjával egyenlő. Az üres összeg értéke 0. Az üres szorzat értéke n Példa: b j = b 3, b j = 0, a j x j = 0, ha n = 0. j=3 j=3 j=1 Magyarázat: Kiss-jegyzet, Gyakorlat. Ezzel elvégeztük a Kiss-jegyzet 2.1. Szakaszát. 6
Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és negyedfokú egyenlet
1. Bevezetés A félév anyaga Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad- és
1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1,a 2,...,a n számok. Az
1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
1. Polinomok számelmélete
1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
1. Hatvány és többszörös gyűrűben
1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.
Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik
1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. A komplex számok definíciója
1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Polinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
1. Komplex szám rendje
1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.
Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj
A gyakorlati jegy
. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság
Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság
1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Lineáris algebra (10A103)
Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
1. Geometria a komplex számsíkon
1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz
A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.
2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
1. Algebrai alapok: Melyek műveletek az alábbiak közül?
1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Algebra gyakorlat, 8. feladatsor, megoldásvázlatok
Algebra gyakorlat, 8. feladatsor, megoldásvázlatok 1. Jelölje I az (x 2 + 1 ideált. Most az x + I R[x]/(x 2 + 1 négyzete (x + I 2 x 2 + I 1+x 2 +1+I 1+I, hiszen x 2 +1 I. Így ( x+i(x+i (x+i 2 1+I. Tehát
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)
3. EGYVÁLTOZÓS POLINOMOK 3.A.De níció. Komplex számok egy f = (a 0 ; a 1 ; :::; a k ; :::) végtelen sorozatáról azt mondjuk, hogy polinom, ha létezik olyan m 0 egész, hogy minden k m indexre a k = 0. Az
Prezentációk készítése
Prezentációk készítése 2009 1 / 14 Prezentációk készítése Beamer gyorstalpaló Írta: Kiss Emil ewkiss@cs.elte.hu 2009 Áttekintés Prezentációk készítése 2009 2 / 14 A beamer koncepciója A beamer egy L A
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
Gy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
TERMÉSZETTUDOMÁNYI KAR
EÖTVÖS LORÁND TUDOMÁNY EGYETEM TERMÉSZETTUDOMÁNYI KAR Versenyfeladatok az általános- és középiskolában Szakdolgozat Domán Dániel Gergő Matematika BSC Alkalmazott matematikus szakirány Témavezető: Dr. Kiss
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
LINEÁRIS ALGEBRA. Szerkeszt es alatt NAGY ATTILA
LINEÁRIS ALGEBRA NAGY ATTILA 2014.12.15 Tartalomjegyzék Bevezető 5 1. Alapfogalmak 7 1.1. Algebrai struktúrák.............................. 7 1.1.1. Az algebrai struktúra fogalma.................... 7
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
Banach-algebrákban. Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év május 10.
Hatványsorok normált gyűrűkben és Banach-algebrákban Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év 2006. május 10. Hatványsorok normált gyűrűkben és Banach-algebrákban 1
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu
Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:
Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
1. Bevezetés A félév anyaga. Gyűrűk és testek Ideál, faktorgyűrű, főideálgyűrű Gauss-egészek, két négyzetszám tétel Az alaptételes gyűrűk jellemzése A számfogalom lezárása Algebrai és transzcendens számok
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \