Mer legesség. Wettl Ferenc Wettl Ferenc Mer legesség / 40

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40"

Átírás

1 Mer legesség Wettl Ferenc Wettl Ferenc Mer legesség / 40

2 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált Fourier-mátrixok Diszkrét Fourier-transzformáció Gyors Fourier-transzformáció Wettl Ferenc Mer legesség / 40

3 Pszeudoinverz A pszeudoinverz fogalma Á A sortér és az oszloptér közt létezik természetes kölcsönösen egyértelm megveleltetés (Ax = b egyetlen sortérbe es megoldása). R n A A + R m S(A) O(A) 0 0 D A R m n pszeudoinverzén vagy MoorePenrose-féle pszeudoinverzén azt az A + -szal jelölt mátrixot értjük, amellyel a sortér minden x vektorára A + (Ax) = x, továbbá az oszloptérre mer leges minden z vektorra A + z = 0. Wettl Ferenc Mer legesség / 40

4 Pszeudoinverz Néhány pszeudoinverz Á A + = A 1, ha A invertálható, Á O + m n = O n m, Á [a] + = [ 1 /a], ha a 0, és [0] + = [0], Á (A + ) + = A, Á ha a ii 0 (i = 1, 2,..., r), akkor a a a rr O. O O + m n 1 a a = a rr O. O O n m Wettl Ferenc Mer legesség / 40

5 Pszeudoinverz A pszeudoinverz kiszámítása T Ha a valós A teljes oszloprangú, akkor A + = (A T A) 1 A T, ha teljes sorrangú, akkor A + = A T (AA T ) 1. Legyen A = BC, ahol B egy teljes oszloprangú, C egy teljes sorrangú mátrix (ld. bázisfelbontás). Ekkor A + = C + B + = C T (CC T ) 1 (B T B) 1 B T = C T (B T AC T ) 1 B T. B Ha A teljes oszloprangú, akkor R n = S(A), és A T A invertálható: (A T A) 1 A T Ax = x. Meg kell még mutatnunk, hogy ha z N (A T ), vagyis A T z = 0, akkor A + z = 0: (A T A) 1 A T z = (A T A) 1 0 = 0. Ha A teljes sorrangú, akkor O(A) = R m : y-ra Ax = y konzisztens. Jelölje ˆx az egyetlen sortérbe es megoldást, így minden más x megoldásra proj S(A) x = ˆx. A + -ra fenn kell álljon A + y = ˆx: ) proj S(A) x = A T (AA T ) 1 Ax = (A T (AA T ) 1 (Ax) = A + y. Wettl Ferenc Mer legesség / 40

6 Pszeudoinverz A pszeudoinverz tulajdonságai T MoorePenrose-tétel: A valós A mátrixnak X pontosan akkor pszeudoinverze, ha az alábbi négy feltétel mindegyike fennáll: a) AXA = A, b) XAX = X, c) (AX) T = AX, d) (XA) T = XA. K Tetsz leges A R m n mátrix esetén A + A = proj S(A) és AA + = proj O(A). Tehát A + A az R n teret mer legesen vetíti A sorterére, míg AA + az R m teret mer leges vetíti A oszlopterére. Wettl Ferenc Mer legesség / 40

7 Pszeudoinverz A pszeudoinverz és a min. absz. érték opt. megoldás T Legyen A egy valós mátrix. Az Ax = b egyenletrendszernek az ˆx = A + b a minimális abszolút érték optimális megoldása. P Határozzuk meg a minimális abszolút érték optimális megoldását! y + z = 3 x + y + 2z = 2 x + y = 2 M Az egyenletrendszer nem oldható meg: ] [ [ Ezt felhasználva a minimális abszolút érték optimális megoldás ˆx = A + b = 1 [ ] [ ] [ ] = Wettl Ferenc Mer legesség / 40 2 ] 1

8 Ortonormált bázis ortogonális mátrix Ortogonális és ortonormált bázis D OR (ortogonális rendszer, lehet köztük zérusvektor), ONR (ortonormált rendszer T Ha a nullvektortól különböz a 1, a 2,..., a k vektorok páronként ortogonálisak, akkor függetlenek is. B Tekintsük a c 1 a c k a k = 0 egyenletet. Szorozzuk be az egyenl ség mindkét oldalát a i -vel (i = 1, 2,..., k): (c 1 a 1 + c 2 a c k a k ) a i = 0 a i c i a i a i = 0. Mivel a i a i 0, ezért c i = 0, és ez igaz minden i-re. Wettl Ferenc Mer legesség / 40

9 Ortonormált bázis ortogonális mátrix Ortogonális és ortonormált bázis T Legjobb közelítés ONB esetén Adva van a V vektortérben egy {e 1, e 2,..., e k } ortonormált rendszer által kifeszített A altér, valamint egy v vektor. Ekkor a ˆv = (v e 1 )e 1 + (v e 2 )e (v e k )e k (1) vektor az A altér v-hez legközelebb fekv pontja, azaz ˆv = proj A v. B Megmutatjuk, hogy az (1) szerinti pont van legközelebb v-hez: ( ) 2 k k (v ˆv) 2 = v (v e i )e i = v 2 (v e i ) 2. i=1 v és az altér egy tetsz leges u vektorának távolságnégyzete: ( ) 2 k k k (v u) 2 = v c i e i = v 2 2 c i (v e i ) + ci 2. i=1 i=1 i=1 i=1 Wettl Ferenc Mer legesség / 40

10 Ortonormált bázis ortogonális mátrix Ortogonális és ortonormált bázis A különbségük pozitív, tehát valóban ˆv van v-hez legközelebb: (v u) 2 (v ˆv) 2 ( k = v 2 2 c i (v e i ) + = = i=1 i=1 k i=1 k k ci 2 2 c i (v e i ) + c 2 i i=1 i=1 k (c i v e i ) 2 0. i=1 ) ( k (v e i ) 2 v 2 ) k (v e i ) 2 Ebb l a legjobb közelítés tétele szerint kapjuk, hogy ˆv = proj A v. i=1 Wettl Ferenc Mer legesség / 40

11 Ortonormált bázis ortogonális mátrix Ortogonális mátrixok D Egy valós négyzetes mátrix ortogonális, ha oszlopvektorai vagy sorvektorai ONR-t alkotnak. Ha nem kötjük ki, hogy négyzetes legyen, szemiortogonális mátrixról beszélünk. P A forgatás, tükrözés mátrixa, és minden permutációmátrix ortogonális. T Legyen m n és Q R m n. Ekkor Q szemiortogonális Q T Q = I n (m n esetén QQ T = I n ) B sorvektorszor oszlopvektor T Legyen Q R n n. Az alábbi állítások ekvivalensek: Q oszlopvektorai ortonormált rendszert alkotnak. Q T Q = I n. Q 1 = Q T. QQ T = I n. Q sorvektorai ortonormált rendszert alkotnak. Á det(q) = 1, O(n) és SO(n) zárt a szorzásra és invertálásra nézve. Wettl Ferenc Mer legesség / 40

12 Ortonormált bázis ortogonális mátrix Ortogonális mátrixok geometriája T Ortogonális mátrixhoz tartozó mátrixleképezés Legyen Q R n n. Az alábbi állítások ekvivalensek: a) Q ortogonális. b) Qx = x minden x R n vektorra. c) Qx Qy = x y minden x, y R n vektorra. B a) b): Ha Q ortogonális, akkor Q T Q = I, így tetsz leges x R n vektorra Qx 2 = Qx Qx = (Qx) T (Qx) = x T Q T Qx = x T x = x 2. b) c): A skalárszorzás abszolút értékkel való kifejezéséb l: Qx Qy = 1 ( Qx + Qy 2 Qx Qy 4 2) = 1 ( Q(x + y) 2 Q(x y) 4 = 1 ( x + y 2 x y 4 2) = x y c) a): A Q mátrix i-edik oszlopa q i = Qe i { 0, ha i j, q i q j = Qe i Qe j = e i e j = 1, ha i = j. Wettl Ferenc Mer legesség / 40

13 Ortonormált bázis ortogonális mátrix A 2- és 3-dimenziós tér ortogonális transzformációi T Minden O(2)-be es ortogonális mátrix vagy egy α szög forgatás, vagy egy α/2 szög egyenesre való tükrözés mátrixa, azaz [ ] [ ] cos α sin α cos α sin α vagy sin α cos α sin α cos α T A harmadrend 1 determinánsú ortogonális transzformációk a forgatások, a 1 determinánsúak, azaz O(3) SO(3) elemei egy tükrözés és egy forgatás egymás utáni alkalmazásával megkaphatók. Wettl Ferenc Mer legesség / 40

14 Ortonormált bázis ortogonális mátrix Givens-forgatás D Givens-forgatás: forgatás, mely egy koordinátasík vektorain kívül minden más vektort helyben hagy. Az i-edik és j-edik koordinátákra: G = cos α... sin α sin α... cos α M E forgatással elérhet például, hogy egy x vektort egy olyan vektorba forgassunk, melynek j-edik koordinátája 0. Csak az i-edik és j-edik sorokat és oszlopokat kiemelve [ ] [ ] [ cos α sin α a r = r = sin α cos α b 0] a 2 + b 2, cos α = a r, sin α = b r. Wettl Ferenc Mer legesség / 40.

15 Ortonormált bázis ortogonális mátrix Householder-tükrözés D Householder-tükrözés: Egy adott a 0 vektorra mer leges hipersíkra való tükrözést Householder-tükrözésnek nevezzük. Mátrixa H = I 2 a T a aat T Ha a és b két különböz, de azonos hosszúságú vektor R n -ben, akkor az (a b) hipersíkra való H-tükrözés a-t és b-t fölcseréli. B Megmutatjuk, hogy Ha = b és Hb = a, ahol 2 H = I (a b) T (a b) (a b)(a b)t. (a b) T (a b) = a T a a T b b T a+b T b = 2(a T a b T a) = 2(a b) T a. 2 Ha = a (a b) T (a b) (a b)(a b)t a 1 = a (a b) T a (a b)t a(a b) = a (a b) = b. Mivel H 1 = H, ezért Hb = H 1 b = a. Wettl Ferenc Mer legesség / 40

16 Ortonormált bázis ortogonális mátrix GramSchmidt-ortogonalizáció T GramSchmidt-ortogonalizáció Ha A = {a 1, a 2,..., a k } egy független vektorrendszer, akkor létezik olyan ortogonális V = {v 1, v 2,..., v k } vektorrendszer, hogy minden i = 1, 2,..., k esetén span(a 1, a 2,..., a i ) = span(v 1, v 2,..., v i ). (2) Az ortogonális V rendszerb l a vektorok normálásával kapott { } v1 v 1, v 2 v 2,..., v k v k rendszer ortonormált. Wettl Ferenc Mer legesség / 40

17 Ortonormált bázis ortogonális mátrix GramSchmidt-ortogonalizáció B v 1 = a 1 span(a 1 ) = span(v 1 ). A span(a 1, a 2 ) = span(v 1, v 2 ) teljesüléséhez: ( ) v1 v 2 = a 2 a 2 v 1 v 1 v 1 = a 2 a 2 v 1 v 1 v 1 v 1 E vektor nem 0-vektor, hisz v 2 = 0 esetén a 2 = a 2 v1 v1 v1 v 1 = a 2 v1 v1 v1 a 1 lenne, azaz a 1 és a 2 nem lenne független. span(a 1, a 2 ) = span(v 1, v 2 )... kiszámoljuk az a i+1 vektornak a span( v 1 v1, v 2 v2,..., v i v i ) altérre mer leges összetev jét, ez lesz v i+1 v i+1 = a i+1 a i+1 v 1 v 1 a i+1 v 2 v 2 a i+1 v i v i v 1 v 1 v 2 v 2 v i v i v i+1 0, különben A nem volna független. v i+1 kifejezhet az a 1, a 2,..., a i+1 vektorok lineáris kombinációjaként, és a i+1 kifejezhet az v 1, v 2,..., v i+1 vektorok lineáris kombinációjaként. Wettl Ferenc Mer legesség / 40

18 Ortonormált bázis ortogonális mátrix GramSchmidt-ortogonalizáció P Keressünk ortonormált bázist az (1, 1, 1, 1), (3, 1, 3, 1), (6, 2, 2, 2) vektorok által kifeszített altérben. M El ször keressünk egy ortogonális bázist: v 1 = (1, 1, 1, 1) (3, 1, 3, 1) (1, 1, 1, 1) v 2 = (3, 1, 3, 1) (1, 1, 1, 1) = (2, 2, 2, 2) (1, 1, 1, 1) (1, 1, 1, 1) (6, 2, 2, 2) (1, 1, 1, 1) v 3 = (6, 2, 2, 2) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (6, 2, 2, 2) (2, 2, 2, 2) (2, 2, 2, 2) = (2, 2, 2, 2) (2, 2, 2, 2) (2, 2, 2, 2) Végül az ortonormált bázis: {( 1 2, 1 2, 1 2 2), 1 ( 1, 2, 1 2, 1 ( 1 2 2), 1, 2, 1 2, 1 2 2)}, 1 Wettl Ferenc Mer legesség / 40

19 Ortonormált bázis ortogonális mátrix A QR-felbontás D Legyen A egy teljes oszloprangú mátrix. Az A = QR felbontást QR-felbontásnak vagy redukált QR-felbontásnak nevezzük, ha Q az A-val azonos méret szemiortogonális mátrix, és R négyzetes fels háromszögmátrix, f átlójában pozitív elemekkel. T Teljes oszloprangú valós mátrix QR-felbontása létezik és egyértelm. A Q mátrixot ortonormált oszlopvektorok hozzávételével kiegészíthetjük egy ortogonális mátrixszá, az R mátrixot pedig zérussorok hozzávételével egy m n-es fels háromszögmátrixszá, akkor e mátrixok szorzata is A, ugyanis A = [ ] [ ] R Q ˆQ = QR + ˆQO = QR O Ezt nevezzük teljes QR-felbontásnak. Wettl Ferenc Mer legesség / 40

20 Ortonormált bázis ortogonális mátrix A QR létezése a GramSchmidt-ortogonalizációs eljárásból: A = [a 1 a 2... a k ] R n k teljes oszloprangú (k n), a q-vektorokra: span(a 1,..., a i ) = span(q 1,..., q i ) minden i = 1, 2,..., k értékre, ezért léteznek olyan r ij skalárok, hogy a 1 = r 11 q 1 a 2 = r 12 q 1 + r 22 q 2. a k = r 1k q 1 + r 2k q r kk q k. Ezt mátrixszorzat-alakba írva épp a kívánt felbontást kapjuk: r 11 r r 1k 0 r A = [a 1 a 2... a k ] = [q 1 q 2... q k ] r 2k = QR r kk A GramSchmidt-eljárásból az is látható, hogy r ii = v i, tehát r ii > 0. R kiszámítása: Q T A = Q T QR = I k R = R, tehát R = Q T A. Wettl Ferenc Mer legesség / 40

21 Ortonormált bázis ortogonális mátrix QR-felbontás primitív ortogonális transzformációkkal P QR-felbontását Givens-forgatásokkal: A = M a = 4, b = 3, tehát r = = 5, cos α = 4 /5, sin α = 3 /5 ] ] Q 1 = [ 4 /5 3/5 0 3 /5 4/ Q 1 A = [ Következ lépésben a Q 1 A mátrix harmadik sorának második elemét elimináljuk: ] ] Q 2 = [ /13 12/13. R = Q 2 Q 1 A = 0 12 /13 5/ [ és innen [ 4 ] /5 3 /13 36/65 Q = (Q 2 Q 1 ) 1 = Q T 1 QT 2 = 3/5 4/13 48 /65, 0 12/13 5/13 Wettl Ferenc Mer legesség / 40.

22 Ortonormált bázis ortogonális mátrix QR-felbontás primitív ortogonális transzformációkkal A = Q 1A = 0 0 Q 2Q1A = Q 3Q2Q1A = Q1 = H1 Q2 = 0 0 H2 Q3 = H3 Wettl Ferenc Mer legesség / 40

23 Ortonormált bázis ortogonális mátrix P QR-felbontását Householder-módszerrel: A = M (1, 2, 2) (3, 0, 0) trafóhoz a = (1, 2, 2) (3, 0, 0) = ( 2, 2, 2) Q 1 = I 3 2aaT a T a = = , Q 1 A = (4, 3) (5, 0) transzformációh a = (4, 3) (5, 0) = ( 1, 3) H 2 = I 2 2 Q 2 = a T a aat = /5 3/5 0 3/5 4 /5 [ Q = (Q 2 Q 1 ) 1 = Q T 1 QT 2 = 1 ] 1 5 [ , R = Q 2 Q 1 A = 15 ] = [ ] Wettl Ferenc Mer legesség / 40

24 Ortonormált bázis ortogonális mátrix Egyenletrendszer optimális megoldása QR-felbontással T Legyen A egy teljes oszloprangú m n-es valós mátrix, A = QR egy QR-felbontása, és b egy R m -beli vektor. Ekkor az Ax = b egyenletrendszer egyetlen optimális megoldása ˆx = R 1 Q T b, ami megkapható az Rˆx = Q T b egyenletrendszerb l egyszer visszahelyettesítéssel is. B Optimális megoldás a normálegyenletb l: A T Aˆx = A T b A = QR behelyettesítése után (QR) T QRˆx = (QR) T b R T Q T QRˆx = R T Q T b R T Rˆx = R T Q T b Rˆx = Q T b. Q T Q = I balról szorzás az (R T ) 1 mátrixszal Wettl Ferenc Mer legesség / 40

25 Komplex és véges test feletti terek Komplex vektorok skaláris szorzata? komplex számok skaláris szorzata D lehet ségek: (1, i) (1, i)? = 1 1 = 0 (i, i) (i, i)? = 1 1 = 2 z w = z 1 w 1 + z 2 w z n w n, vagy z w = z 1 w 1 + z 2 w z n w n. D Az A komplex mátrix adjungáltján (vagy Hermite-féle transzponáltján) elemenkénti konjugáltjának transzponáltját értjük. Az A adjungáltját A, vagy Hermite neve után A H jelöli, tehát A H = A T. D z w = z 1 w 1 + z 2 w z n w n = z H w. Wettl Ferenc Mer legesség / 40

26 Komplex és véges test feletti terek Adjungált és a skaláris szorzás tulajdonságai T Legyenek A és B komplex mátrixok, c komplex szám. Ekkor (A H ) H = A, (A + B) H = A H + B H, (ca) H = ca H (AB) H = B H A H. T Legyen u, v, w C n, és legyen c C. Ekkor u v = v u u (v + w) = u v + u w, (cu) v = c(u v) és u (cv) = c(u v), u u > 0, ha u 0, és u u = 0, ha u = 0. D A komplex skaláris szorzás segítségével a valós esethez hasonlóan deniálható a komplex vektorok távolsága és szöge, és így a mer legessége is. Wettl Ferenc Mer legesség / 40

27 Komplex és véges test feletti terek Önadjungált Hermite-féle mátrixok D A önadjungált, ha A H = A. P Melyik önadjungált? 1 i 1 + i i 2 2 3i, 1 i 2 + 3i 3 az els kett [ ] 1 2, 2 3 [ ] i 1 + i, 1 i 1 [ 1 ] 1 + i 1 + i 2 Wettl Ferenc Mer legesség / 40

28 Komplex és véges test feletti terek Unitér mátrixok D Egy komplex négyzetes U mátrix unitér, ha U H U = I. Á Az alábbiak ekvivalensek: UU H = I, U 1 = U H, U oszlopvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve, U sorvektorai ortonormált bázist alkotnak a komplex skalárszorzásra nézve, Ux = x minden x C n vektorra, Ux Uy = x y. Wettl Ferenc Mer legesség / 40

29 Diszkrét Fourier-transzformált Fourier-mátrixok M A Fourier-sorok komplex alakja, és részletösszegei (diszkrét Fourier-összeg): n= c n e nit g(t) = N 1 n=0 c n e nit = c 0 +c 1 e it +c 1 e 2it + +c N 1 e (N 1)it Á A (c 0, c 1,..., c N 1 ) (g(0), g( 2π 2(N 1)π ),..., )) leképezés lineáris, N N 2πi és mátrixa mn [e N ] (0 m, n < N). Wettl Ferenc Mer legesség / 40

30 Diszkrét Fourier-transzformált Fourier-mátrixok P A ε = e 2πi 3 jelöléssel y 0 = c 0 + c 1 e i0 + c 2 e 2i0 = c 0 + c 1 + c 2 y 1 = c 0 + c 1 e 2πi 3 + c 2 e 4πi 3 = c 0 + c 1 ε + c 2 ε 2 y 2 = c 0 + c 1 e 4πi 3 + c 2 e 8πi 3 = c 0 + c 1 ε 2 + c 2 ε 4 a (c 0, c 1, c 2 ) (y 0, y 1, y 2 ) leképezés lineáris, mátrixszorzatos alakja: y c 0 y 1 = 1 ε ε 2 c 1 y 2 1 ε 2 ε 4 c 2 Wettl Ferenc Mer legesség / 40

31 Diszkrét Fourier-transzformált Fourier-mátrixok Általánosan: y 0 = c 0 + c 1 e i0 + c 2 e 2i0 + + c N 1 e (N 1)i0 = c 0 + c c N 1 y 1 = c 0 + c 1 e 2πi N. y N 1 = c 0 + c 1 e 2πi(N 1) N + c 2 e 4πi N + + c N 1 e 2(N 1)πi N + c 2 e 4πi(N 1) N + + c N 1 e 2πi(N 1)2 N Az ε = /N e2πi jelöléssel mátrixszorzat-alakban y 0 y 1. =. y N ε ε 2 ε 3 ε N 1 1 ε 2 ε 4 ε 6 ε 2(N 1) 1 ε 3 ε 6 ε 9 ε 3(N 1) ε N 1 ε 2(N 1) ε 3(N 1) ε (N 1)2. c 0 c 1. c N 1 Wettl Ferenc Mer legesség / 40

32 Diszkrét Fourier-transzformált Fourier-mátrixok D Fourier-mátrixok: az ε = /N e2πi, ω = ε = 2πi /N e jelölésekkel: ε... ε N 1 Φ N,ε = V N (1, ε, ε 2,..., ε N 1 ) = ε N 1... ε (N 1) ω... ω N 1 Φ N,ω = V N (1, ω,..., ω N 1 ) = ω N 1... ω (N 1)2 T A Fourier-mátrixok tulajdonságai: Bármelyik Fourier-mátrix k-adik és N k-adik sora egymás konjugáltja, páros N esetén pedig az N /2-edik sorvektor (1, 1, 1, 1,... ). Φ N,ω = Φ N,ε = Φ H N,ε és Φ N,ε = Φ N,ω = Φ H N,ω Φ N,ε Φ N,ω = NI N, így Φ N,ε és Φ N,ω invertálható, továbbá 1 N Φ N,ε és Φ 1 N,ε = 1 N Φ N,ω, Φ 1 N,ω = 1 N Φ N,ε, 1 N Φ N,ω unitér. Wettl Ferenc Mer legesség / 40

33 Diszkrét Fourier-transzformált Diszkrét Fourier-transzformáció M A továbbiakban f (t) = 1 N N 1 n=0 c n e nit függvényb l indulunk ki, a megadott helyek a [0, 2π] intervallumot N részre osztó 2kπ /N (k = 0, 1,..., N 1) pontok. A F N : (c 0, c 1,..., c N 1 ) (y 0, y 1,..., y N 1 ) F N = Φ N,ω, amelyre a továbbiakban az D Diszkrét Fourier-transzformáció (DFT) Az F N : C N C N : x X = F N x Wettl Ferenc Mer legesség / 40

34 Diszkrét Fourier-transzformált Diszkrét Fourier-transzformáció P Az F 1, F 2, F 4 és F 8 mátrixok: [ ] F 1 = [1], F 2 =, F = 1 i 1 i , 1 i 1 i i 1 i 1+i 1+i 1 i 1 i i 1 i 1 i 1 i 1 i 1 i 1+i 1+i 1 i 1 i F 8 = i 1+i 1 i 1 i 1 i 1 i i 1 i 1 i 1 i 1+i 1 i 1 i 2 1+i 2 1 i 2 1 i 2 Wettl Ferenc Mer legesség / 40

35 Diszkrét Fourier-transzformált Diszkrét Fourier-transzformáció T A DFT tulajdonságai Konstans vektor képe impulzusvektor (melynek a nulladikat kivéve mindegyik koordinátája 0), és fordítva, konkrétan F N (c, c,..., c) = (Nc, 0,..., 0), ahol c C tetsz leges konstans. Ha x valós vektor, akkor X N k = X k. F N (c, 0,..., 0) = (c, c,..., c). Az F N transzformáció invertálható, inverze (IDFT) többféle felírásban: x = F 1 N X = 1 N Φ N,εX, x k = 1 N N 1 n=0 X n ε kn = 1 N N 1 n=0 X n e 2πi N kn. Wettl Ferenc Mer legesség / 40

36 Diszkrét Fourier-transzformált Gyors Fourier-transzformáció M DFT kiszámításához N 2 m velet M két fele akkora méret Fourier-transzformációból megkapható: X k = = = = N 1 n=0 N/2 1 n=0 N/2 1 n=0 N/2 1 n=0 x n e N 1 2πi kn N = x 2n e x 2n e n=0 x n ω kn N N/2 1 2πi 2nk N + n=0 2πi N/2 nk 2πi + e N N/2 1 x 2n ω nk + N/2 ωk N n=0 x 2n+1 e N/2 1 k n=0 2πi (2n+1)k N x 2n+1 e 2πi N/2 nk x 2n+1 ω nk N/2 = E k + ω k N O k. E k és O k N/2 szerint periodikusak E k+n/2 = E k, O k+n/2 = O k Innen k < N/2 esetén X k = E k + ωn k O k, X k+n/2 = E k ωn k O k. A m veletigény 3 N log N. 2 Wettl Ferenc Mer legesség / 40

37 Diszkrét Fourier-transzformált Gyors Fourier-transzformáció function FFT(x) N dim(x) X legyen N-dimenziós vektor if N = 1 then X 0 x 0 else y x páros index elemei z x páratlan index elemei Y FFT(y) Z FFT(z) for k 0 to N/2 1 do E Y k 2πi k N Z k O e X k E + O X k+n/2 E O return X Wettl Ferenc Mer legesség / 40

38 Diszkrét Fourier-transzformált Gyors Fourier-transzformáció M FFT mátrixszorzat-alakja F N = N [ FN/2 O O F N/2 ] Π N, Π N az a permutációs mátrix, mely el re veszi a páros index elemeket, N a fél transzformáltakat összeadó, és a páratlan index eket egy ω-hatvánnyal beszorzó mátrix Π 4 = Π = [ ] 4 = i = I2 D 2 I 2 D i = [ I4 D 4 I 4 D 4 Wettl Ferenc Mer legesség / 40 ]

39 Diszkrét Fourier-transzformált Gyors Fourier-transzformáció A mátrixokban szerepl diagonális mátrixok az egységmátrixok, és az ω hatványait tartalmazó D mátrixok, ahol D k = diag(1, ω, ω 2,..., ω k 1 ). Pl. [ ] F4 O F 8 = 8 O F 4 Π 8 [ ] 4 O = 8 O 4 F 2 O O O O F 2 O O O O F 2 O O O O F 2 [ Π4 O O Π 4 ] Π 8. Wettl Ferenc Mer legesség / 40

40 Diszkrét Fourier-transzformált Gyors Fourier-transzformáció Wettl Ferenc Mer legesség / 40

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát. 1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai 1. A probléma megfogalmazása. KÁLMÁN-FÉLE SZŰRŐK E jegyzet témája az úgynevezett Kálmán-féle szűrők vizsgálata. A feladat a következő. Adott egy x(0),x(1),..., több változós (együttesen) normális, más

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Á ü ü Á Á Á ü Á ű ű ű Ö ü ü ü ü ü ü ü ű É É É É Ö Á ű ű ű Á ű ű Á ű Ö Í ű ü ü ü ü Í ü Í Ü Ö ü Ü ü ű ű Ö Ö Ü ü ü ű ü Í ü ü ü Ő Ő Ü ü Í ű Ó ü ű Ú ü ü ü ü ü Ö ü Ű Á Á ű É ü ü ü ü ű ü ü ü ű Ö Á Í Ú ü Ö Í Ö

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Elemi átalakítások. Dr. Maróti György. valamelyik egyenlet beszorzása egy nullától különböz számmal.

Elemi átalakítások. Dr. Maróti György. valamelyik egyenlet beszorzása egy nullától különböz számmal. Elemi átalakítások Dr. Maróti György Egyenletrendszerek helyett mátrixok Az elz témakörben számos egyenletrendszeren végeztünk ekvivalans átalakításokat. Emlékeztetül ezek két egyenlet felcserélése; valamelyik

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Ü ű Ú Ö Ü É É ű É Ö Ü É ű Á ű Ú Ú Ú Á Á ű Á É É Ú Á ű Ó Ó Á Ú Á ű Ü Á Ú Ú Á ű Ú Á Ú Á Á Ú Ú Á Á Á Á Á É Ú Ú ű Á Á Ú Á Ú Á É Á É É Á Ú Ú É Á Á Á É É Á Á É Á É Á É Ü Ú Ó Á Á É Á ű Ü Á Ú Á Ü Á É É ű ű Á Ú

Részletesebben

A kurzus során először az Abel-csoportokkal kapcsolatos algoritmikus kérdésekkel

A kurzus során először az Abel-csoportokkal kapcsolatos algoritmikus kérdésekkel 1. fejezet Abel-csoportok 1.1. Algoritmikus kérdések Abel-csoportokban A kurzus során először az Abel-csoportokkal kapcsolatos algoritmikus kérdésekkel foglalkozunk. Abel-csoportokban általában additív

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Játékgeometria. * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a

Játékgeometria. * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a Társadalmi Megújulás Operatív Program Határon átnyúló együttműködés a szakképzés és a felnőttképzés területén c. pályázati felhívás keretében

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

1. A LINEÁRIS ALGEBRA ALAPJAI

1. A LINEÁRIS ALGEBRA ALAPJAI KVANTITATÍV reive! együtt dolgozik. Az ú] tudományág határtenilet a matematika, a gazdaságtudomány és a számítástudomány között.. A LINEÁRIS ALGEBRA ALAPJAI Az operációkutatás középpontjában a közgazdasági

Részletesebben

Sztochasztikus folyamatok

Sztochasztikus folyamatok Sztochasztikus folyamatok Pap Gyula, Sz cs Gábor Szegedi Tudományegyetem Bolyai Intézet, Sztochasztika Tanszék Utolsó frissítés: 2014. február 8. Tartalomjegyzék Tartalomjegyzék 2 1. Sztochasztikus folyamatok

Részletesebben

Í Ü Ő Ő Á Ó Á Ő Ú Á Á ó ú í Í Á Ö Á í í Í Ő Ű ú ú Á Í í í Í Í ü ó ö ö í ó ó Í ó í ú ö ö Á Á Á Á í ó í ö ó ó ó ö ö ű ú í íí ó Í ú í ö ó ú í í ó ó ó ó ó ű ó ó ú ö ó í óá ű ó í í Á ú Á í í ó Á ü ö ó ó ó ü

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén

TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén TDK dolgozat Korlátosság vizsgálata irány-hossz vegyes gráfok esetén Szabó Botond Alkalmazott matematikus szak Eötvös Loránd Tudományegyetem Természettudományi Kar 2009 Témavezet : Jordán Tibor, egyetemi

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

É Ü Ü ú ú Á Ú ű É ú Ö Ü É Ü Á ű Á Á ú ú ú É Á ú ű É Ö É Á Ú Á ú ú É É ű ű ű Á ű Á ú Á ű ű ű ú Á Á ű ú ú ú ű ű ú ű ú ű Á ÁÁ É Á Á Á ű ű ú Ü É ú ű ű ű ű ű ű Ú Ü ű ű ű ú ú ű ű É ú ű ű Á ú ű É ú Ü Ú Ú Ü Ű

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

Operációkutatás. Glashütter Andrea

Operációkutatás. Glashütter Andrea Glashütter Andrea Mátriok I. Mátriok A mátriok olyan számtáblázatok, amelyek n db sorral és m db oszloppal rendelkeznek. Általános mátri: m n nm n n m m a a a a a a a a a A K M O M M K K Egy tetszleges

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

ü Ó Ű ü Ó Ü Ó Ű Ó Ü Ű Ü ű Ó Ű Ó Ű ü ű ű Ű ű Ű Ű Ó Á Ű Ű Ű Ű Ó Ű Ü Ű ű Ű Ó Ó Ó ű Ó Ö Ű Ű Ó Ó Ű Ü Ü Ó Ü Ó ű Á Á ü Ű Ü ű Ü Ó Ü Ü Á Ű Ó Ó Ó Ű Ü Ó Ű Ű Ü ű Ű Ű Ű Ű Ó Ü Ó Ű É Ó Ű Ó Ó ű Ó ü Ő Ü É Ö Ű ű Ü ű Ű Ö

Részletesebben

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS SZÁMÍTÓGÉPI GRAFIKA VÁGÁS FELADAT: Ha az alakzat nagyobb, mint a képtartomány, amelyben megjelenítendő, akkor a kívül eső részeket el kell hagyni, azaz az alakzatról le kell vágni, röviden szólva: az alakzatot

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

1. Trigonometria. 1.1. Bevezetés

1. Trigonometria. 1.1. Bevezetés . Trigonometria.. Bevezetés Elöljáróban csak annyit: A szögekkel ideje lenne megtanulni rendesen számolni. Láttuk: Két vektor, vagy ha úgy tetszik, két erő összege igen kényes arra, hogy az összegzendők

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben