Halmazműveletek feladatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Halmazműveletek feladatok"

Átírás

1 Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8} B={-9; -6; -2; -1; 0; 3; 7; 9} Határozzuk meg az A\B halmaz elemeit! A={27-nél nem nagyobb 5-tel osztható természetes számok} B={18-nál kisebb 3-mal nem osztható természetes számok} Határozzuk meg az AUB halmaz elemeit! A={-8; -6; -4; -1; 1; 3; 4} B={-9; -7; -6; -4; 0; 4; 5; 9} Határozzuk meg az A B halmaz elemeit! A={-5; -4; -3; 0; 1; 2; 4; 6; 9; 10} B={-10; -2; 2; 3; 5; 6; 9; 10} Határozzuk meg a B\A halmaz elemeit! A={25-nél kisebb páratlan természetes számok} B={15-nél nem nagyobb 4-gyel nem osztható természetes számok} Határozzuk meg az A\B halmaz elemeit!

2 1. Határozd meg az alábbi halmazokat a megfelelő számhalmaz jelöléssel vagy felsorolással N \ Z + = Q + Z = P \ R = ahol P {prím számok} és R {r Z r = 2k+1; k N} Z \ N = Z N = Q Q + = 2. Ábrázold a következő halmazokat Venn-diagramm segítségével: a, A 10-zel, a 15-tel és a 20-szal osztható számok halmazai b, A prím számok, a 3-mal és a 12-vel osztható számok halmazai c, A 6-tal, a 8-cal és a 24-gyel osztható számok halmazai 3. A := {4; 5; 6; 7; 8} B := {6; 8; 10; 12} C := {6; 7; 8; 9; 10; 11; 12} Határozd meg a következő halmazokat felsorolással: a, A B = { b, A C = { c, (C \ A) B = { d, (B \ A) (B \ C) = { 4. Adott a síkon az e szakasz és rajta az A pont. Ábrázold a két alábbi ponthalmazt: P := {P pontok dap 2 cm} és R := {R pontok der 1 cm} Ábrázold (ábrádon színessel emeld ki) az R \ P ponthalmazt. Egy 33 fős tankörben háromféle idegen nyelvet tudnak: 20 diák tud angolul, 16 németül és 6 franciául, 5 diák tud pontosan két nyelven és 2 diák tud mindhárom nyelven beszélni. Hányan nem tudnak egy idegen nyelvet sem, és hányan tudnak pontosan egy idegen nyelven beszélni? 1. Egy suliban 3 kirándulást szerveznek. Az elsőre 500-an, a másodikra 200-an, a harmadikra 250-en jelentkeztek. Tudjuk: 40-en gyerek jelentkezett mindhárom kirándulásra. 100 gyerek legalább két kirándulásra jelentkezett. Hány tanuló vett részt legalább egy kiránduláson? 2. Egy 28-as létszámú osztályban 3 szakkör van. Minden gyerek legalább egy szakkörre jár. Tudjuk: A matek-szakkörre 14 gyerek jár. Akik csak matek-szakkörre járnak, 6-an vannak. Akik csak fizika-szakkörre járnak, 4-en járnak. Akik csak történelem-szakkörre járnak, 7-en járnak.

3 Bármelyik két szakkörnek pontosan ugyanannyi közös tagja van. Hány gyerek jár mindhárom szakkörre? Mit értünk két halmaz unióján? Mi a jele? Mit értünk két halmaz metszetén? Mi a jele? Mit értünk A\ B halmazon? Mi a jele? Mit értünk B \ A halmazon? Mi a jele? Mit értünk részhalmazon? Mi a jele? Mikor egyenlő két halmaz? Mi az üreshalmaz? Mi a jele? Mit értünk valódi részhalmazon? 2. Add meg két különböző jelöléssel a kettőnél nagyobb és a 10-nél nem nagyobb pozitív egész számok halmazát. 3. Legyen A a jó tanuló fiatalok halmaza, B a jó sportoló fiatalok halmaza. Adja meg szavakkal az A B, A \ B, B \ A, A B, A B halmazt! 4. A = a;b;e;f;g;h;i B = c;d;f;g;h;i;j;k Határozza meg az A\ B; B \ A; A B; B A; A B; B A halmazokat! 5. Ábrázold a következő halmazokat, adott A,B és C halmazok esetén! - (A B)\C - A B C - (B A)\C - A\(B C) - (B A)\C - B\A - (A B)\C - B A C - (B A)\C - (A B) C - A\B - A\(B\C) - A\(B C) - (B A)\C 6. A 1; 2; 5; 7; 9 B 3; 4; 5; 6; C 5; 6; 8; 9 A (B C)? (A B) C? (A C) B? 7. Adja meg a színezett tartományt képlettel!

4 8. Határozza meg az A\ B és a B \ A halmazt, ha A a; b; c; d ; A B a; b; c; d ; A B a; c A \ B b; d és B \ A 9. Milyen kapcsolat van az alábbi esetekben az A és a B halmaz között? a) A\B és A B A b) A\B és A B A c) A\B és B\A 10. Az M a; b; c; d;e; f halmaz A, B és C részhalmazaiból az alábbiakat tudjuk: A B b ; (A B) C e; f ; A \ C b; c; d ; C \ B a; e. Határozza meg az A, B és a C halmazokat! 11. Határozza meg az A és a B halmazokat, ha tudja, hogy A B a; b; c; d; e ; A B c; f ; A \ B a ; B \ A b; d! 12. A = {2; 3; 5; 8}; B = {1; 3; 4; 8}; C = {1; 5; 6; 7} A B C =? (A B) C =? B \ (A B) =? A B C = {1; 2; 3; 4; 5; 6; 7; 8}

5 (A B) C = {5; 1} B \ (A B) = {4} 13. A = {a, d, e, f}; B = {a, c, d, g}; C = {b, c, d, f, g} (A \ B) C =? B \ (A C) =? (A \ B) C = {f} B \ (A C) = 14. Határozd meg az A, B és C halmazokat, ha tudod hogy : A B C = {2;4;5;6;7;8;9} A B C = {2}; A B = {2;4}; A \ B = {9;6}; B \ (A C) = {7}; A \ (B C) = {9} és (B C) \ (A (B C)) = {5} 15. Egy osztály 32 tanulója közül 8-an emelt matematikából, 6-an emelt fizikából, 4 tanuló emelt matematikából és emelt fizikából is érettségizik. Hányan nem érettségiztek egyik említett tantárgyból sem? Hányan tettek emelt érettségit csak az egyik tantárgyból? Hányan tettek emelt érettségit valamelyik tantárgyból? 16. Egy osztály létszáma 32. Az osztályban angolul és németül tanulnak, és mindenki tanul valamilyen nyelvet. Mindkét nyelvet huszonegyen tanulják. Bizonyítsa be, hogy az angolul és a németül tanuló diákok száma nem lehet egyenlő! tanuló indult matematika versenyen. Az első feladatot 19-en, a másodikat 15-en, a harmadikat 18-an oldották meg hibátlanul. Az első és a második feladatra 7-en, az első és a harmadik feladatra 9-en, a második és a harmadik feladatra 10-en adtak helyes megoldást. Mindhárom feladatot 3 tanuló oldotta meg jól. Hány tanulónak nem sikerült egy feladatot sem megoldani? 18. Igaz-e bármely A; B; C halmazok esetén? a) (A B) \ C = A (B \ C) b) (A B) \ C = A (B \ C) c) (A \ B) (B \ A) = (A B) \ (A B) d) C \ ( A B) = (C \ A) (C \ B) 19. Bizonyítsd be, hogy! 20. Bizonyítsd be, hogy! 21. Bizonyítsd be, hogy a metszet asszociatív művelet! 22. Bizonyítsd be, hogy az unió asszociatív művelet! 24. Tudjuk, hogy A B = 4; A \ B = 2; A B = 9. A =?; B =? 25. Adott a valós számok néhány részhalmaza. A = [ 2; 6] ; B = [ 4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 26. Adott a valós számok néhány részhalmaza. A = ]2; 6[ ; B = ] 4; 8[ A B =? A B =? A \ B =? B \ A =? A B =? 27. Adott a valós számok néhány részhalmaza. A = [ 2; 6[ ; B = ]4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 28. Adott a valós számok néhány részhalmaza. A = ] 2; 6] ; B = ] 4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 29. Adott a valós számok néhány részhalmaza. A = [ 2; 6[ ; B = [ 4; 8]

6 A B =? A B =? A \ B =? B \ A =? A B =? 30. Adjon meg öt olyan számot, amelyek az intervallumba esnek. 31. Adja meg az alábbi műveletek eredményét intervallummal és számegyenesen is! a) [2;3] [4;5] b) [2;3] [4;5] c) [2;3] \ [4;5] 32. Adja meg az alábbi műveletek eredményét intervallummal és számegyenesen is! a) ] ; 4[ ]3; [ b) ] ; 4[ ]3; [ c) ] ; 4[ \ ]3; [ d) ] ; 4] [3; [ e) ] ; 4] [3; [ f) ] ; 4] \ [3; [ 1. Sorolja fel az A halmaz részhalmazait! A 0; 2; 4; 6; 8 2. Ábrázold a két halmazt Venn-diagrammon! A 1; 2; 3; 4; 7; 8 ; B 3; 4; 5; 6 Add meg a két halmaz közös elemeit! Add meg azt a halmazt, amelyben csak az A elemei vannak benne! Add meg azt a halmazt, amelyben csak a B elemei vannak benne! Add meg azt a halmazt,amely az A és a B összes elemét tartalmazza! 3. Ábrázold Venn-diagrammon a téglalapokat és a rombuszokat! Mik tartoznak bele mind a két halmazba? 4. Legyen A a páros számok halmaza, B a néggyel osztható egész számok halmaza. Mi a kapcsolat a halmazok között? 5. Keresse meg a következő halmazok között az egyenlőket! Halmazműveletek HALMAZOK 1. Adott két halmaz: A = kétjegyű pozitív, 3-mal osztható számok B = 10-nél nagyobb, de 30-nál nem nagyobb pozitív egész számok Határozza meg az A B halmaz elemeit! 2. Az A halamaz elemei a kétjegyű négyzetszámok, B = 3 k k N. Határozza meg az alábbi halmazokat! a) b) A\ B A B 3. Ha az A halmaz a B halmaznak részhalmaza, akkor az alábbi állítások közül melyik igaz és melyik hamis: a) A B= A b) A B B

7 4. Legyen az A halmaz a 15-nél nem nagyobb pozitív páros számok halmaza, a B halmaz a 15-nél nem nagyobb 3-mal osztható számok halmaza. Határozza meg az A \ B halmaz elemeit! 5. Adott két halmaz: A = húsznál kisebb, pozitív, hárommal osztható számok halmaza B = 1;4;9;16 Sorolja fel az elemeit! A B és az A\ B 6. Az A halmaz elemei a pozitív egész egyjegyű számok, a B halmaz elemei a prímszámok. Határozza meg az A B halmaz elemeit! 7. Az A halmaz elemei a 0-ra végződő kétjegyű természetes számok, B = 3 k k N. Határozza meg az alábbi halmazokat: a) b) A\ B! A B 8. Az A és a B halmazokról a következőket tudjuk: A B= 1;2, A B= 1;2;3;4;5;6;7, Adja meg az A és B halmaz elemeit! A \ B = 5;7. 9. A= trapézok ; B= deltoidok ; C= Húrnégyszögek. Határozza meg az alábbi halmazokat! a) b) B C c) (12 pont) A B A C Számegyenes, intervallumok 10. Legyen az A halmaz a -3;5 intervallumban levő valós számok halmaza, B pedig a 2;6 intervallumban levő valós számok halmaza. Adja meg és ábrázolja egy számegyenesen az A \ B halmaz elemeit! (3 pont) 11. Legyen az A halmaz 1-nél nem kisebb, de 9-nél kisebb számok halmaza, a B halmaz a 7-nél nem nagyobb pozitív számok halmaza. Ábrázolja egy számegyenesen az A és B halmazok metszetét! (3 pont) 12. A póknak 8 lába van. Szekrényfiókjában 10 db piros, 10 db kék, 10 db fehér és 10 db sárga zoknit tart. Legkevesebb hány db zoknit kell kivennie becsukott szemmel, hogy biztosan jusson minden lábára ugyanolyan színű zokni? (4 pont) 13. Az A és B halmazokról a következőket tudjuk: A B= 1;2;3;4;5;6;7 A B= 2;7 Határozza meg a B halmaz elemeit! A \ B = 1;3;5 14. Legyen az A halmaz azon x valós számok halmaza, melyekre x 10. A B halmaz azon x valós számok halmaza, melyekre -3 x, végül C halmaz azon x valós számok halmaza, melyekre -3 < x >20. Határozza meg az Halmazok számossága A B C halmaz elemeit! 15. Ha az A halmaznak 15 eleme van, a B halmaznak 9 eleme van, az eleme van az A\ B halmaznak? A B halmaz 6 elemű, akkor hány 16. Az A halmaz elemei a 20-nál kisebb pozitív egész számok. A B halmaz elemei a pozitív prímszámok. Hány eleme van az A\ B halmaznak? 17. Az A halmaznak 12 eleme van, a B halmaznak 18 eleme van. Az A B elemeinek a száma 7. Hány eleme van az A B halmaznak? 18. Egy matematikaversenyen két feladatot tűztek ki. Az első feladatot az indulók 80%-a, a másodikat pedig az indulók 40%-a oldotta meg. Minden résztvevő megoldott legalább egy feladatot, mindkét

8 feladatot 2 tanuló oldotta meg. Hányan indulhattak a versenyen? 19. Egy 10 tagú csoportban mindenki beszéli az angol és a német nyelv valamelyikét. Hatan beszélnek közülük németül, nyolcan angolul. Hányan beszélik mindkét nyelvet? Válaszát indokolja számítással, vagy szemléltesse Venn-diagrammal! (3 pont) 20. Egy zeneiskola egyik évfolyamán háromféle hangszeren tanulnak a diákok (mindenki tanul legalább egy hangszeren). Hegedülni 32-en, zongorázni 36-an, fuvolázni 28-an tanulnak. Három hangszeren senki sem tanul. Azok száma, akik pontosan két hangszeren játszanak 25, közülük hegedülni és zongorázni is tanulnak 8-an. a) Hányan tanulnak csak fuvolán? (6 pont) b) Hányan járnak erre az évfolyamra? (5 pont) c) Igaz-e, hogy van az évfolyamon legalább 11 olyan diák, akik születési dátuma a hétnek ugyanolyan napjára esik? (6 pont) 21. Egy 26 fős sportosztályban háromféle sportot űznek a diákok: 15-en atletizálnak, 14-en birkóznak és 12-en cselgáncsoznak. (Minden tanuló sportol valamit.) Azok száma, akik két sportot űznek háromszor annyi, mint azok száma, akik mindhárom sportot űzik. a) Hányan vannak, akik csak egy sportot űznek? (6 pont) b) A két sportágat űzők közül azok, akik atletizálnak és cselgáncsoznak, fele annyian vannak, mint a többiek, akik két sportágat űznek. Hányan járnak az osztályból csak birkózóedzésre? (6 pont) c)ha tudjuk, hogy legalább két olyan diák van, akik csak atletizál és birkózik, akkor legalább és legfeljebb hányan vannak azok, akik csak cselgáncsoznak? (5 pont) 22. Egy természettudományos tagozatú osztály létszáma 41 fő. E diákok 3 tárgyat választhatnak fakultációs tárgyként: biológiát, kémiát és fizikát. Azok a diákok, akik két tárgyat választottak pontosan kétszer annyian vannak, mint akik mindhárom tárgyat választották. a) András szerint 27 olyan diák van, akik csak egy tárgyból fakultáltak. Kati szerint András tévedett. Kinek van igaza? (6 pont) b) Ha 4 tanuló volt, aki csak biológiából és kémiából fakultált, és hárman mindhárom tárgyból fakultáltak, akkor hány olyan tanuló van, akik csak egy tárgyat választottak? (6 pont) c) Az osztály minden tanulója kiszámította egy öröknaptár segítségével, hogy születési dátuma a hétnek milyen napjára esett. Ezt mindenki felírta egy cetlire, majd a cetliket egy nagy kalapba tették. Igaz-e, hogy van legalább 6 olyan cédula, melyeken ugyanaz a nap szerepel? (5 pont) 23. Az iskolai Túra Szakosztály mind a 42 tagja részt vett az idei három túra valamelyikén. A második kiránduláson 1-gyel, a harmadikon pedig 5-tel többen vettek részt, mint az elsőn. Azok száma, akik két túrán vettek részt 3-szor, akik pedig egy túrán vettek részt 10-szer annyi, mint azok száma, akik mindhárom túrán részt vettek. a) Hányan vettek részt a kiránduláson? (6 pont) b) Hányan vettek részt az első, a második és a harmadik kiránduláson? (6 pont) Vegyes feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? (4 pont) Közben Enikő is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mindhárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést

9 megtalálták. b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! (7 pont) c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést megtalált. d) Mennyi annak a valószínűsége, hogy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták? (4 pont) 2. Egy osztályban a következő háromféle sportkört hirdették meg: kosárlabda, foci és röplabda. Az osztály 30 tanulója közül kosárlabdára 14, focira 19, röplabdára 14 tanuló jelentkezett. Ketten egyik sportra sem jelentkeztek. Három gyerek kosárlabdázik és focizik, de nem röplabdázik, hatan fociznak és röplabdáznak, de nem kosaraznak, ketten pedig kosárlabdáznak és röplabdáznak, de nem fociznak. Négyen mind a háromféle sportot űzik. a) Írja be a megadott halmazábrába a szövegnek megfelelő számokat! (4 pont) b) Fogalmazza meg a következő állítás tagadását! A focira jelentkezett tanulók közül mindenkinek van testvére. c) A focira jelentkezett 19 tanulóból öten vehetnek részt egy edzőtáborban. Igazolja, hogy több, mint féleképpen lehet kiválasztani az öt tanulót! d) Az iskolák közötti labdarúgó-bajnokságra jelentkezett 6 csapat között lejátszott mérkőzéseket szemlélteti a 2. ábra. (3 pont) Hány mérkőzés van még hátra, ha minden csapat minden csapattal egy mérkőzést játszik a

10 bajnokságban? (Válaszát indokolja!) (3 pont) 3. Egy zeneiskola minden tanulója szerepelt a tanév során szervezett három hangverseny, az őszi, a téli, a tavaszi koncert valamelyikén. 20-an voltak, akik az őszi és a téli koncerten is, 23-an, akik a télin és a tavaszin is, és 18-an, akik az őszi és a tavaszi hangversenyen is szerepeltek. 10 olyan növendék volt, aki mindhárom hangversenyen fellépett. a) Írja be a halmazábrába a szövegben szereplő adatokat a megfelelő helyre! (4 pont) A zeneiskolába 188 tanuló jár. Azok közül, akik egy hangversenyen léptek fel, kétszer annyian szerepeltek tavasszal, mint télen, de csak negyedannyian ősszel, mint tavasszal. b) Számítsa ki, hogy hány olyan tanuló volt, aki csak télen szerepelt! (8 pont) c) 32 tanuló jár az A osztályba, 28 pedig a B-be. Egy ünnepélyen a két osztályból véletlenszerűen kiválasztott 10 tanulóból álló csoport képviseli az iskolát. Mennyi annak a valószínűsége, hogy mind a két osztályból pontosan 5-5 tanuló kerül a kiválasztott csoportba? (5 pont) 4. Egy középiskolába 700 tanuló jár. Közülük 10% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétikai szakosztályban 36 tanuló sportol rendszeresen, és pontosan 22 olyan diák van, aki az atlétikai és a kosárlabda szakosztály munkájában is részt vesz. a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! (4 pont) b) Hányan sportolnak a kosárlabda szakosztályban? (4 pont) c) Egy másik iskola sportegyesületében 50 kosaras sportol, közülük 17 atletizál is. Ebben az iskolában véletlenszerűen kiválasztunk egy kosarast. Mennyi a valószínűsége, hogy a kiválasztott tanuló atletizál is? (4 pont) Emelt szint 1. Egy sporttagozatos osztályban (ahol mindenki sportol), atletizálnak, birkóznak és cselgáncsoznak a tanulók. Három olyan diák van, aki mindhárom sportot űzi. Akik pontosan 2 sportot űznek, 10-zel kevesebben vannak, mint azok, akik pontosan egy sportot űznek. Akik csak birkóznak kétszer annyian vannak, mint azok akik csak atletizálnak, és fele annyian vannak, mint akik csak cselgáncsoznak. Melyik állítás igaz? a) Osztálylétszám: 31 fő.

11 b) Osztálylétszám: 33 fő. c) Osztálylétszám: 35 fő. (12 pont) 2. Legyen az A halmaz a 4-gyel osztható négyjegyű számok halmaza, a B halmaz pedig az 5-tel osztható négyjegyű számok halmaza. a) Hány eleme van az A és a B halmaznak? (6 pont) b) Egy urnában elhelyeztük az A halmaz elemeit, majd utána elhelyeztük ugyanebben az urnában a B halmaz elemeit. Ez után véletlenszerűen kivettünk az urnából egy számot. Mekkora a valószínűsége, hogy a kivett szám eleme az A B halmaznak? (7 pont) Halmazok számossága Egy 25 fős osztályban mindenki tanul angolt vagy németet. Angolul 18-an, németül 17-en tanulnak. Hányan tanulják mindkét nyelvet? Az alaphalmazban az osztály tanulói vannak, összesen 25-en. Az alaphalmaz számossága 25. Így jelöljük: U = 25. Két tulajdonságot különböztetünk meg: angolul tanulók, németül tanulók. Bármely tanuló legalább az egyik halmaznak eleme. Az angolul tanulók halmazának 18 eleme van, azaz számossága 18. Így jelöljük: A =18. A németül tanulók halmazának 17 eleme van, azaz számossága 17. Így jelöljük: B =17. Azok a tanulók, akik mindkét nyelvet tanulják a két halmaz metszetének elemei. A kérdés a metszet számossága. A összegben kétszer szerepel a metszet elemszáma: aki mindkét nyelvet tanulja arra igaz az is, hogy angolt tanul, és az is, hogy németet. Az osztálylétszámban viszont mindekinek egyszer kell szerepelnie. Hány tanulót számoltunk meg kétszer? = 10. Tehát 10 tanuló tanulja mindkét nyelvet. Egy osztály tanulóinak 2/3 része angolul tanul, 3/4 része pedig franciául. 10 tanuló mindkét nyelvet tanulja. Hányan járnak az osztályba, ha mindenki tanul legalább egy nyelvet? Ismét a metszet elemei szerepelnek mindkét halmazban, az angolul tanulók halmazában is, és a franciául tanulók halmazában is. 2/3 + 3/4 = 8/12 + 9/12 = 17/12. Ahányad résszel több ez az összeg az 1 egésznél, az osztály annyiad része van a metszetben: 1-17/12 = 12/12-7/12 = 5/12. Az osztály 5/12 része 10 fő. Így az 1/12 rész 2 fő. A 12/12 rész 24 fő. Tehát az osztályban 24 diák tanul. Egy 30 fős osztályban 20-an tanulnak angolul, nem tanulnak németet 17-en, és két olyan diák van, akik sem németül, sem angolul nem tanulnak. Hányan tanulják mindkét nyelvet? Az, hogy "nem tanulnak németet" azt jelenti, hogy a németül tanulók halmazának komplementere 17 főt

12 tartalmaz. Így a halmaz számossága = 13 fő. Tehát 13 fő tanul németet. Az idegen nyelvet tanulók száma: 30-2 = 28. Akik mindkét nyelvet tanulják: ( ) - 28 = 5. Tehát mindkét nyelvet 5 diák tanulja. MATEMATIKA GYAKORLÓ FELADATOK I. HALMAZOK 1. Legyen X = Z az alaphalmaz, továbbá A = a Z "a" páros B = b Z "a" páratlan C = 2, 3, 4, D = -2, 0, 4 a) Adjon meg részhalmazokat, diszjunkt halmazokat! b) Végezze el a műveleteket: A B, A D, A B, A D, A C, C\A, D\A! c) Adja meg a B és C halmazok számosságát! 2. Legyen az alaphalmazunk: X = R, azaz a valós számok halmaza. Legyenek A = N a természetes számok, B = Z az egész számok, C = Q a racionális, D = Q* az irracionális számok halmaza. Mivel egyenlő A B A B C D C D C D C A D-C A D 3. Írja le halmazelméleti jelölésekkel a halmazokat, ha X= a Pest megyei lakosok H = A típusú jogosítvánnyal rendelkezők K= B típusú jogosítvánnyal rendelkezők a) mindkettővel rendelkeznek: b) legalább az egyikkel rendelkeznek c) nincs A típusú jogosítványuk d) egyikkel sem rendelkeznek e) csak A típusú jogosítvánnyal nem rendelkeznek f) legalább egyikkel nem rendelkeznek g) pontosan az egyikkel rendelkeznek 4. Írja át tizedes tört formába a p/q alakú racionális számokat, illetve viszont! 4/5, 2/3, 3/2, -7/13-5, 4,16-0,058 62,333-0, ,

13

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az

HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

Halmazelméleti feladatok (középszint)

Halmazelméleti feladatok (középszint) Halmazelméleti feladatok (középszint) (KSZÉV Minta (1) 2004.05/I/9) Adott két intervallum: ] 1; 3[ és [0; 4]. a) Ábrázolja számegyenesen a két intervallum metszetét! b) Adja meg a metszetintervallumot!

Részletesebben

Érettségi feladatok: Halmazok, logika 1/5

Érettségi feladatok: Halmazok, logika 1/5 Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

3.Példa. Megoldás 4. Példa: Megoldás

3.Példa. Megoldás 4. Példa: Megoldás Megoldott feladatok 3.Példa. Egy osztályban 30 tanuló van. Ezek háromféle sportkörre járnak: futballozni, kosarazni és úszni. 20 tanuló futballozik, 6 tanuló kosarazik, 0 tanuló úszik, -en futballoznak

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Halmazelmélet alapfogalmai

Halmazelmélet alapfogalmai 1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

Év végi ismétlés 9. - Érettségi feladatok

Év végi ismétlés 9. - Érettségi feladatok Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

1. Halmazok. I. Elméleti összefoglaló. Halmazok. Számhalmazok

1. Halmazok. I. Elméleti összefoglaló. Halmazok. Számhalmazok 1. Halmazok I. Elméleti összefoglaló Halmazok A halmaz és a halmaz eleme matematikai alapfogalmak, amelyeket külön nem definiálunk. A halmazokat általában latin nagybetűvel jelöljük, elemeiket kapcsos

Részletesebben

Érettségi feladatok: Szöveges feladatok

Érettségi feladatok: Szöveges feladatok Érettségi feladatok: Szöveges feladatok 2005. május 10. 17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin

Részletesebben

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Részletesebben

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 9. évfolyam I. forduló Pótlapok száma db Matematika 9. évfolyam 1. forduló 1. Írja be a megrajzolt halmazábrába az A és B halmazok

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző 1 SET A SET játékszabályairól röviden, már ha valaki nem ismerné: Hogy néznek ki a kártyalapok? Minden kártyán van egy ábra, aminek 4 jellemzője van. Minden kategória további három különböző lehetőséget

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Logika-Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Logika-Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉPSZINT Logika-Gráfok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

HALMAZOK. Készítette: Fazekas Anna matematika tanár

HALMAZOK. Készítette: Fazekas Anna matematika tanár HALMAZOK Készítette: Fazekas Anna matematika tanár Halmazok megadása, számossága Rövid történelmi áttekintés A halmazelmélet előfutárának Richard Dedekind (1831 1916) német filozófust tekintjük, akinél

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

b) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe?

b) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe? 2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát indokolja! 2004 II. feladatlap / 17.feladat:

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen?

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? 2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát indokolja! 2004 II. feladatlap / 17.feladat:

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint

Részletesebben

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR 6. osztály 1. Kati és Pali szeptemberben elhatározta, hogy takarékoskodni fog, ezért zsebpénzükből minden hónapban félretettek egy bizonyos összeget.

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai

EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai XXII/1 2. szám, 2014. máj. EGY ÖTLET A Venn-diagram és a logikai szita alkalmazásai Tuzson Zoltán Az ábráknak nemcsak a geometriában van fontos szerepük, hanem a legkülönbözőbb feladatok megoldásában is

Részletesebben

A bemutató órák feladatai

A bemutató órák feladatai A bemutató órák feladatai 1, A dobozban van 7 narancsos, 4 epres, 3 szilvás, 2 banános cukorka. Becsukott szemmel hányat kell kivenned ahhoz, hogy biztosan legyen a) 1 db epres ízű b) 1 db narancsos ízű

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

Érettségi feladatok: Statisztika

Érettségi feladatok: Statisztika Érettségi feladatok: Statisztika 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Kombinatorika és Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Kombinatorika és Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Kombinatorika és Valószínűségszámítás 1) Egy rendezvényen 150 tombolajegyet adtak el. Ági 21-et vásárolt. Mekkora annak a valószínűsége, hogy Ági nyer, ha

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Halmazok

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY 5. OSZTÁLY 1.) A páratlan számjegyek száma 5, közülük 1 db, illetve 3 db lehet a háromjegyű számunkban. Ha mindhárom számjegy páratlan, akkor az 5 lehetőségből választhatunk mindhárom helyiértékre. Így

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben