Matematika kisérettségi I. rész 45 perc NÉV:...
|
|
- Zsuzsanna Hegedűsné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Matematika kisérettségi I. rész 45 perc NÉV: Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit! 2. Döntse el, hogy az alábbi állítások közül melyik igaz és melyik hamis! a) Ha egy természetes szám osztható hattal és tízzel, akkor osztható hatvannal. b) A 20-nál kisebb pozitív prímszámok összege páratlan. c) A deltoid átlói felezik a belső szögeket. 3. Három egyenes egyenlete a következő ( és valós számokat jelölnek): a) 1 pont b) 1 pont c) 1 pont Milyen számot írjunk az helyére, hogy az és egyenesek párhuzamosak legyenek? Melyik számot jelöli b, ha a egyenes merőleges az egyenesre? 1 pont 4. András forintos fizetését megemelték 12%-kal. Mennyi lett András fizetése az emelés után? András fizetése az emelés után Ft lett. 5. A valós számok halmazán értelmezett függvényt transzformáltuk. Az alábbi ábra az így kapott f függvény grafikonjának egy részletét mutatja. Adja meg f hozzárendelési utasítását képlettel! A hozzárendelési utasítás: 3 pont 6. Oldja meg a következő egyenletet a valós számok halmazán:. Válaszát indokolja! Az egyenlet megoldásai: 1 pont
2 7. Az függvény grafikonját eltoltuk a derékszögű koordinátarendszerben a vektorral. Adja meg annak a eltolással előállítottuk! függvénynek a hozzárendelési utasítását, amelynek a grafikonját a fenti 3 pont 8. Kata kódja az iskolai számítógépteremben egy négyjegyű szám. Elfelejtette a kódot, de arra biztosan emlékszik, hogy a kódja a 2; 2; 4; 4 számjegyekből áll. Mely számokkal próbálkozzon, hogy biztosan beléphessen a hálózatba? A válasz: 3 pont 9. Milyen x valós számra igaz, hogy? 10. Egy zsákban nyolc fehér golyó van. Hány fekete golyót kell a zsákba tenni, hogy véletlenszerűen kiválasztva egy golyót, fehér golyó kiválasztásának 0,4 legyen a valószínűsége, ha bármelyik golyót ugyanakkora valószínűséggel választjuk? A fekete golyók száma: 11. Az f függvényt a 3-tól különböző valós számok halmazán értelmezzük az képlettel. Melyik valós szám esetén veszi fel az függvény az értéket? 12. Rajzoljon le egy 4 pontú egyszerű gráfot, amelyben a pontok fokszáma rendre 3, 2, 2, 1! A válasz:
3 Matematika kisérettségi II. rész 135 perc NÉV: a) Oldja meg a valós számok halmazán a következő egyenletet! b) Oldja meg a valós számok halmazán a egyenlőtlenséget! a) 5 pont b) 7 pont Ö.: Az f és g függvényeket a valós számok halmazán értelmezzük a következő képletek szerint:. a) Ábrázolja derékszögű koordinátarendszerben az függvényt! (Az ábrán szerepeljen a grafikonnak legalább a intervallumhoz tartozó része.) b) Ábrázolja ugyanabban a koordinátarendszerben a függvényt! c) Oldja meg az egyenlőtlenséget! a) 4 pont b) c) 6 pont Ö.: Egy négyzet és egy rombusz egyik oldala közös, a közös oldal 13 cm hosszú. A négyzet és a rombusz területének az aránya 2 : 1. a) Mekkora a rombusz magassága? b) Mekkorák a rombusz szögei? c) Milyen hosszú a rombusz hosszabbik átlója? A választ két tizedesjegyre kerekítve adja meg! a) 5 pont b) 3 pont c) 4 pont Ö.: 1
4 A feladatok közül tetszés szerint választott kettőt kell megoldania! Jelölje egyértelműen a választást! (Vagy a 18. feladatra nem kap pontot.) 16. A szociológusok az országok statisztikai adatainak összehasonlításánál használják a következő tapasztalati képletet: A képletben az É a születéskor várható átlagos élettartam években, G az ország egy főre jutó nemzeti összterméke (a GDP) reálértékben, átszámítva 1980-as dollárra. a) Mennyi volt 2005-ben a várható élettartam abban az országban, amelyben akkor a G nagysága 1090 dollár volt? b) Mennyivel változhat ebben az országban a várható élettartam 2020-ra, ha a gazdasági előrejelzések szerint ekkorra G értéke a 2005-ös szint háromszorosára nő? c) Egy másik országban 2005-ben a születéskor várható átlagos élettartam 68 év. a) 4 pont Mekkora volt ekkor ebben az országban a GDP (G) nagysága (reálértékben, átszámítva b) 5 pont 1980-as dollárra)? c) 8 pont Ö.: 17 pont 17. Tekintsük a koordinátarendszerben adott és pontokat! a) Mekkora az AC szakasz hossza? b) Írja fel az AB oldalegyenes egyenletét! c) Igazolja (számítással), hogy az ABC háromszög C csúcsánál derékszög van! d) Írja fel az ABC háromszög körülírt körének egyenletét! a) b) 4 pont c) 6 pont d) 5 pont Ö.: 17 pont 18. Két ország sakkválogatottja, az A és a B csapat közös edzőtáborban készül egy világversenyre. Az első héten az azonos nemzetbeli sportolók játszanak körmérkőzéses bajnokságot, tehát minden egyes sportoló minden nemzetbelijével egy mérkőzést. Az A csapat 7 játékossal érkezett, a B csapatnál összesen 55 mérkőzés zajlott. a) Hány mérkőzés zajlott az A csapatnál, és hány tagja van a B csapatnak? A második héten az A csapat 6 kiválasztott tagjának mindegyike 8 B csapatbeli játékossal játszik egy-egy játszmát. b) Összesen hány játszma zajlott a második héten? Az edzőtáborozás végén a csapatok összes játékosa között négy egyforma ajándéktárgyat sorsolnak ki. Egy játékos legfeljebb egy ajándéktárgyat kaphat. c) Mennyi annak a valószínűsége, hogy az ajándékok közül egyet A csapatbeli játékos, hármat B csapatbeli játékosok kapjanak? a) 7 pont b) 3 pont c) 7 pont Ö.: 17 pont
5 1. Matematika kisérettségi Javítókulcs
6
7 14.
8 15.
9 16.
10 17.
11 18.
12
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Részletesebben} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Részletesebbenfüggvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
RészletesebbenFÜGGVÉNYEK x C: 2
FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x
RészletesebbenFeladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Részletesebben2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
RészletesebbenHatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
Részletesebbentörtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
RészletesebbenKisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
RészletesebbenPróbaérettségi feladatsor_a NÉV: osztály Elért pont:
Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Részletesebben2009. májusi matematika érettségi közép szint
I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
RészletesebbenMATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:
Részletesebben13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt:
A 13. Egy 2000. január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: korcsoport (év) férfiak száma (ezer f ) n k száma
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenÉrettségi feladatok: Függvények 1/9
Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett
RészletesebbenHarmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Részletesebben10.-es pótvizsga segédlet:
10.-es pótvizsga segédlet: Főbb tudnivalók: Az írásbeli vizsga 60 perc. Egy, vagy két nagyobb és sok kis feladat várható. Mint az osztályozásból látszik, nem kell minden feladatot megcsinálni a sikeres
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
RészletesebbenAzonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
Részletesebben2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
RészletesebbenGyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
RészletesebbenPróbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenPróba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenMinta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Részletesebben1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenGyakorló feladatsor matematika javítóvizsgára évfolyam.docx
1) Egy bankba ot helyezek el évre megtakarítás céljából. Mennyi pénzem lesz a év leteltekor, ha az éves kamat? 2) Egy autó értéke 7 évvel ezelőtt volt. Mennyi most az értéke, ha végig évi os értékcsökkenéssel
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
RészletesebbenXVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
Részletesebbenc.) Mely valós számokra teljesül a következő egyenlőtlenség? 3
1. Az alái feladatok egyszerűek, akár fejen is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonan erre a papírra írja! a.) Írja fel egy olyan egész együtthatós másodfokú egyenlet
Részletesebben2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
RészletesebbenHatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
RészletesebbenTrigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA 2014. január 18.
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I.
) Az a n sorozat tagját! MATEMATIKA ÉRETTSÉGI 0 október KÖZÉPSZINT I számtani sorozat első tagja és differenciája is 4 Adja meg a a 04 ) Az A és B halmazokról tudjuk, hogy AB ; ; ; 4; ;, A\ ; AB ; A ;
RészletesebbenMATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága:
MATEMATIKA KISÉRETTSÉGI 2010. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
RészletesebbenVI. Felkészítő feladatsor
VI. Felkészítő feladatsor I. 1. Egyszerűsítse az y 3 y 2 y 1 törtet, ha y 1. 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 450X szám 6-tal osztható? 3. Minden utca zajos. Válassza ki az alábbiak
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenIV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
RészletesebbenPRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
RészletesebbenMATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70
a feladat sorszáma maximális elért összesen II./A rész 13. 1 14. 1 15. 1 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenPRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
RészletesebbenPróbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
Részletesebben8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
RészletesebbenFeladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
Részletesebben= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)
Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMatematika kisérettségi
Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
Részletesebben2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!
Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p
RészletesebbenMATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. EMELT SZINT I. 1) Egy négyzet alapú egyenes hasáb alapéle 18 egység, testátlója 6 egység. a) Mekkora szöget zár be a testátló az alaplap síkjával? (4 pont) b) Hány területegység
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
Részletesebben3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Részletesebben2. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
RészletesebbenMATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc
MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
RészletesebbenMATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok
RészletesebbenKÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE
KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2017.06.27. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt
Részletesebben