Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások"

Átírás

1 Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások 1. Ismétlés 10-ig számolunk 0, 2, 4, 6, 8, 10 páros 1, 3, 5, 7, 9, 11 páratlan 1-nél nagyobb páros számok 10-nél kisebb páratlan számok 2, 4, 6, 8, 10 9, 7, 5, 3, 1 6 kisebb szomszédja: 5 7 páratlan szomszédjai: 5 és 9 8 kisebb páratlan szomszédja: 7 4. feladat = = = = = = = = = = feladat feladat

2 7. feladat 10 3 = = = = 10 6 = = = = 1 8. feladat feladat A A = B + C B B = A C C C = A B 10. feladat = 7 A gyerekek 7 léggömbbel játszhatnak tovább. 14. feladat bal = 6 db < jobb = 9 db 9 3 = 6 A bal kezemben 6 cukorka van.

3 15. feladat = 3 A tálcán 3 túrós bukta maradt. 20-ig számolunk Pólók: 17 = Léggömb: 14 = Katica: 19 = Cica: 12 = Alma: 20 = feladat feladat feladat feladat

4 8. feladat feladat feladat Számegyenesen megjelölt pontok: 14, 16, 17, 18, feladat

5 15. feladat feladat feladat feladat = feladat 14 < = mesekönyve van Emesének. 20. feladat 19 7 = aranyérme van Bátornak = inget mosott ki a nagymama.

6 20-ig számolunk 10 átlépésével feladat feladat és 1

7 6. feladat és e:15, p:nincs e:18, p:3 e:11, p:4 e:11, p:2 e:14, p:3 e:17, p:4 e:11, p:1 e:12, p:2 e:16, p:6 e:16, p:6 e:15, p:2 e:16, p:5 e:14, p:4 e:17, p:6 e:16, p:8 7. feladat feladat és feladat feladat

8 feladat = 2 = + 2 = = = feladat A A = C B 2 B B = C A 2 C C = A + B feladat 17. feladat = 7, 6, 5, 4, 3, 2, 1, 0 = 0, 1, 2, 3, 4, feladat Igaz: = 0,1 Hamis: = 2, 3, 4, 5, 6, 7, Igaz: = 0, 1, 2, 3, 4 Hamis: = 5, 6, 7, 8, 9,

9 as körben számolunk Ráhangolódás = 5, 8, 12, 13, 16, 19, 22, 23, 25, 27, 30, 31, 33, 34, 35, 38, 43, 49, 51, 52, 54, 58, 60, 63, 65, 66, 69, 71, 74, 75, 76, 77, 80, 83, 88, 91, 92, 94, 95, 96, 97, 98 0 < 4 < 8 < 16 < 20 < 24 < 25 < 28 < 32 < 36 < 40 < 50 Kettesével: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, , 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 Ötösével: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105 Tízesével: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, feladat feladat és Kétjegyű számok bontása egyesekre, tízesekre 1t + 9e 2t + 2e 3t + 5e

10 99 = 9t 9e 23 = 2t 3e 31 = 3t 1e 73 = 7t 3 e 44 = 4t 4e 82 = 8t 2e 53 = 5t 3e érmék = szám = százas tízes egyes = 10 = = 100 = = 14 = = 26 = = 55 = = 45 = = 81 = = 99 = feladat feladat és 36 < 45 2t + 4e < 3t + 1e 7t + 0e > 2e + 5t 80 > < 86 4t + 6e > 1t + 8e 26e = 2t 6e 29 > 9 57 < 72 5t + 8e = 8e + 5t 56e < 6t + 2e 57 < 75 A tízes helyén álló szám kettővel nagyobb, mint az egyes helyén álló szám. A tízesek és az egyesek helyén álló számok összege 7. Az egyesek helyén kétszer akkora szám áll, mint a tízesek helyén.

11 Műveletek kerek tízesekkel c) Az 1. számegyenesen megjelölt számok: 3, 4, 5, 8, 10 A 2. számegyenesen megjelölt számok: 30, 40, 50, 80, > 60 <20 80 < = 70 < > < > 70 < > 70 < > feladat

12 5. feladat = = = = = = = = = = = = = = feladat feladat 10 20

13 feladat feladat feladat és 50 30> 20 20> 0 < > 10 = 10 10> 0 20 < > 20 20> 0

14 = 40 Zsinett 50 pont 10> Zsanett 40 pont Zsanett 40 pontot ért el = 90 Összesen 90 pontot értek el. Hosszúság mérése = > < < < = = > >

15 Műveletek kerek tízessel és egyjegyű számokkal c) feladat 22 (8 áthúzás) 32 (8 áthúzás)

16 feladat feladat feladat = = = = = = = = = = = = = = = = = = = = feladat és

17 9. feladat feladat 5 (5 áthúzás) 5 (5 áthúzás) = = = = = = = = = = = = = = = 65

18 < < 40 = 38, feladat 40 < 52 = 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, feladat 43 < 48 = 24, 25, 26, 27, feladat = 100 = feladat A A = C + B B B = A C C C = A B 18. feladat = = = feladat A A = D B C B B = D A C C C = D A B D D = A + B + C

19 Műveletek teljes kétjegyűvel és egyjegyűvel tízes átlépése nélkül = = és c) 80 > 79 > 78 > 60 > 59 > 50 > 49 > 48 > 39 >

20 4. feladat 24 (3 áthúzás) 34 (3 áthúzás) feladat = = = = = = = = = feladat A B C A 3 B B + 3 A A + 1 C B + 4 C C 4 B C 1 A 7. feladat feladat feladat feladat 4 (4 áthúzás) 3 (3 áthúzás) 2 (2 áthúzás)

21 és c) = = = = = 98 1 és 6t + 8e 68 5 = = 91 4t + 9e 49 6 = = 31 5t + 9e 59 8 = < < 50 = 48, feladat 56 < 77 = 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, feladat 59 < = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, feladat = en folytatták az útjukat. Űrtartalom dl 8 dl = 12 dl 20 dl 15 dl = 5 dl 20 dl 12 dl = 8 dl 20 dl 7 dl = 13 dl 20 dl 20 dl = 0 dl

22 és 67 dl < 80 dl 90 dl > 72 dl 66 dl > 52 dl 0 dl = 0 dl 78 dl < 88 dl 49 dl < 50 dl Műveletek teljes kétjegyűvel és kerek tízessel = = 55 és c) = = = = = = = = 79 és

23 12 (2 db 10-es áthúzás 13 (3 db 10-es áthúzás 34 (3 db 10-es áthúzás feladat = = = = = = = = feladat db 10-es beszínezése 3 db 10-es beszínezése 3 db 10-es beszínezése 6. feladat feladat

24 8. feladat , 47, 56, 58, 61, 62, 67, 73, feladat feladat = = = = 59

25 = = = = = 56 1 és H I H + I = = = feladat X X = Z + 50 Y Y Y = Z + 50 X Z Z = X + Y feladat 25 < = kutyás matricát kapott. Műveletek teljes kétjegyűvel és egyjegyűvel = 45

26 = = = = 72 és = = = = = = = 26

27 = = = = = = feladat és és c) = = = = = feladat Tízes számszomszédok feladat feladat feladat és 51 2 = = = = = = = = 87

28 9. feladat = = = = = = = = = feladat 33 < < 41 = 34, 35, 36, 37, 38, 39, 40 A számegyenesen megjelölt számok: 34, 35, 36, 37, 38, 39, <2 + 9 = < + 3 < 95 = 86, 87, 88, 89, 90, = 57 kapott: 8 lett: szalvétája volt Erzsinek. Műveletek teljes kétjegyűekkel = = = = = = = =

29 és feladat és feladat = = = = = = = = feladat és = = 27 1 db 10-es 2 db 10-es 6 db 1-es 7 db 1-es = = = 39 3 db 10-es 2 db 10-es 3 db 10-es 9 db 1-es 9 db 1-es 9 db 1-es 7. feladat feladat

30 9. feladat = = = = = feladat = = = = = = = = = =

31 1 42 < < 52 = 43, 44, 45, 46, 47, 48, 49, 50, 51 A számegyenesen megjelölt számok: 43, 44, 45, 46, 47, 48, 49, 50, < < 43 = 39, 40, 41, 42 A számegyenesen megjelölt számok: 39, 40, 41, feladat Igazzá teszi: = 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 Hamissá teszi: = 34, 33, 32, vagy 50, 51, 52, 53, feladat = 4 Rudi: 19 perc Robi: 23 perc 4 perccel előzte meg Rudi Robit. Tömegmérés fél kg + 50 dkg = 1 kg fél kg = 50 dkg Fél kg például: kenyér, sajt, cukor, só c) dkg + 10 dkg + 20 dkg + 12 dkg = 52 dkg

32 3. Szorzás, osztás Szorzás, bennfoglalás, részekre osztás = = = = = = = = = = = = feladat 6 : 2 = 3 12 : 4 = 3 6 / 3 = 2 12 / 3 = 4 5. feladat 12 : 3 = 4 12 : 4 = 3 12 : 6 = 2 12 / 4 = 3 12 / 3 = 4 12 / 2 = 6 6. feladat = = = = = = 18 6 : 2 = 3 15 : 5 = 3 18 : 6 = 3 6 / 3 = 2 15 / 3 = 5 18 / 3 = 6 Szorzás, osztás 10-zel

33 feladat Szorzás, osztás 5-tel 15, 20, 25, 30, 35, 40, 45, feladat

34 5. feladat Szorzás, osztás 2-vel feladat = 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0 = 50, 40, 30, 20, 10, 0 0, 10, 20, 30, 40

35 5. feladat 5: bal piros 15: bal piros 60: bal piros, jobb kék 55: bal piros 50: bal piros, jobb kék I 6. feladat I, H, I Szorzás, osztás 4-gyel testek száma kockák száma feladat = = = = = = = = = 38

36 Szorzás, osztás 8-cal pókláb pókláb feladat

37 5. feladat = 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0 = 20, 16, 12, 8, 4, 0 0, 4, 8, 12, 16 c) H, I 6. feladat vel osztható 8-cal osztható 2-vel és 8-cal is osztható 2, 2, páros Szorzás, osztás 3-mal széklábak száma Az óramutató járásával megegyező irányban 12 óráról indulva: 30 : 3 = = : 5 = = : 3 = = : 5 = = 4 18 : 3 = = : 5 = = 12 6 : 3 = = : 5 = = : 3 = = 8 35 : 5 = = : 3 = = : 5 = = 16 9 : 3 = = : 5 = = : 3 = = : 5 = = 20

38 Szorzás, osztás 6-tal = 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, ennyi számot jelöltem be feladat Szorzás, osztás 9-cel = 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90,

39 és A B C A 9 A A 3 C B : 3 C B : 9 A C : 3 A C 3 B 4. feladat = 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0 = 30, 24, 18, 12, 6, 0 0, 6, 12, 18, 24 c) I, I

40 5. feladat 2 18 X X 12 X 4 30 X 48 X X 6 X 60 X 24 X 42 X 30 X 8 2, páros 6. feladat feladat többszöröse, 3 Szorzás, osztás 7-tel , 4, 0, 7, 3, 2 5, 10, 6, 8, feladat 72 : = = : 2 = : 6 = 19

41 4. A törtek előkészítése 1 cikk 1 cikk 1 cikk 2 cikk 2 cikk 3 cikk 2 torta 8 gyerek között: 3 torta 6 gyerek között 1 negyed torta jut egy gyereknek 1 fél torta jut egy gyereknek felét vagy három hatodát 5. Osztás maradékkal = = = h: 9, m: = 66 o: = 26 h: 9, m: = 73 o: = 28 h: 9, m: = 89 o: = 71

42 6. Zárójelek használata (3 + 2) 4 = szál virágot kötöttek csokorba Római számok írása = = = XLIV XLIII LIX LV XXXI XXXVII XCV LXXIV XLIX = = = = = = = = = 50

43 8. Az idő mérése 2 óra 3 óra 9 óra 14 óra 15 óra 21 óra kismutató: 1 előtt nagymutató: 9 30 perc 45 perc 60 perc 5 perc 6 5 perc 9 5 perc 12 kismutató: 12 előtt nagymutató: 9 háromnegyed egy háromnegyed tizenkettő negyed nyolc 12 óra 45 perc 11 óra 45 perc 7 óra 15 perc 12:45 23:45 19:15 kismutató: 7 után nagymutató: 3 4. feladat év hónap Nap nap óra tegnap évszak órás hét tavaly jövőre perec 5. feladat vagy 29 vagy 30 vagy feladat január, február, március, április, május, június, július. augusztus, szeptember, október, november, december I., II., III., IV., V., VI., VII., VIII., IX., X., XI., XII. 7. feladat 14, 35, 49, 62, 39, 3 hét + 2 nap, 2 hét + 4 nap

44 9. Geometria 1. sor 1. és 3. sor sor 2. és 3. sor sor 3. és 2. sor sor 4. és 2. sor sor 1. és 3. sor sor 4. és 3. sor 2. A feladatot gyakorlaban kell megoldani. Kiegészítés háromszögekké: a szabad végek összegötése egyenes vonallal. Kiegészítés négyszögekké: a szabad végek összekötése egyszer tört vonallal. 4. feladat A feladatot gyakorlaban kell megoldani. 5. feladat Kiegészítés háromszöggé: az egyenes két végét egyszer tört vonallal kötjük össze. Kiegészítés négyzetté: a szabad végekre merőlegest rajzolunk. Kiegészítés négyszöggé: a szabad végeket egyszer tört vonallal kötjük össze. Kiegészítés téglalappá: a szabad végekre merőlegest rajzolunk. 6. feladat 7. feladat szív: függőlegesen középen, ötszög: függőleges középen, háromszög: függőlegesen középen, trapéz: függőlegesen középen, négyszög: nem tükrös, szabályos háromszög: lásd az ábrán 1. sor 1. négyzet: lásd az ábrán 1. sor 2. szabályos nyolcszög: lásd az ábrán 2. sor 3. A rajzok esetében is hasonló módon kell eljárni.

45 8. feladat feladat Téglatestek: B, F, G, H, I, J 10. feladat Csak téglalapok határolják: G, H, J, F Csak négyzetek határolják: B, I Negatív számok előkészítése Pl. Ha 10 koronggal dobva 4 korong kék, 6 korong piros, akkor a számegyenesen a 0-tól balra 4-et kell megjelöln, 0-tól jobbra +6-ot kell megjelölni. előtt a te születésed után 7., 2., 4., 6., 9. 1., 3., 8., 5.

46 5 fok: kék, 0 alatt 5 egységgel 20 fok: piros, 0 fölött 20 egységgel 20 fok: kék, 0 alatt 20 egységgel 15 fok: piros, 0 fölött 15 egységgel 15 fok: kék, 0 alatt 15 egységgel 11. Valószínűség, statisztika és lehet, de nem biztos biztos lehetelen A feladat többi részét gyakorlatban kell megoldani alma szilva lehetséges, de nem biztos lehetséges, de nem biztos lehetséges, de nem biztos lehetetlen biztos lehetséges, de nem biztos biztos

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra TANMENETJAVASLAT Bevezető A harmadik osztály tananyagát a kerettantervhez igazodva heti négy matematikaórára dolgoztuk ki. A tanmenetjavaslat 3. osztályban 120 tervezett órát tartalmaz. A fennmaradó időben

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév MATEMATIKA A feladatlapok. évfolyam. félév A kiadvány KHF/3993-18/008. engedélyszámon 008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Név:. Dátum: 2013... 01a-1

Név:. Dátum: 2013... 01a-1 Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..

Részletesebben

az összeadás, kivonás értelmezéseinek gyakorlása; szöveges feladatok

az összeadás, kivonás értelmezéseinek gyakorlása; szöveges feladatok Matematika A 1. évfolyam az összeadás, kivonás értelmezéseinek gyakorlása; szöveges feladatok 34. modul Készítették: szabóné vajna kinga molnár éva matematika A 1. ÉVFOLYAM 34. modul: az összeadás, kivonás

Részletesebben

Tájékozódás számvonalon, számtáblázatokon

Tájékozódás számvonalon, számtáblázatokon Matematika A 2. évfolyam Tájékozódás számvonalon, számtáblázatokon 12. modul Készítette: Bóta Mária Kőkúti Ágnes matematika A 2. évfolyam 12 modul Tájékozódás számvonalon, számtáblázatokon modulleírás

Részletesebben

IV. Matematika Konferencia Műszaki Kiadó

IV. Matematika Konferencia Műszaki Kiadó "Tervek - Táblák - Játékok" IV. Matematika Konferencia 2013. január 23. Szerepbővülés Cirkuszi mutatvány? Cirkuszi mutatvány? Tehetségfejlesztő szakember Pedagógus a digitális korban Pedagógus a digitális

Részletesebben

Sokszínû matematika. Második osztály. Tizenegyedik, javított kiadás. Mozaik Kiadó Szeged, 2013

Sokszínû matematika. Második osztály. Tizenegyedik, javított kiadás. Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Sokszínû matematika Második osztály 2 Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Ïß1 Keresd a párját! Kösd össze! Számok 100-ig kilencvennégy

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen?

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 2. Péter vett 3 dm gatyagumit, de nem volt elég, ezért vissza ment a boltba és vett még 21 cm-t. Hány cm-t

Részletesebben

Mérések szabványos egységekkel

Mérések szabványos egységekkel MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24 AJÁNLÓ A számítógéppel támogatott oktatás megszünteti a tantárgyak közti éles határokat, integrálni képes szinte valamennyi taneszközt, így az információk több érzékszervünkön jutnak el hozzánk, a képességfejlesztés

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek Idő 09. 01. 1. 09. 02. 2. 09. 03. 3. 09. 04. 4. 09. 08. 5. 09. 09. 6. 09.10. 7. 09.11. 8. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés,

Részletesebben

A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója

A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója 1.sz. Függelék: A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója Osztályfőnökök részére..tanév.. félév..osztály 1. A szakmai munka áttekintése: Statisztika Az osztály létszáma:. fő

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 1 Kedves Kollégák! Tanmenet javaslatunkkal segítséget kívánunk nyújtani

Részletesebben

A bemutató órák feladatai

A bemutató órák feladatai A bemutató órák feladatai 1, A dobozban van 7 narancsos, 4 epres, 3 szilvás, 2 banános cukorka. Becsukott szemmel hányat kell kivenned ahhoz, hogy biztosan legyen a) 1 db epres ízű b) 1 db narancsos ízű

Részletesebben

Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály

Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály Megoldások I. Osztályozás, rendezés, kombinatorika 1. osztály 4. Lackó kezében egy gesztenye van. 5. Kettő. 1 + 1 = 2. 6. Öt. 3 + 2 = 5. 7. Igaz állítás: A), D), E). 2. osztály 1. 6 lehetőség van. Ha ismétel,

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály Matematika 1 4. évfolyam Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5 MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:

Részletesebben

Az Európai Unió Hivatalos Lapja

Az Európai Unió Hivatalos Lapja 2003.9.23. HU 179 2. A SZEMÉLYEK SZABAD MOZGÁSA A. SZOCIÁLIS BIZTONSÁG 1. 31971 R 1408: A Tanács 1971. június 14-i 1408/71/EGK rendelete a szociális biztonsági rendszereknek a Közösségen belül mozgó munkavállalókra,

Részletesebben

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul Matematika A 4. évfolyam ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN 9. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 9. modul ÍRÁSBELI

Részletesebben

MATEMATIKA 1-2.osztály

MATEMATIKA 1-2.osztály MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani

Részletesebben

Nemzeti alaptanterv 2012 MATEMATIKA

Nemzeti alaptanterv 2012 MATEMATIKA ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók A feladatokat írta: Kódszám: Tóth Jánosné, Szolnok Lektorálta:. Kozma Lászlóné, Sajószentpéter 2012.április 14. Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Feladat 1. 2. 3. 4. 5.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest)

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre bontása csak ott lehetséges,

Részletesebben

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér.

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Tudnivaló I. Egységtörtek Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Ezt röviden így írhatjuk: A nevező megmutatja, hogy az egységet hány egyenlő részre vágjuk. A

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!

Részletesebben

Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra tízesátlépéssel. 9-hez, 8-hoz adás..

Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra tízesátlépéssel. 9-hez, 8-hoz adás.. A kompetenciafejlesztési projekt megvalósítása Kondoroson Petőfi István Általános Iskola Diákotthon és Alapfokú Művészetoktatási Intézmény Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra

Részletesebben

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Valószínűség számítási feladatok és megoldásaik

Valószínűség számítási feladatok és megoldásaik Valószínűség számítási feladatok és megoldásaik Egy szabályos dobókockával egyszer dobunk Milyen esemény valószínűsége lehet az illetve az érték? P(a dobott szám prím) = P(a dobott szám -mal nem osztható)

Részletesebben

MÛVELETEK TIZEDES TÖRTEKKEL

MÛVELETEK TIZEDES TÖRTEKKEL MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Az osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei

Az osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei Herman Ottó Általános Iskola 1222. Budapest Pannónia u. 50. Az osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei Házirend 1. számú melléklet Takács Éva igazgató 1 T ART AL OMJEGYZ ÉK 1.

Részletesebben

NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra

NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra A matematikatanítás célja, hogy lehetővé tegye a tanulók számára a környező világ térformáinak, mennyiségi viszonyainak, összefüggéseinek

Részletesebben

1.modul Válogatások, válogatások kétfelé

1.modul Válogatások, válogatások kétfelé FEJLESZTEN- Szeptember 1-2. óra 1.modul Válogatások, válogatások kétfelé Halmazok összehasonlítása szétválogatása: több, kevesebb, ugyanannyi. Relációk értelmezése. Meg- és leszámlálás tárgyakról, képekről.

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL

SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL Készítette: Denke Antalné 1 A modul célja A számfogalom formálása; A számolás tudatossá alakítása; Egy számolási mód alapos megértetése, kidolgozás; Összefüggéslátás fejlesztése

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

ÍRÁSBELI KIVONÁS. 31. modul. Készítette: KONRÁD ÁGNES

ÍRÁSBELI KIVONÁS. 31. modul. Készítette: KONRÁD ÁGNES Matematika A 3. évfolyam ÍRÁSBELI KIVONÁS 31. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 31. modul ÍRÁSBELI KIVONÁS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

ő ő ő ő ű Ó ő ő ű ű ő ő Ó ő ő ő ő ő ő ű ő ő ű ű ő ő ű Ó ő ő ő Ó ő ű ő ő ő ű ű ű ő ő ő ő ő ő ő Ó ő ő ő ű ő ő ő ő ő ű ő ő Ó ő ő ű ő ő ő ő ő ő ő ű ű ő ő ő ű ű ő ű ő ő Ó Ó ő Ó Ó ő Ó ű ő ő ő ő ő ű ő ű ű ű ű

Részletesebben

Matematika helyi tanterv,5 8. évfolyam

Matematika helyi tanterv,5 8. évfolyam Matematika helyi tanterv - bevezetés Matematika helyi tanterv,5 8. évfolyam A kerettanterv B változatának évfolyamonkénti bontása Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson

Részletesebben

Összeadás, kivonás 0-tól 50-ig

Összeadás, kivonás 0-tól 50-ig Összeadás, kivonás 0-tól 50-ig 1. Számítsd ki a műveletek eredményét! 25 + 2 = 35 + 2 = 35 + 12 = 25 + 22 = 2 + 25 = 2 + 35 = 12 + 35 = 22 + 25 = 27 + 3 = 37 + 3 = 27 + 13 = 27 + 23 = 3 + 27 = 3 + 37 =

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról 1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki

Részletesebben

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika. Padányi Katolikus Gyakorlóiskola 1 Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0108 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Aterköz//50/Rea//Ált Agrár közös szakképesítés-csoportban, a célzott,

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY

Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY KÉSZÍTETTE: Bartháné Jáger Ottília, Holndonnerné Zátonyi Katalin, Krivánné Czirba Zsuzsanna, Migléczi Lászlóné MISKOLC 2015 Összesített

Részletesebben

Matematika. 5-8. évfolyam. tantárgy 2013.

Matematika. 5-8. évfolyam. tantárgy 2013. Matematika tantárgy 5-8. évfolyam 2013. Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről

Részletesebben

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. MODUL EGÉSZ SZÁMOK Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. Egész számok Szorzás és osztás egész számokkal Tanári útmutató 2 MODULLEÍRÁS

Részletesebben

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:

Részletesebben

KockaKobak Országos Matematikaverseny 5. osztály

KockaKobak Országos Matematikaverseny 5. osztály KockaKobak Országos Matematikaverseny 5. osztály 2012. november 12. Feladatok: IZSÁK DÁVID, általános iskolai tanár SZÉP JÁNOS, középiskolai tanár Lektorok: BALOG MARIANNA, általános iskolai tanár SZITTYAI

Részletesebben

Szorzás, egyenlő részekre osztás 10-zel, 5-tel

Szorzás, egyenlő részekre osztás 10-zel, 5-tel Matematika A 2. évfolyam Szorzás, egyenlő részekre osztás 10-zel, 5-tel 44. modul Készítette: Sz. Oravecz Márta Szitányi Judit 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

TANMENET MATEMATIKA. 1. osztály 2009-2010. (modulos rendszerű) Készítette: Tóthné Szendrődy Réka

TANMENET MATEMATIKA. 1. osztály 2009-2010. (modulos rendszerű) Készítette: Tóthné Szendrődy Réka TANMENET 1. osztály MATEMATIKA (modulos rendszerű) Készítette: Tóthné Szendrődy Réka 2009-2010 IDŐ TANANYAG FEJLESZTENDŐ Szept. 1-7 1. modul Tájékozódj unk, tanuljunk! Megismerési képességek alapozása:

Részletesebben

Matematika. 1-4. évfolyam. tantárgy 2013.

Matematika. 1-4. évfolyam. tantárgy 2013. Matematika tantárgy 1-4. évfolyam 2013. Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási,

Részletesebben

TestLine - szabol 10. oszt. matek kompetencia gyak Minta feladatsor

TestLine - szabol 10. oszt. matek kompetencia gyak Minta feladatsor 2016.06.18. 03:07:24 Egy idős fa 50 kg oxigént termel egy év alatt. Egy ember éves oxigénigénye 180 kg. 1. 1 hektár idős fákból álló erdő kb. hány ember oxigénigényét elégíti ki? (1 helyes válasz) 1:49

Részletesebben

Az 5. 14. modul. Készítette: bóta mária kőkúti ágnes

Az 5. 14. modul. Készítette: bóta mária kőkúti ágnes Matematika A 1. évfolyam Az 5 14. modul Készítette: bóta mária kőkúti ágnes matematika A 1. ÉVFOLYAM 14. modul Az 5 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1421 ÉRETTSÉGI VIZSGA 2014. október 13. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK

Részletesebben

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat

Részletesebben

Tanmenetjavaslat. az NT-11580 raktári számú Matematika 5. tankönyvhöz. Oktatáskutató és Fejlesztő Intézet, Budapest

Tanmenetjavaslat. az NT-11580 raktári számú Matematika 5. tankönyvhöz. Oktatáskutató és Fejlesztő Intézet, Budapest Tameetjavaslat az NT-11580 ratári sú Matematia 5. taöyvhöz Otatásutató és Fejlesztő Itézet, Budapest A tameetjavaslat 144 órára lebotva dolgozza fel a taayagot. Ameyibe eél több idő áll a redelezésüre,

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

Neved: Iskolád neve: Iskolád címe:

Neved: Iskolád neve: Iskolád címe: 1. lap 1. feladat 2 dl 30 C-os ásványvízbe hány darab 15 cm 3 -es 0 C-os jégkockát kell dobni, hogy a víz hőmérséklete 14 C és 18 C közötti legyen? Hány fokos lesz ekkor a víz? g kj kj (A jég sűrűsége

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok

Részletesebben

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged Kombinatorika az általános iskolában Ábrahám Gábor, Szeged A kombinatorika másfajta gondolkodást és így a tanár részéről a többi témakörtől eltérő óravezetést igényel. Sok esetben tapasztalhatjuk, hogy

Részletesebben

Nyitott mondatok Bennfoglalás maradékkal

Nyitott mondatok Bennfoglalás maradékkal Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok

Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok Matematika A 2. évfolyam Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok 15. modul Készítette: Szabóné Vajna Kinga Harzáné Kälbli Éva

Részletesebben

1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF

1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF 1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF háromszög egyenlőoldalú, stb ). A 10 pont közül ki kell választani

Részletesebben