Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály"

Átírás

1 Megoldások I. Osztályozás, rendezés, kombinatorika 1. osztály 4. Lackó kezében egy gesztenye van. 5. Kettő = Öt = Igaz állítás: A), D), E). 2. osztály 1. 6 lehetőség van. Ha ismétel, akkor Leltár: Leltár: lehetőség van lehetőség van mérkőzést játszanak: 7. Apának 3 féle, anyának 4 féle, Ottónak 6 féle választása van. 8. Első keret: ház, hó, ázó, ló, szó, ól, háló Második keret: te, tesz, tép, lép, szép, ép, szel, tél, ész, lep, el Harmadik keret: ék, év, és, ész, kéve, kés, egy, kész, hegy 9. A nyakláncot záródó körnek tekintve mindössze 3-féle különböző lánc készíthető. NNNKKK NNKNKK NKNKNK A hat gyöngyből készített bármilyen lánc a gyöngyök sorrendjének megváltoztatása nélkül átmozgatható ezek egyikébe. 10. h, h, h, i, h 11. Válogatások például: páros-páratlan 10-nél kisebb, 10-nél nagyobb 50-nél kisebb, 50-nél nagyobb osztható 3-mal, nem osztható 3-mal jegyeinek összege páros, vagy páratlan 13. Leltár: A garázsba 11-féleképpen állhatnak be az autók. 16. a) 24, 28 b) 88, 33, 66, 99 c) 52, 73, 31, 41 d) 73, 88, 31, 24, 33, 66, 99, Kati az egyik dobozba 21-et, a másikba 63-at tett. 18. Ugyanannyi játékpénz (25 fekete pénz) van a két körben. 19. Olginak van több pénze.

2 3. osztály 1. b) h, i, i, h (12 megfelelő torony építhető, ebből 6 olyan, amelyikben mindegyik elem különböző színű.) 2. Feri 24 6 = 144, Tibi: 24 4 = 96, Összesen: Itt az összeg: Mindkét múzeumban 5 tanuló járt. 5. Összesen 19 tanuló indult a versenyen. 6. Tizenkétféle monogram állítható össze. 7. (8 7) : 2 = 28 mérkőzés van. 8. Létszám: = = Attila füllentett, tehát ő evett különböző kifestési lehetőség van. Ha nem tekintünk különbözőnek két olyan négyzetet, amelyek elforgatva megegyeznek, akkor 6 különböző esetet kapunk. 11. Három értelmes szót lehet alkotni: tél, élt, lét 13. Összesen 20 szám lehet: 4000, 3100, 3010, 3001, 1300, 1030, 1003, 2200, 2020, 1102, 1120, 1111, 2002, 2110, 2101, 2011, 1210, 1201, 1012, osztály 3. Fiúk Lányok Kifli Zsemle Összesen Hatféleképpen juthatnak el Budapestre. 6. A SUGÁR szó 16-, a MÓRA szó 8- és az ERKEL szó 16-féleképpen olvasható le. II. Számtan, algebra 1. osztály 6. a) 3, 5, 6, 7 b) A legnagyobb a 7, a legkisebb a 3. c) 2-vel e) 4 f) 1, = = = = = = = = = = = Kati a következő tárgyakat vitte magával a kirándulásra: ceruza, zászló, óra, érem, szemüveg, lakat, kulcs.

3 2. osztály 1. A MÓKUS szó a helyes megoldás. 2. A 23-as számú hajó nem jut el a kikötőbe. 5. Szabály: 9 3 = 4 9 = 4 / 3 szabály: > : 4 = 5 > = A >-ba írható számok: 1, 2, 3, 15 A 9-be írható számok: 1, 2, 3, 4, 5, 6 7. a) 48 tányér szükséges. b) Nem jut mindenkinek pohár, mert hiányzik 12 darab. c) Minden gyereknek 3 darab sütemény jut. 9. Összesen 105 palántát ültetett. A 100 darab palánta nem volt elég kártyalap maradt oldal van még hátra. 17. Szabály: a két alsó szám összegének kétszerese adja a felső számot. Például: (3 + 5) 2 = = / 2 = = = : 6 = = = / 6 = Attilának 39 sárga, Zolinak 26 sárga autója van. 23. a) 13 órakor 38-an voltak a múzeumban. b) 3 óra 10 percet töltöttek Katiék a múzeumban. c) 2 óra 30 percig nézegették a képeket. 24. a) Palinak 163 Ft-ja lett. b) 68 Ft-ja maradt meg. 29. a) Zoli a 18-as mezőn áll. b) Gyuri a 43-as mezőn áll. 30. Hat csónakot kell bérelni a csónakázáshoz pohár maradt az üzletben. 32. Huszonkét lépcső vezet a második emeletig. 3. osztály = = (5 4 2) = 8 2. (9 2 ) + 28 = = < (5 3 ) + 2 < = 8, 14, , , a) Évinek 623 forintja van. b) 377 forintot kell még gyűjtenie. 6. Három kérdéssel ki lehet találni a gondolt számot. Páros? Igen (2, 4, 6, 8) / Nem (1,3,5,7) Ötnél kisebb? Igen (2,4) / Nem Osztható 4-gyel? Igen. A 4-re gondoltunk. 7. Gondolhattam: 92, 93, 94, 95, 96, 97, 98, 99 Páros szám: 92, 94, 96, 98 Számjegyeinek összege: 15 A gondolt szám Tizenhét olyan kétjegyű szám van, amelyben egyszer szerepel a 6-os szám.

4 9. 42 darab pénzérmére van szükség mind a két fajtából = = = Szabály: Az alsó számot úgy kapjuk meg, ha a felső két szám összegét osztjuk 5-tel. ( ) : 5 = A perselyben 353 forintja van. 13. A 31. napon a fele volt, a 30. napon a negyede, így a 29. napon volt a tó egy nyolcadán tavirózsa Az egyesek helyén áll 10 darab, a tízesek helyén áll 10 darab. Tehát 20 darab 9-es szám szükséges. 16. Az apa: 36 éves, az anya 28 éves, Attila: 8 éves. 20. A telefonszám: = 242 a kiállítás után = = 32 éves volt a kiállított játékos. 22. A három szám: = A számok sorrendje: 1, 3, 4, = = = = = = A szabály: a bedobott négy szám összegét dobja ki a gép Négy tábla csokoládét 3-3 részre, és három táblát 4-4 részre osztunk. Mindenki egy kisebb és egy nagyobb darabot kap megoldás: 53 piros és 47 zöld 2. megoldás: 13 piros és 87 zöld 35. Az egész tortát 20 egyenlő részre osztjuk. Bandi megette a 20 / 2 = 10 részt, Zolié lett 10 / 2 = 5 rész, a kicsiké 5 / 5 = 1 rész

5 osztály 1. A 10-es és 43-as között 32 gyerek áll. Mindkét félben en állnak. Így (a kiemeltek) = 66 gyerek volt a körben : 30 = 20 osztály volt = 100 óra és 100 : 4 = 25 tanár volt jármű áthaladását jegyezték fel. 4. A gondolt szám: kg füvet legel 3 tehén egy hét alatt l tengervízre van szükségük m 2 padló szükséges. 15. A kövezet 36 m 2 -en még ép. 16. Petinek 140 forintja, Zolinak 140 forintja van. 20. Az egyik karót 6, a másikat 8 részre osztják. Ahol a karónak 1/8-ad része van a földben, ott áll magasabban a karó. 1/8 rész < 1/6 rész 21. Egyenlő részt fogyasztottak, mivel egy egész 2/3-a ugyanannyi, mint két egész 1/3-a. 24. Az I. számú óra 4 órával és 15 perccel mutat többet almát tettek át a másik kosárba. 26. Az évszám 1526, de lehet 1562 is. 27. A harmadik órában fél 12-kor lesznek egymástól 35 km-es távolságra Hogy osztható legyen 5-tel a kifejezés, az egyesek helyén 3-nak vagy 8-nak kell állnia. Akkor lesz az összeg osztható 4-gyel, ha az egyesek helyén 0, 4, vagy 8 áll. Hogy mindkettővel osztható legyen az összeg, 8 álljon az egyesek helyén. 29. Teljesítik a feltételt: 104, 105, 106, A szorzó lehet a 7-es és a 8-as szám = : 400 = = (180 : 60 ) = A megfejtés: EPERTORTA 33. Az a) kérdésnél a keresett szám: 90. A b) kérdésnél: 30. A c) kérdésnél bármely egész szám lehet : 12 = : 45 = : 59 = : 32 = : 72 = : 17 = : 81 = : 7 = A 18 perc alatt 360 a különbség a szívverések között.

6 III. Összefüggések, függvények, sorozatok 1. osztály 1. a) 21 b) 11 c) 27 d) A két szomszédos szám összegének 2-vel növelt értéke kerül a felettük lévő téglára. 2. osztály 1. Az első keretben a szabály: a 3-mal nagyobb szám felé mutat a nyíl. A második keretben a szám kétszerese felé vezet a nyíl. A harmadik keretben a 6-al kisebb szám felé vezet a nyíl. 3. Szabály: 4 11 = 4 = Szabály: 9 2 = 4 9 = 4 / 2 5. Szabály: 6-tal növekvő, illetve tizenkettővel csökkenő számsor Szabály: az alsó két szám szorzatához hozzáadunk 5-öt. 3. osztály 1. Szabály: 5 5 = > 2. Szabály: az első számsorban mindig 10-zel többel növekszenek a számok: 30, 40, 50, stb. a második számsor tagjai 60-nal csökkennek. 3. Összesen 10 kézfogás lehetséges kg cseresznye került a feldolgozóba. 4. osztály 1. Szabály: a legutolsó szám jegyeinek összegét adjuk a következő számhoz. Például: A nyilak jelentése: " 3 & 3 U 6 4. Első lett: Feri, második: Imi, harmadik: Peti negyedik: Karcsi 5. Szabály: 9 = 3 5 / 2 5 = 2 9 / 3 6. A 12-dik helyen a 211 áll. 9. Biztosan legyen benne: 1 piros, akkor 11-et kell kihúzni 5 fehér, akkor 15-öt kell húzni minden színből legyen: 11-et kell húzni 3 azonos színű legyen, akkor 7-et kell húzni 10. A 17. helyen áll a 71-es szám, a 20. helyen a 100-as szám, a 30. helyen áll a 110-es szám. 11. A sorozat tagjai lehetnek: 155, 315, Szabály: az első számot veszem kétszer, megkapom a második számot. Majd az első és második számot összeadom, s az lesz a harmadik szám. Például: 1 2 = = = = Az első sor szabálya: a szám kétszeresére nő, A második sorban mindig egyel többet adunk a számhoz. A harmadik sorban háromszorosára növekszik a szám 16. Timi 33 kg, Kati 30 kg, Zsófi 36 kg

7 IV. Geometria 2. osztály A keretek közül elöl áll: sárga és piros keret hátul áll: zöld és kék keret leghátul áll: a barna keret osztály A nyolcszög csúcsait 28-féleképpen lehet összekötni Megoldható a feladat, ha minden csúcsban páros számú él fut. Ha páratlan, akkor nem. Az első boríték megrajzolható, ha nem jutunk vissza a kiindulópontba.

8 10. Csak egy megoldás van. 11. Összesen 9 téglatest állítható össze , , , 1 6 8, , Az oldalak hosszúsága: 30cm, 31cm, 32cm 2 3 8, 2 4 6, osztály 1. 3 cm, 9 cm 2, 54 cm 2 2. a) szemben lévő oldalak = 70 vagy = 75 oszthatók 5-tel. b) Ilyen szám nincsen. c) = 80 osztható 5-tel. d) = 45 osztható 5-tel. 3. Három különböző méretű, nem egybevágó háromszög található Kerítés: = 15 valóságban: 15 4 = 60 m drót kell. A teljes telek: = 48 m 2 A ház: 4 3 = 12 m 2 Területe: = 192 m 2 Utak: 28 m = 220 m 2 -en nem lehet növény = 260 m 2 -en ültethetnek növényeket. 7. Az oldalak hosszúsága és a kerület: 24 1 a kerület: 50 cm (ez a legnagyobb kerületű téglalap) 12 2 a kerület: 28 cm 8 3 a kerület:22 cm 6 4 a kerület: 20 cm (ez a legkisebb kerületű téglalap) 8. A legkisebb kerületű téglalap oldalainak hosszúsága: 6 10 = 32 m 9. A két szélső fa közötti távolság egy-egy sorban 110 m. Mivel a két szomszédos fa között 10 m lehet a távolság, ezért legfeljebb 11 fa állhat. De az elején is van egy fa, ezért 12 fa van összesen. Így = 144 fa lehet a kertben.

9 10. a) csak két lehetőség van b) öt lehetőség van. V. Mérés 2. osztály 9. Sorrend: 1 cm, 7 cm, 19cm, 2 dm, 25 cm, 31 cm, 4 dm, 49 cm, fél m, 68 cm, 8 dm, 1m 15. Gábor: 17 métert dobott, Zsolt: 20 métert, Balázs: 11 métert. Legmesszebbre Zsolt dobott. 16.Edina: 4 m 15 cm-t ugrott. Zsuzsi 2 m 10 cm-rel ugrott távolabb, mint Juli. 20. Hordó + bor = 86 kg Hordó + fél bor = 53 kg = 33; 33 2 = 66; = 20 kg az üres hordó tömege. 21. Eladtak: 64 : 4 = 16 kg-t, maradt nekik : = 48 kg. VI. Érdekes feladatok 1. osztály 1. d) H, I, I, H, I a) Miért fiatalember, leszáll? b) Beszorult az ujjam a tárcsába! c) Ki volt az a nagyokos, aki kiírta az ajtóra, hogy lábat törölni kötelező? d) Meg kell találnom, különben nem tudom, hogy hová utazom. e) Nem főnök, még van belőle három. f) Ez szörnyű! Senki sem várt, amikor megérkeztem?

10 2. osztály 3. nyuszi csiga mókus katica csiga mókus katica nyuszi katica nyuszi csiga mókus mókus katica nyuszi csiga 4. A papagáj süket volt. 5. Ha azonos tömegűek lennének az érmék, akkor a 2 kg 5 forintos ugyanannyi lenne, mint az 1 kg 10 forintos. De a 10 forintos tömege nagyobb, így abból kevesebb darab van. 6. Legalább 2, legfeljebb macska 2 óra alatt 4 egeret fog. 4 macska 4 óra alatt 8 egeret fog. 8. Ha 11 tyúk lenne, akkor 22 lábuk van. Ha 7 tyúkot 7 nyúlra cserélünk, akkor a lábuk száma 14-gyel megnő. 4 tyúk 2 = 8 láb 7 nyúl 4 = 28 láb = 36 láb 3. osztály 1. A fa = 12 méter magas től 9-ig sorban leírjuk a számokat, majd a másik oldalon folytatva (fentről lefelé) haladva 19-ig.

11 9. Lehetséges, mert a nagyapának fia az apa. Ennek fia az unoka. 10. Fél óra alatt: 12 : 3 = 4 q 16 q búzát 4 fél = 2 óra alatt őröl meg. 12. Zsuzsanna és Oszkár neve olvasható le a rajzon. 13. Mind hárman egyenlő tömeget vittek db dominó szükséges, mert a kezdetéhez is kell egyet állítani. 15.A hét dominó között 6 köz van. 6 5 = 30cm-re van a legutolsó dominó. 4. osztály 1. Csak kávét = 30-an ittak. Csak teát = 23-an fogyasztottak. Mindkettőt 48 fő ivott. Így az állítás igaz , , , , , nyúl és 13 tyúk, vagy 1 nyúl meg 145 tyúk. Több megoldás is lehet. A legtöbb 73 nyúl meg egy tyúk A végén 36 : 3 = 12 varjú ült a fán. Az elsőből 6 elrepült, = 18 varjú lett, a másodikra repült 6, de elszállt = 10 varjú volt. A harmadik fára 4 repült, eredetileg 12 4 = 8 varjú ült a fán. Így = 36 varjú pók 5 perc alatt 5 legyet fog. 1 pók 5 perc alatt egy legyet fog. 1 pók 100 perc alatt 20 legyet fog. 5 pók 100 perc alatt 100 legyet fog.

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér.

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Tudnivaló I. Egységtörtek Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Ezt röviden így írhatjuk: A nevező megmutatja, hogy az egységet hány egyenlő részre vágjuk. A

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

SZÁMOLÁSOS FELADATOK

SZÁMOLÁSOS FELADATOK SZÁMOLÁSOS FELADATOK 1. Galambosnénak három lánya volt. Éppen két barátnjét várta délutáni beszélgetésre, ezért megkérte a legidsebb lányát, hogy tegyen nápolyit egy tálcára. A lány nem tudott ellenállni

Részletesebben

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév MATEMATIKA A feladatlapok. évfolyam. félév A kiadvány KHF/3993-18/008. engedélyszámon 008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A

Részletesebben

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen?

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 2. Péter vett 3 dm gatyagumit, de nem volt elég, ezért vissza ment a boltba és vett még 21 cm-t. Hány cm-t

Részletesebben

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz

Részletesebben

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 35. évfolyam, 2013/2014-es tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 35. évfolyam, 2013/2014-es tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le, melyik alakzat nem tartozik a többi közé: négyzet, háromszög, egyenes, kör, téglalap 2. Számítsátok ki: 15 + 17= 24 + 59 = 50 + 20 = Az eredményeket adjátok össze és ezt az

Részletesebben

Sokszínû matematika. Második osztály. Tizenegyedik, javított kiadás. Mozaik Kiadó Szeged, 2013

Sokszínû matematika. Második osztály. Tizenegyedik, javított kiadás. Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Sokszínû matematika Második osztály 2 Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Ïß1 Keresd a párját! Kösd össze! Számok 100-ig kilencvennégy

Részletesebben

A bemutató órák feladatai

A bemutató órák feladatai A bemutató órák feladatai 1, A dobozban van 7 narancsos, 4 epres, 3 szilvás, 2 banános cukorka. Becsukott szemmel hányat kell kivenned ahhoz, hogy biztosan legyen a) 1 db epres ízű b) 1 db narancsos ízű

Részletesebben

közti kapcsolatok, Ellenőrzés, Játék 21. modul

közti kapcsolatok, Ellenőrzés, Játék 21. modul Matematika A 4. évfolyam MŰVELETi tulajdonságok, a műveletek közti kapcsolatok, Ellenőrzés, Játék 21. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 21. modul Műveleti tulajdonságok, a műveletek

Részletesebben

FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul

FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul Matematika A 4. évfolyam FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA 5. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 5. modul FEJSZÁMOLÁS

Részletesebben

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged Kombinatorika az általános iskolában Ábrahám Gábor, Szeged A kombinatorika másfajta gondolkodást és így a tanár részéről a többi témakörtől eltérő óravezetést igényel. Sok esetben tapasztalhatjuk, hogy

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? A 36 dióból 27 Annáé

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

Valószínűség-számítás II.

Valószínűség-számítás II. Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az

Részletesebben

Rátz László Matematikai kvízverseny 5. osztály

Rátz László Matematikai kvízverseny 5. osztály Rátz László Matematikai kvízverseny 5. osztály 2010. november 26. 1. feladat Ez a különleges óra a pontos időt mutatja. Az első sor ötórás intervallumokat számol (minden ötóránként vált szürkére), a második

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Nyitott mondatok Bennfoglalás maradékkal

Nyitott mondatok Bennfoglalás maradékkal Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

Valószínűségszámítás feladatgyűjtemény

Valószínűségszámítás feladatgyűjtemény Valószínűségszámítás feladatgyűjtemény Összeállította: Kucsinka Katalin Tartalomjegyzék Előszó 4 1. Kombinatorika 5 2. Eseményalgebra 14 3. Valószínűségszámítás 21 3.1. Klasszikus valószínűség.....................

Részletesebben

Feladatok, játékok; Valószínűségi megfigyelések; Ellenőrzés, hiányok pótlása

Feladatok, játékok; Valószínűségi megfigyelések; Ellenőrzés, hiányok pótlása Matematika A 2. évfolyam Feladatok, játékok; Valószínűségi megfigyelések; Ellenőrzés, hiányok pótlása 48. modul Készítette: C. Neményi Eszter Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott

Részletesebben

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.

Részletesebben

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő?

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő? Észforgató középiskolásoknak 1.Egy tálba egymás után felütünk tíz darab tojást. A tojások közül kettő romlott, de ez csak a feltöréskor derül ki. A záptojások az összes előttük feltört tojást használhatatlanná

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

KOMBINATORIKA Permutáció

KOMBINATORIKA Permutáció Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk

Részletesebben

Név:. Dátum: 2013... 01a-1

Név:. Dátum: 2013... 01a-1 Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti

Részletesebben

ÍRÁSBELI KIVONÁS. 31. modul. Készítette: KONRÁD ÁGNES

ÍRÁSBELI KIVONÁS. 31. modul. Készítette: KONRÁD ÁGNES Matematika A 3. évfolyam ÍRÁSBELI KIVONÁS 31. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 31. modul ÍRÁSBELI KIVONÁS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

MÛVELETEK TIZEDES TÖRTEKKEL

MÛVELETEK TIZEDES TÖRTEKKEL MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy

Részletesebben

Logisztorik Logika 2. feladatcsomag

Logisztorik Logika 2. feladatcsomag Logika 2.2 Logisztorik Logika 2. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 logikai megfontolások tájékozódás a síkban táblázatok készítése Ez a feladatcsomag elsősorban a logikai készség fejlesztését

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:

Részletesebben

Kártyajátékok és bűvésztrükkök

Kártyajátékok és bűvésztrükkök Szalkai Balázs, Szalkai István : Kártyajátékok és bűvésztrükkök Közismert, hogy nagyon sok bűvésztrükk matematikai alapokon nyugszik, a kártyaés egyéb játékok matematikai elemzéséről nem is szólva. Nem

Részletesebben

Tájékozódás számvonalon, számtáblázatokon

Tájékozódás számvonalon, számtáblázatokon Matematika A 2. évfolyam Tájékozódás számvonalon, számtáblázatokon 12. modul Készítette: Bóta Mária Kőkúti Ágnes matematika A 2. évfolyam 12 modul Tájékozódás számvonalon, számtáblázatokon modulleírás

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2007. NOVEMBER 24.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2007. NOVEMBER 24.) 3. osztály 3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? Gondoltam egy kétjegyű

Részletesebben

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

VI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői

VI.7. RÁCSODÁLKOZÁS. A feladatsor jellemzői VI.7. RÁSOÁLKOZÁS Tárgy, téma feladatsor jellemzői háromszögek, négyszögek területe rácssokszögek segítségével. Előzmények él terület fogalma. már ismert terület fogalom (főképp a háromszög és a négyszögek

Részletesebben

INFORMATIKA KÖZÉPSZINT%

INFORMATIKA KÖZÉPSZINT% Szövegszerkesztés 1. Ivóvíz Prezentáció, grafika és weblapkészítés 2. Italos karton Táblázatkezelés 3. Bérautó Adatbázis-kezelés 4. Felajánlás maximális A gyakorlati vizsgarész a 120 40 30 30 20 elért

Részletesebben

Kétszemélyes négyes sor játék

Kétszemélyes négyes sor játék Kétszemélyes négyes sor játék segítségével lehetővé kell tenni, hogy két ember a kliens program egy-egy példányát használva négyes sor játékot játsszon egymással a szerveren keresztül. Játékszabályok:

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA

VALÓSZÍNŰSÉG, STATISZTIKA 0893. MODUL VALÓSZÍNŰSÉG, STATISZTIKA Felmérés Készítette: Pintér Klára Matematika A 8. évfolyam 0892. modul: Valószínűség, statisztika Felmérés 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30.

Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. 1. Határozzuk meg, hány egybevágósága van egy négyzetnek! Melyek azonos jellegűek ezek között? Ez egy általános bevezető feladat tud

Részletesebben

Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások

Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások 1. Ismétlés 10-ig számolunk 0, 2, 4, 6, 8, 10 páros 1, 3, 5, 7, 9, 11 páratlan 1-nél nagyobb páros számok 10-nél kisebb páratlan számok

Részletesebben

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i )

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i ) 6. A láncszabály, a teljes valószínűség tétele és Bayes-tétel Egy (Ω, A, P ) valószín ségi mez n értelmezett A 1,..., A n A események metszetének valószín sége felírható feltételes valószín ségek segítségével

Részletesebben

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat

Részletesebben

Vizsgálódás a szorzótáblákban Összefüggések keresése, indoklása

Vizsgálódás a szorzótáblákban Összefüggések keresése, indoklása Matematika A 2. évfolyam Vizsgálódás a szorzótáblákban Összefüggések keresése, indoklása 46. modul Készítette: Szitányi Judit 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Egyenlet felírása nélkül is megoldható szöveges feladatok Ajánlott 5 8. osztályosoknak

Egyenlet felírása nélkül is megoldható szöveges feladatok Ajánlott 5 8. osztályosoknak Egyenlet felírása nélkül is megoldható szöveges feladatok Ajánlott 5 8. osztályosoknak Mivel találkozol ebben a fejezetben? Elsősorban olyan feladatokkal, amelyek egyenlet felírása nélkül is megoldhatók.

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben

Á Á É É É ö É Ó ú Á ú Á Á Á Á ö Á ő ű ú ö ö ú ű ú É ő ö ú ú ű ö ű ő Ú Ú ú ő ö ö ő ö ö Á ö Á ö ú ű ö ö ö ö ö ö ö ö ö ő ö ö ö ö ő ö Á ö ő ö ö ő ú ú ö ö ő ö ö ö ö ú ö ú ö ő ú ö ö ö ö ö ú ö ú ú ö Ú ő ű ő ö

Részletesebben

MEGOLDÁSOK Pontszerző Matematikaverseny 2011/2012 tanév III. forduló

MEGOLDÁSOK Pontszerző Matematikaverseny 2011/2012 tanév III. forduló Bányai Júlia Gimnázium H-6000 KECSKEMÉT, Nyíri út 11. HUNGARY Tel.: (36) 76/481-474; 505-189; Fax: (36) 76/ 486-942 E-mail: bjg@banyai-kkt.sulinet.hu MEGOLDÁSOK Pontszerző Matematikaverseny 2011/2012 tanév

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

É É Á É É ó ó ö ű ó ó ó ű ó ö ö ű ó ó ő ö ű ó ó ű ú ö ű ó ó ó ó ö ű ó ó ó ö ű ő ő ő ó ö ű ú ö ó ó ó ú ő ő ü ó ó ó ö ű ű ö ő ó ú ó ö ü ö ű ó ó ö ő ö ó ö ö ő ő ö ó ő ö ő ó ő ó ő ú ú ö ű ó ú ö ő ű ö ó ó ó

Részletesebben

ó á á á á á ó á ó Á ö é á ó Ú á á á ó Á ö é á á á ó ó ó á á ó á ó Ú á é á ó ü é ü é á á á á ó é é á ú á ó á é ó á ó Ó é á ó é á ó ó á Ó Ö é á ó á ó é é é ü é ó á Ó é é é ó ó ó á ó é é ó á ü ó é á ó é é

Részletesebben

SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL

SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL SZÁMLÁLÁS, SZÁMOLÁS ESZKÖZÖKKEL Készítette: Denke Antalné 1 A modul célja A számfogalom formálása; A számolás tudatossá alakítása; Egy számolási mód alapos megértetése, kidolgozás; Összefüggéslátás fejlesztése

Részletesebben

Á Ó Ö Á É É É É Ő ű Á Ó ű Ö ű ű ű Ó ű Ö Ú Ö Ú ű ű ű ű Ö ű ű ű ű ű Ü Á ű ű ű ű ű ű ű ű Ö Ó ű Ö ű ű Ü ű ű ű Ö ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű Á Á ű É ű ű ű ű ű Ö ű ű ű ű ű Ó Ü Á É Ű ű ű ű ű Á ű ű ű Á É ű Ú Ó

Részletesebben

7. évfolyam I. félév, 2. feladatsor 1/6

7. évfolyam I. félév, 2. feladatsor 1/6 7. évfolyam I. félév, 2. feladatsor 1/6 6. Egy kocka élei 2 cm hosszúak. A kocka fehér, de rendelkezésünkre áll sok a) 1cm 3cm-es b) 1cm 4cm-es c) 1cm 5cm-es d) 1cm 6cm-es piros papírszalag, amelyeket

Részletesebben

ő Á ú ő ú ő ú ú ú ő ő ő ű ú ű ő ő ú ő ő ő ú Á ő ú ő ő ú ő ő É É ú ő ő Ú ő É ú ú ő ő ő ő ő É ő ő ú É ű ű ű ú ő ő É ő ű ő ő É ú É ú ő ő ű ú ű ő ő ú ú Ú ú Ü ő ű ú ő ű ő ő ú ő ő ő ő ú ő ő ú ú ő ú ő ú ű ű É

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

8. osztály. 2013. november 18.

8. osztály. 2013. november 18. 8. osztály 2013. november 18. Feladatok: PÉCSI ISTVÁN, középiskolai tanár SZÉP JÁNOS, középiskolai tanár Lektorok: LADÁNYI-SZITTYAI ANDREA, középiskolai tanár DANKOVICS ATTILA, ELTE-TTK matematikus hallgató,

Részletesebben

Á Á ó ő ő ó Ő ó ó ó Ó Ó Ó ó Ó Ó Ó Ó ó ő ó ó Ő Ó Ó Ó Ó ó Ó Ó Ó Á Ó ó Ó ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Á Ó ó ó Ő ó ó ó Ó ó Ú ó Ó Ó ó Ó Ó Ő ó Ó ó ó Ó ó Ó Ó Ó ó ó ó Ó ó ó ó Ó Ú Ó Ó ó ó ő ö Ó

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM

Részletesebben

Ú ő É ő ű ő ű Á É ő Ó Á Á ő ű ű Á ű Ú É ő É Ú Ö ő ő Á ő ő Á É É Á ő ő ő ő ő ő Á Ó Á É Ú Á Á Á ő Á Á Á Á Á É ő ő ű ő ő É ő ő Á Á Ó Ü Á É Á ő Á ő ő ő Á É Ü ő Á Á ő Ö ő ő Á É ő ő ű ő Ö Á Á Ú Á Á Á É É ő ű

Részletesebben

ö É ö ö ő ő ö ó ó ú ő ó ö ö ő ő ö ö ó ű ű ó ú ó ő ő ö ű ó ő ö ö ű ű ó ú ő ó ó ö ű ó ő ö ö ű ű ó ő ő ö Ü Ü ö ű ó ő ö ö ű ű ó ő ó Ü Ü ó ő ő ű ö ö ű ű ű ű ő ö ó ű ó ö ű ö ó ö ó ö ő ó ö ö ő ó ö ö ö ű Ö ö ö

Részletesebben

É Ó Ö Á ú Á ú ú ú ú Ó ú ú ú ú ű ú Á ÁÉ Á ű ű ú ú É ú É É ű ű É ű Ú ű Ü ú ű ú Ö Ú ű Ö Ö ú Ő ú ű Ö ú ú Ú Ó ú ú ű ú Ö Ú Ü Á Á Á É Ü ű Ü Ö É Á Ü Ó É Ö É ű Ü Á Á Á ú Ü Ö Á É Ü Á ú Ö Ö ú Ö Á ú É É Ö É Á Á Á

Részletesebben

ű É ű Á Ü É É ű ű Ű ÓÓ Ü É Ü Ú Ú ű Ú Ö Ö Ü ű ű Ű Ú Ö Ü Ö Ú Ó Ó Á É Ú Ű Ú Ú Ú Ú Ú ű Ú Ű Ú ű ű Ú ű ű Ú Ú É Á Ú Ú É É ű ű ű Ú ű ű Ú ű Ú Ó É Ű Ó ű Ú ű ű ű Á ű ű Ú ű ű É ű ű ű ű Ó Ú Á Ú ű Á ű Á Ú Ó ű ű Á ű

Részletesebben

1. A testek csoportosítása: gúla, kúp

1. A testek csoportosítása: gúla, kúp TÉRGOMTRI 1. testek csoportosítása: gúla, kúp Keressünk a környezetünkben gömböket, hengereket, hasábokat, gúlákat, kúpokat! Keressük meg a fenti képen az alábbi testeket! gömb egyenes körhenger egyenes

Részletesebben

Ó Ú Ö Ú É Ö É Á ű ű ű ű ű ű ű ű Á ű Á Ú ű Ü ű ű Ü ű Ó ű ű Ú ű Ö Ö ű ű ű ű Á É Ó ű ű Ü Ö ű ű Ü Ú É ű ű ű ű É Ü Ü Ü É Ü Ü Ü Ü ű ű ű ű ű ű ű Ú É ű ű ű ű É Ü ű ű ű ű ű ű ű ű ű Ú ű Ö ű Ü ű ű ű ű É ű Ó ű ű É

Részletesebben

Ú ű Ú ű ű ű Á ű Ö Á ű ű ű ű ű ű Ö ű Á ű ű Á ű ű ű ű ű Á ű Ú Ü Ü ű ű Ü Ü Ö ű ű ű ű ű Ú Ü ű ű ű ű ű Ú Ó ű ű ű Á É ű ű ű Ű ű ű ű É Á Á Á Á Ó Ó ű Ü Ú Ú Ö Ú ű Ö Ő Ú Ú ű Ó Ő Ú Ö Ö Ő Ű É ű Ó É Á Á ű ű Ú Á É É

Részletesebben

Á É ö ö ő ő ő Ú Ü ö ö ő ő ö ú ő ö ő ö ú ü ö Ü Ó ö ö ö ö ö ő ö ú ú ö ü Ü ö ö ö ö ö ö ő ö ö ő ö ü ő ö ő ü Ü Ó Ó ö ö ő Ü Ó ö ő ő ő ő Á ő ő Ü ő ö ő ő ő ő ő ő ő ő ő ő ő ő ő É ü É ö ö É Ó ő ő ő ő Ü É ő Ó ő ő

Részletesebben

Á ő ő ő ö ö Ó ő ú ö Á É É ü Ö ő ö ő ő ö Ó ö Ú Ó ő ő ő ö Ö Ú Ú ő Ö ú ö ő ú ú ú Ó ö Ó Ó Ú Ú Ú Ú Ö Ó ő ő ú ő ű ü ő ö ö ö ő ü Ó Ó ő ő Ó ö Ó Ó ü ő ő Ó ő ö ő ő Ó ő ő ő Ú ö ő Ó Ó ő Ó ő Ö ő ö ő ü ü ű ö ö ö Ó ö

Részletesebben

Á Á é é ő ö ó é é é é é ő é é é ő ő ő é ü ő ó ó ó ö ö é é ő é ő é ő ö é é é é é é é ő é ű ő é é é é é ó ő ö é ú ö é ö é é ö ő ó ő ó é ő é ő ő é ő ó ó é ő ő é é ü ő é ó é ö ő é ő é ó ő é é ő é é ő é é é

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

V. Matematikai Tehetségnap 2014. október 11. IV. osztály

V. Matematikai Tehetségnap 2014. október 11. IV. osztály V. Matematikai Tehetségnap 014. október 11. IV. osztály Munkaid : 45 perc. Minden feladatnak pontosan egy helyes válasza van. Minden helyes válasz 1 pontot ér. Megválaszolatlanul hagyott kérdésre, illetve

Részletesebben

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3 KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok

Részletesebben

Móra Ferenc Nógrád Megyei Irodalmi Verseny. Megyei döntő 4. évfolyam 2014. április 23.

Móra Ferenc Nógrád Megyei Irodalmi Verseny. Megyei döntő 4. évfolyam 2014. április 23. NÓGRÁD MEGYEI PEDAGÓGIAI INTÉZET 3100 Salgótarján, Ruhagyári út 9. Móra Ferenc Nógrád Megyei Irodalmi Verseny Megyei döntő 4. évfolyam 2014. április 23. Kedves Tanuló! Köszöntünk az irodalmi verseny megyei

Részletesebben

É É É É É Ö Á Á É Ő ű ű ű Ü ű ű ű Ú Á ű Ö ű Ú Á Ú ű Ó Ú Ú Ú Ú ű Ú Ú ű É ű ű É É É ű É É Ü ű ű É Á ű Á Á Ü Á Ü É Ú Á Ú Ó Ü Ü Ú ű ű Ú Ü Ü ű Ú É Ö ű ű Ü Ó Á Ö Ö ű Ö É É ű ű É ű ű ű Ú ű Ö É Ó ű Ú Ú Ú É Ú Ú

Részletesebben

Á ú ő ú Ú ü Ö ú Á Ó ú ü ő ő ő ú Ö ú É ú ű ü É ü ú ő ő ő ú ú ü ü Ö Ö ú ő ő ű É ü ü ü ú ő ő ú ü ü ő ő ő ú ü ő Ö ű ő ü ő ü ő ő Á É ő ü ő ü ú ú ő ü ü ü ő ü ő Ó ü ü ü ü ú É ő ü ü ü ú ő ü Ó ü ü ő ú ő ő ü ü ú

Részletesebben

ö Á É É ö ö Ö ö ű ö ő ö ő ö ú ü ö Ü ö ö ö ö ü ö ú ö ő ü ö Ú ü ü ö Ü ö ö ö ö ö ö ö ö ö ö ö ö ü ő ö ú ö ö ü ö ö ö ö ő ő ö ű ö ö ű ö ö ő Ü ö Ü ö ü Ü ö ö ö ú Ó ö ö ö ö ö ő ö ö ú ö ő ö ö ő ő ö ö ö ü ö ö É ö

Részletesebben

ú ú ű ú ú Ú É É Ó ű ű ü ú ü ű ü ú ú ü ü ü ú ü ú ü ü ü ü ú ű ü ü ú ű ü ü ü Á ű ű ú ű ü ü ú ű ü ű ú ü ü ü ú ű ü ü ü ű ú ü ú ü ü ü ű ű ú ü ú ű Ö ú ü ü ü ü ü ú ű Ö ü Ú É ú ú ü ü ü ü ü ü ü ü ü ú ü ú ü ú ü ü

Részletesebben

ö ű ö ö ö ö ü ö ö ü ö ö ö ö ö ö ű ö ü ú ö ö ö ö ű ü ü Ö ü ö ű ű ű ö ú Ü Á Á Á ö ö ú ü ú Ü ö ö ö ö ö ú Ü Ü ö ö Ü ö ü ö ú ö ü ö ü ü Ü ü ű ö ü ö Ü Ú Ü ü Ü ü Ü ú Ü ö ö ü ö ö ű ű ü ö ű Á ö ü ö ö ú ö Ü Á Ü Ő

Részletesebben

ő ő ő ü ő ő ő ő ő ő ő ű Ö ő Ö ő ő ő ő ő ő ő ő ü Ö ő ő ü É ő ő ü ő Ú üü ő ő Á Á É É Á ü Ú ő Ó ű ő É ő ű ő ő ő ő ő ű É Ö ű Ú Ö É ő ű ü ő ü É É É É É ő É ü ű ő ü űú ű ü ű Ú É ü ű É É É ő Ó ő ű Á ÚÚ ő ő É

Részletesebben

É ú ú ú ú ú ú ú ú ú É É ú ű ú ű ú Ú Ü ú ú ú ú ű ú ú ű ú ú ú ú ú ú ű ú ú ű Ü ű ű ú É É ű É ű É ú ú ú ű É ú ú ú ú ú ú ú ú ú ú ú ű ú ú ű Á ú É ű ű ú ú ú ú ű ű ű ú ű ú ú ú ú ú ú ű ú ú Ú ű ú ű ű ú ú ű Ü ú ű

Részletesebben

ö ő ö Ö ö ó ő ő ő ú ö ö ő ó ü ö ö ő ő ő ő ő ö ő ö ő ó ő ö ő ő ő ú ó ő ö ó ö ő ó ö ő ő ő ó ő ő ő ő ö ö ő ö ő ó ú ö ö ő ő ó ő ő ú ő ü ő ó ö ö ő ő ő ü ö ö ő ó ó ö ő ő ö ő ö ö ö ö ő ő ő ü ű ö ö ő ő ó ö ö ö

Részletesebben

FOLYTONOS TESTEK. Folyadékok sztatikája. Térfogati erők, nyomás. Hidrosztatikai nyomás. www.baranyi.hu 2010. szeptember 19.

FOLYTONOS TESTEK. Folyadékok sztatikája. Térfogati erők, nyomás. Hidrosztatikai nyomás. www.baranyi.hu 2010. szeptember 19. FOLYTONOS TESTEK Folyadékok sztatikája Térfogati erők, nyomás A deformáció szempontjából a testre ható erőket két csoportba soroljuk. A térfogati erők a test minden részére, a belső részekre és a felületi

Részletesebben