MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
|
|
- Veronika Magyar
- 8 évvel ezelőtt
- Látták:
Átírás
1 Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
2 Formai előírások: Fontos tudnivalók 1. A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül.. Kifogástalan megoldás esetén elég a maximális pontszám beírása a megfelelő téglalapokba. 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra. Tartalmi kérések: 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.. A pontozási útmutató pontjai tovább bonthatók. Az adható pontszámok azonban csak egész pontok lehetnek.. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél kevésbé részletezett. 4. Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni. 5. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg. 6. Ha a megoldási útmutatóban zárójelben szerepel egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás. 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. (Ha a vizsgázó nem jelölte ki az értékelendő változatot, a javító tanár a legutolsó megoldási próbálkozást értékelje!) 8. A megoldásokért jutalompont (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) nem adható. 9. Az olyan részszámításokért, részlépésekért nem jár pontlevonás, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel. 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni. írásbeli vizsga 051 / május 8.
3 1. 1. megoldás π sin = 1. lg1 = 0. log 9 = 9. x 10x 4 Így az = 10 egyenletet kell x x 6 megoldani. Ebből: x = 4. 4 pont x 1 =. x =. Ellenőrzés: x = megoldás. x = nem megoldás. I. Összesen: 1 Ha vizsgálja az értelmezési tartományt, és ennek alapján az x = -t kizárja, az x = -t pedig az ÉT alapján elfogadja (se nem ellenőrzi, se nem hivatkozik ekvivalens átalakításokra), akkor maximum 10 pont jár. Ha a feladat megoldása során a tanuló csak az értelmezési tartományt vizsgálja (x - és x ), és más értékelhető elemet nem tartalmaz a megoldása, akkor a helyes értelmezési tartomány megállapításáért pont jár.. megoldás x 10x 4 = ( x+ )( x 1). x x 6= ( x+ )( x ). x. x 10x 4 x 1 =. x x 6 x π sin = 1. lg1 = 0. log 9 = 9. Behelyettesítve az egyszerűsített egyenletbe: x 1 = 10. x x =. pont Ellenőrzés: x = megoldás. Összesen: 1 Az átalakítások után az egyszerűsített egyenletért 4 pont jár. írásbeli vizsga 051 / május 8.
4 . a) 6 A szokásos jelölésekkel: tg β = = 18 β 18,4. Ekkor α = 90 β 71, Összesen: pont Minden helyesen (egészre, tizedre) kerekített érték elfogadható. b) A fok jelölése nélkül legfeljebb pont adható. Jelöljük a derékszögű háromszögben a PB szakasz hosszát x-szel. A PCA derékszögű háromszögben: pont Ezt a pontot akkor is megkapja, ha a magyarázó szöveg helyett megfelelő ábrát készít. 6 + (18 x ) = x. pont x + x = x. Ha a négyzetre emelést rosszul végzi el, akkor ez a x = 10. pont nem jár. Tehát PB = 10 cm. pont Összesen: 6 pont Más megoldás esetén az adatok helyes rögzítésért (szövegben vagy ábrán) ; az AB szakasz kiszámolásáért ; a PB kiszámításáért (koszinusztétel vagy szinusztétel vagy szögfüggvény segítségével) 4 pont jár a helyesen kerekített értékkel számolva is. írásbeli vizsga / május 8.
5 c) Tekintsük a tetraéder alapjának az ABC háromszöget, ekkor a testmagasság CD lesz: m = 15 cm. Az ABC háromszög területe: 54 cm. Tm V = V =. pont pont Ezt elegendő az ábrán is jelölni. A mértékegység nélküli válasz Így a keresett térfogat: 70 cm. Összesen: 4 pont Ha a vizsgázó érdemben nem foglalkozik a feladattal, de a derékszögű tetraéder ábrája helyes (de nincs rajta a DC=15), akkor ot kap. írásbeli vizsga / május 8.
6 . 1. megoldás A mértani sorozat tagjai: a; aq; aq. (1) a + aq + aq = 6. A számtani sorozat tagjai: a + 1; aq + 6; aq +. a + 1+ aq + Ezért: aq + 6 =. Rendezve: () a aq + aq = 8. A két egyenlet különbsége: aq = 18, 6 ahonnan q =. a pont Behelyettesítve az (1)-be: 6 6 a + a + a = 6. a a Ebből: a 0a + 6 = 0. A másodfokú egyenlet gyökei: a = és a = 18. Visszahelyettesítés után: q =, 1 1 q =. Tehát a keresett számtani sorozat első három tagja: ; 1; 1, illetve: 19; 1; 5. Ezek megfelelnek a feladat feltételeinek. Összesen: 14 pont. megoldás A számtani sorozat első három tagjának összege: 6 + ( ) = 6, Ezért a második tagja 1. Jelöljül a számtani sorozat különbségét d-vel, ekkor a sorozat első három tagja: 1-d; 1; 1+d. A mértani sorozat tagjai: 11-d; 6; 9+d. pont pont Ezért 6 = ( 11 d ) ( 9 + d ) ; pont ahonnan d d 6 = 0. d = 9 vagy d = 7. írásbeli vizsga / május 8.
7 Tehát a keresett számtani sorozat első három tagja: ; 1; 1, illetve: 19; 1; 5. Ezek megfelelnek a feladat feltételeinek: a mértani sorozat megfelelő tagjai: pont ; 6; 18 illetve 18; 6;. Összesen: 14 pont. megoldás A mértani sorozat tagjai: q a ; a; aq. a + a + aq = 6. q A feladat szerint az egyes tagok értékét megnövelve kapjuk: a ( a + 6) + ( aq + ) = 6. q pont A számtani sorozat tulajdonságai miatt a + 6 = 1. pont Tehát a = q + 1 = 6 q q 10q + = 0 pont 1 q 1 = q = Tehát a keresett számtani sorozat első három tagja: ; 1; 1, illetve: 19; 1; 5. Ezek megfelelnek a feladat feltételeinek. Összesen: 14 pont írásbeli vizsga / május 8.
8 4. a) A helyes parabola ábrázolása az adott intervallumban. pont Összesen: pont Ha nem a megadott intervallumon ábrázol, akkor pont. Helyes ábra esetén magyarázat hiánya miatt ne vonjunk le pontot! b) 1. megoldás A parabola egy adott pontjában húzott érintő meredekségét itt az első derivált segítségével kaphatjuk meg. 4 pont y = x 8. Az érintési pont első koordinátájának behelyettesítésével: y (5) = = m. pont y = mx + b P(5; 4), 4 = 10 + b, b = 14. pont Az érintő egyenlete: y = x 14. pont Összesen: 10 pont Az első derivált helyes megadásáért indoklás nélkül is jár a 4 pont. Az y + 4 = (x 5) alakkal is dolgozhat.. megoldás Az érintő nem párhuzamos az y-tengellyel, ezért egyenletét y = mx + b alakban keressük. A P(5; 4) koordinátáit behelyettesítve: 4 = 5m + b, b = 4 5m. Visszahelyettesítve: y = mx 4 5m. Ha a következő egyenletrendszernek egy megoldása van, akkor a keresett egyenes érintő lesz: y = x 8x + 11 y = mx 4 5m. mx 4 5m = x 8x + 11 x 8x mx m = 0 ( 8 m) 4( ) = 0 D = m pont A gondolat ábrán való megjelenítése is elfogadható. m 4m + 4 = 0 m = b = 14 Az érintő egyenlete: y = x 14. Összesen: 10 pont Ha a vizsgázó az érintő egyenletét olyan tétel (ismeret) alapján írja fel, amely nem tartozik a vizsgakövetelményekhez, akkor a felhasznált tételre pontosan kell hivatkoznia. Ennek elmaradása esetén legfeljebb 8 pont adható. írásbeli vizsga / május 8.
9 II. Az 5 9. feladatok közül a tanuló által megjelölt feladatot nem kell értékelni. 5. a) x 6x + 9 = ( x ). Mivel ez minden valós x értékre nemnegatív, ezért a legbővebb részhalmaz az R. Összesen: pont Magyarázó szöveg nélkül is jár az. b) ( x ) = x. pont Ha nem jelöli az abszolútértéket, de esetszétválasztással indokol, akkor is jár a pont. pont Ha elsőfokú függvényt ábrázol, legfeljebb ot kap. Ha a grafikon jó, de az intervallum nem, akkor pont jár. Összesen: 5 pont c) A: Hamis. B: Hamis. C: Igaz. Összesen: pont d) 1. megoldás x x dx = x + 9x = pont ( 6x + 9) = ( ) ( 9 7 7) = pont = 9 ( 6) = 7. Összesen: 6 pont Az állítások igazságtartalmát a tanuló által felrajzolt függvény alapján kell eldönteni. A jó eredményért, a számítás részletezése nélkül is pont adható. írásbeli vizsga / május 8.
10 . megoldás ( x + 9) dx = ( x ) x 6 dx = ( x ) = = pont = 0 ( 7) = 7. pont Összesen: 6 pont írásbeli vizsga / május 8.
11 6. a) 10 kg leszedett szilvából kimagozás után 9,5 kg szilva lesz. A 9,5 kg kimagozott szilvában 90% víz, míg 10%, azaz 0,95 kg a szárazanyag-tartalom. A 10 kg nyers szilvából készült aszalt szilvában ez a 0,95 kg a feltétel szerint a tömeg 95%-a, hiszen pont csak 5%-a víz. Tehát keressük, hogy hány kg-nak a 95%-a lesz 0,95 kg. Így adódik a 100%-ra 1 kg. Azaz 10 kg szilvából valóban mindössze 1 kg Ha kiderül, hogy a szárazanyag-tartalom állandóságát felismerte, akkor jár a pont. aszalt szilva lesz. Összesen: 6 pont A pontok akkor is járnak, ha a számolásból világosan kiderül a gondolatmenet. b) Ha x kg volt a termése, akkor a feltétel szerint: Hibás egyenlet felírása elvi x x hibának minősül , = pont x = 00 kg volt a termése. Mértékegység nélkül ez a pont nem jár. Összesen: pont c) A: = rész; 60 1 (00 kg) B: = 60 4 rész; (180 kg) C: = 60 0 rész; (6 kg) D: = rész. (04 kg) Az átlagár a súlyozott közép: 4 pont Az arányok megállapításáért vagy a mennyiségek kiszámításáért jár az 1-1 pont = 185, = pont Ha a megadott négy ár számtani közepét számolja, akkor nem kaphat pontot. Tehát az átlagár kb. 185 Ft. Mértékegység nélkül ez a pont nem jár. Összesen: 7 pont Minden helyesen (egészre, tizedre) kerekített érték elfogadható. írásbeli vizsga / május 8.
12 7. a) 6. A háromelemű részhalmazok száma: 0. b) Egy szám 5-tel osztható, ha nullára vagy ötre végződik. Nullára végződő hatjegyű számból 5! van. pont Összesen: pont Ötre végződő hatjegyű számból 4 4! van. pont Összesen: 5! + 4 4! = = = 16. Összesen: 6 pont Ha szisztematikusan felsorolja az összes háromelemű halmazt, akkor is teljes pontszám jár. Ha kihagy 1 esetet, akkor, ha ennél többet, akkor 0 pont jár. Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont. Ha nem veszi figyelembe, hogy nullával nem kezdődhet a szám, akkor 0 pont jár. c) 1. megoldás Komplementer halmaz segítségével számolható ki. Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont. 5 Az összes hatjegyű szám: 5 6. pont Ha nem veszi figyelembe, hogy nullával nem kezdődhet a szám, akkor jár. Azok a hatjegyű számok, amelyekben nincs egyes: Ha nem veszi figyelembe, pont hogy nullával nem kezdődhet a szám, akkor jár. 5 5 Tehát: = = = 6 80 ilyen hatjegyű szám van. Összesen: 7 pont írásbeli vizsga / május 8.
13 . megoldás Az egyes lehetőségek felsorolása: a szám 6 db egyest, 5 db egyest, 1 db egyest tartalmaz. Azoknak a számoknak a darabszáma, amelyekben 6 db egyes van: 1; 5 db egyes van: 9; 4 db egyes van: 50; db egyes van: 50; db egyes van: 815; 1 db egyes van: pont Ezek összege adja meg az eredményt ilyen hatjegyű szám van. Összesen: 7 pont Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont. Ha csak három lehetőséget számol ki jól, akkor ot kap, minden további eset jó kiszámolásáért újabb jár. írásbeli vizsga / május 8.
14 8. a) A dohányosok relatív gyakorisága az első cégnél 55 ( 0,), pont 800 második cégnél: 680 ( = 0,4). pont 000 Összesen: 4 pont b) Bármelyik személy kiválasztása a 000-es mintából egyformán lehetséges, ezért az összes 000 1* pont esetek száma: (=114000). 680 dohányosból kell kiválasztani egy személyt, ami 680-féleképpen tehető meg. 1* pont 10 nem dohányzóból kell kettőt kiválasztani, ez 10 összesen -féleképpen tehető meg 1* pont ( ami = vel). 10 A kedvező esetek száma: * pont A keresett valószínűség:. pont 000 Ennek közelítő értéke: 0,44. Összesen: 7 pont A *-gal jelölt pontok akkor is járnak, ha a vizsgázó nem részletezi az indoklást. c) 1 nem dohányos kiválasztásának a valószínűsége: 1 0,4 = 0,66. pont 10 nem dohányos kiválasztásának a valószínűsége: 0,66 10 pont 0,016 vagy 1,6%. Összesen: 5 pont A binomiális eloszlás megfelelő tagjának felírása is pont. Ha a vizsgázó megad egy konkrét lakosságszámot (pl. 100 fő), és azzal helyesen dolgozik, megoldására legfeljebb pontot kapjon. írásbeli vizsga / május 8.
15 9. a) A padlássíkra és a tetősíkra egyaránt merőleges síkmetszetből lehet a keresett szöget meghatározni. A keresztmetszeti ábrán a keresett szöget α-val jelölve, felírható, hogy tgα = 5, pont Világos ábra esetén magyarázó szöveg nélkül is megadható a pont. o ahonnan α 59. Mértékegység nélkül ez a pont nem jár. Összesen: 4 pont Ha nem a két sík hajlásszögét számítja ki, akkor nem kaphat pontot. b) pont Keressük az ábrán s-sel jelölt szakasz hosszát. Hasonlóság alapján: 1,9 s = 5. pont Ebből s = 1,86. A hasznos alapterület: 4s 1,84 m. Mértékegység nélkül ez a pont nem jár. Összesen: 6 pont írásbeli vizsga / május 8.
16 c) Az ábra jelöléseit használjuk, ahol 0 x 1,9. Az ábra alapján T = 4y -et (ami a hasznos alapterület) kell kifejeznünk x segítségével. A két kisebb háromszög megfelelő szögei egyenlők, tehát hasonlóak.,1 1, 9 x Így: =. y y 9, Innen y =. 5 x 18,6 4 = Magyarázó szöveg nélkül, jó rajz esetén is jár a. Tehát a keresett összefüggés: y. 5 x Ha x 1,9, akkor 6 m a hasznos alapterület. Összefoglalva: Megjegyzés: ha az első 18,6, ha 0 x < 1,9 feltételnél x 1,9 szerepel T ( x) = 5 x és/vagy a második feltételnél 6, ha 1,9 x 5. 1,9 x, akkor is jár. Összesen: 6 pont Megjegyzés: ha a vizsgázó helyes összefüggéseket alkalmaz, de ábrát nem készít, akkor az ábráknál feltüntetett pontszámok értelemszerűen járnak. írásbeli vizsga / május 8.
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
RészletesebbenKözépszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
RészletesebbenPróba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
RészletesebbenMATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
RészletesebbenMATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT
) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Részletesebben2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
RészletesebbenMATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 11 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM
Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0814 ÉRETTSÉGI VIZSGA 010 május 4 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenNT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
RészletesebbenMATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
RészletesebbenArany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások
RészletesebbenMatematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
RészletesebbenI. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
RészletesebbenI. rész. x 100. Melyik a legkisebb egész szám,
Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos
RészletesebbenFeladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
RészletesebbenEgyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
Részletesebbena) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
RészletesebbenA gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Részletesebben2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n
Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító
RészletesebbenMatematika. Emelt szintű feladatsor pontozási útmutatója
Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal
RészletesebbenP R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a
RészletesebbenMATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,
RészletesebbenEgy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0815 ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenEGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
Részletesebben4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenA 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenAbszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
RészletesebbenNemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika emelt szint 06 ÉETTSÉGI VIZSGA 006. május 5. FIZIKA EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően
Részletesebbenegyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenAz áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 09 ÉRETTSÉGI VIZSGA 20 május MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.
Részletesebben5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
RészletesebbenBolyai János Matematikai Társulat
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Részletesebben2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenA próbafelvételi eredményei: (Minden feladat 5 pontos volt...)
A csoport: A próbafelvételi eredményei: (Minden feladat pontos volt...) Minta feladatsor (A) matematikából 014. december 1. (Feladat számolásra) Határozd meg a ; b és c értékét! a = ( 1 3 + 1 6) : 1 6
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. május 7. MINISZTÉRIUMA. 2013. május 7. 8:00 EMBERI ERFORRÁSOK
I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 13 51 3. 13 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenBEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 0. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók. A
Részletesebben