MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ"

Átírás

1 Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 0. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM

2 Formai előírások: Fontos tudnivalók. A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maimális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül.. Kifogástalan megoldás esetén elég a maimális pontszám beírása a megfelelő téglalapokba. 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra. Tartalmi kérések:. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.. A pontozási útmutató pontjai tovább bonthatók. Az adható pontszámok azonban csak egész pontok lehetnek.. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maimális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél kevésbé részletezett. 4. Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni. 5. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maimális pontot, ha a megoldandó probléma lényegében nem változik meg. 6. Ha a megoldási útmutatóban zárójelben szerepel egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás. 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. 8. A megoldásokért jutalompont (az adott feladatra vagy feladatrészre előírt maimális pontszámot meghaladó pont) nem adható. 9. Az olyan részszámításokért, részlépésekért nem jár pontlevonás, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel. 0. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni. írásbeli vizsga 0 / 0 0. május.

3 . Egy, a feltételeknek megfelelő szám. I. A feltételnek megfelelően a következő esetek lehetségesek:. eset: 6 darab 6-os jegy: darab hatjegyű szám van.. eset: 5 darab 5-ös, darab -es jegy. 6 ilyen szám van.. eset: 4 darab 4-es, darab -es jegy. 6 Ezekből a számjegyekből, 4 azaz 5 szám képezhető. 4. eset: darab -as, darab -es, darab -es jegy. 6! Ebben az esetben =!! = 60 megfelelő szám van. (Más eset nincs,) tehát összesen 8, a feltételnek megfelelő hatjegyű szám képezhető. Összesen: Ha ez a megoldásból derül ki, a pont jár. írásbeli vizsga 0 / 0 0. május.

4 . 0 és 5 0, ezért az egyenlőtlenség értelmezési tartománya: ; 5. [ ] Mindkét oldal nem negatív, ezért a négyzetre emelés ekvivalens átalakítás (a megállapított értelmezési tartományon). Azt kapjuk, hogy. A = ; 5. Így [ ] Az log ( 4) > egyenlőtlenség értelmezési tartománya: ] ; [. Indokolt négyzetre emelés esetén jár ez a pont. Ha nem írt értelmezési tartományt, akkor ez a pont nem jár. Az alapú logaritmusfüggvény szigorúan csökkenő, ezért 4 <, így 4 < 4. Innen < 4. Így = ] ; 4 [ B. ] ; 5 ] [ ; 4 [ ] ; [ Ha nem írt értelmezési tartományt, akkor ez a pont nem jár. A B = A rosszul felírt A és B halmazokból helyesen A B = képzett válaszok esetén is B \ A = jár az -. Összesen: pont Megjegyzések:. A megfelelő pontszámok járnak akkor is, ha a vizsgázó egyenlőtlenségekkel adja meg jól a megfelelő halmazokat.. Csak a pontosan (végpontok, zártság, nyitottság) megadott halmazok esetén jár a megfelelő pontszám.. A halmazjelölés hibája (pl. B = < < 4 ) miatt egy alkalommal vonjunk le ot. írásbeli vizsga 0 4 / 0 0. május.

5 . Jelölje f a sportklub felnőtt tagjainak számát. Ekkor a diákok száma a sportklubban 640 f. A rendszeresen sportolók száma 640-nek az 55%-a, 0, = 5 fő. A rendszeresen sportolók aránya a teljes tagságban 8 8 0,55. Ennek a -ed része, vagyis 0,55 = 0, 4 a rendszeresen sportolók aránya a felnőttek között. pont A rendszeresen sportolók aránya a diákok között ennek az arányszámnak a kétszerese, vagyis 0,8. A rendszeresen sportoló felnőttek száma: 0,4 f. A rendszeresen sportoló diákok száma: 0,8 640 f. ( ) A rendszeresen sportolók száma e két létszám összege: pont 0,4 f + 0,8 ( 640 f ) = 5. Innen f = 400 és 640 f = 40. A felnőtt tagok száma 400, a diákok száma 40. Ellenőrzés. Összesen: pont Ez a pont akkor jár, ha a vizsgázó számolással jelzi, hogy az eredmény megfelel a szöveg feltételeinek. (A sportoló felnőttek száma 60, a nem sportoló felnőtteké 40, a sportoló diákoké 9, a nem sportoló diákoké 48.) írásbeli vizsga 0 5 / 0 0. május.

6 4. a) n = 8 p = 0,05 a várható érték: n p = 0, 4 Összesen: pont 4. b) Minden gép p = 0, 95 valószínűséggel indul be a reggeli munkakezdéskor. Annak a valószínűsége, hogy mind a 8 gép beindul: 8 0,95, ami 0,664 ( 66,4% ). 4. c) első megoldás A kérdéses esemény (A) komplementerének (B) valószínűségét számoljuk ki, azaz hogy legfeljebb gép romlik el. P ( B) = 0,95 + 0,05 0,95 + 0,05 0,95 = pont Összesen: 4 pont pont = 0, ,05 0, ,05 0,95 0,664+ 0,79+ 0,0546 0,994 pont ( A) = P( B) = 0,994 = 0, 0058 P. Tehát valóban 0,0058 (0,58%) a termelés leállításának valószínűsége. Összesen: 7 pont Bármely, legalább egy tizedesjegyre kerekített helyes érték elfogadható. Ez a pont akkor is jár, ha csak a megoldásból látszik, hogy komplementerrel számol. Akkor is megkapja a pontot, ha ez nincs leírva, de kiderül a helyes megoldásból. Ez a pont akkor is jár, ha nem írja fel, de jól számolja ki az összeget. E nélkül a mondat nélkül is jár az a helyes kivonásért. írásbeli vizsga 0 6 / 0 0. május.

7 4. c) második megoldás A kérdéses esemény (A) pontosan akkor következik be, ha a meghibásodott gépek száma, 4, 5, 6, 7, vagy 8. Ha A k jelöli azt az eseményt, hogy pontosan k db gép hibásodik meg, akkor A = A + A4 + A5 + A6 + A7 + A8 (Az A k események páronként kizárják egymást, ezért) P ( A) = P( A ) + P( A4 ) + P( A5 ) + P( A6 ) + P( A7 ) + P( A8 ) P ( A) = 0,05 0,95 + 0,05 0, ,05 0,95 + 0,05 0, ,05 0,95 + 0, (Az összeg tagjait öt tizedesjegy pontossággal számítva az utolsó két tag már 0,00000-nak adódik,) P ( A) ( 0, , , ,0000=) 0, Tehát négy tizedesjegyre kerekítve valóban 0,0058 (0,58%) a termelés leállításának valószínűsége. pont pont pont Ez a pont akkor is jár, ha csak a megoldásból látszik, hogy jó modellel számol. Ez, ha nincs eplicit leírva, de kiderül a helyes megoldásból, akkor is megkapja a pontot. Ha az összeg tagja hiányzik vagy hibás, ot kap. Ez a pont akkor is jár, ha nem írja fel, de jól számolja ki az összeget. E nélkül a mondat nélkül is jár az a helyes közelítésért. Összesen: 7 pont Megjegyzés: Ha számolási hiba miatt nem kapja meg P(A) értékére közelítően a 0,0058-et, az utolsó ot nem kaphatja meg. írásbeli vizsga 0 7 / 0 0. május.

8 5. a) II. Az A C0C háromszög területe: t =. 6 Az AnCn Cn háromszöget arányú hasonlósággal + n N ). lehet átvinni az A n+ CnCn + háromszögbe ( A hasonló síkidomok területének arányára vonatkozó tétel szerint AnCn Cn háromszög területe: = n = tn tn az t (ha n > ). A területek összegéből képezett ( t t t...) tehát olyan mértani sor, + n + amelynek hányadosa. Ezt a pontot akkor is kapja meg, ha a második és első háromszög közötti hasonlóságot említi csak, de a hasonlóság arányával következetesen és jól számol a későbbiekben. Ha a tételt a megoldásban helyesen alkalmazza, jár a pont. Ezt a pontot akkor is kapja meg, ha a második és első háromszög közötti hasonlóságot említi csak, de a hasonlóság arányával következetesen és jól számol a későbbiekben. A végtelen sok háromszög területének összege: 6 T = = ( 0,4). 4 Összesen: 7 pont Megjegyzés: Teljes pontszámot kap a vizsgázó, ha a számításai során kerekített értékeket (is) használ. Ha nem a kerekítési szabályoknak megfelelően kerekít, akkor ot veszítsen. írásbeli vizsga 0 8 / 0 0. május.

9 5. b) első megoldás Jelölje d n a d = C0C =. C C n n szakasz hosszát ( A hasonlóság miatt minden n > esetén d n = dn. A { } n + n N ) d sorozat tehát olyan mértani sorozat, amelynek első tagja és hányadosa is. Vizsgáljuk az S n = d + d dn összegeket! A d + d dn +... olyan mértani sor, melynek hányadosa, tehát van határértéke. S sorozat határértéke (a mértani sor összege): Az { } n lim S n =. n + =. Mivel kisebb, mint,8, ezért { S n } határértéke kisebb, mint,4. Az { } n S sorozat szigorúan növekedő, ezért az { } n S sorozat egyetlen tagja sem lehet nagyobb a sorozat határértékénél (tehát igaz az állítás). Ezt a pontot akkor is kapja meg, ha a második és első háromszög közötti hasonlóságot említi csak, de a hasonlóság arányával következetesen és jól számol a későbbiekben. +,66 <, 4 Összesen: 9 pont Megjegyzés: Ha a vizsgázó kerekített értékekkel számol, és nem indokolja, hogy ez miért nem okoz hibát a bizonyításban, akkor legfeljebb 7 pontot kaphat. írásbeli vizsga 0 9 / 0 0. május.

10 5. b) második megoldás Jelölje d n a d = C0C =. C C n n szakasz hosszát ( A hasonlóság miatt minden n > esetén d n = dn. A { } n + n N ) d sorozat tehát olyan mértani sorozat, amelynek első tagja és hányadosa is. Ezt a pontot akkor is kapja meg, ha a második és első háromszög közötti hasonlóságot említi csak, de a hasonlóság arányával következetesen és jól számol a későbbiekben. n n ( ) ( ) S S n = =. n bármely helyesen felírt alakjáért jár a pont. Azt kell belátni, hogy minden pozitív egész n esetén n pont ( ) <, 4 teljesül. Átrendezve: >,4,4 ( 0,05) n ( ) Mivel a bal oldalon pozitív szám áll, és,4,4 ( 0,05) negatív szám, ezért az állítás igaz. Összesen: 9 pont Megjegyzés: Ha a vizsgázó kerekített értékekkel számol, és nem indokolja, hogy ez miért nem okoz hibát a bizonyításban, akkor legfeljebb 7 pontot kaphat. írásbeli vizsga 0 0 / 0 0. május.

11 6. a) első megoldás Teljes négyzetté kiegészítéssel és rendezéssel adódik a kör egyenletének másik alakja: ( + ) + ( y + ) = 6, ahonnan a kör középpontja: K( ; ). (sugara: r = 4 ) A kör K középpontja az ABC szabályos háromszög súlypontja. Az AK szakasz a háromszög AF súlyvonalának kétharmada, ahonnan F ( 5 ; ). A szabályos háromszög AF súlyvonala egyben Ha ez a gondolat a megoldás során derül ki, jár oldalfelező merőleges is, így a BC oldalegyenes az AF súlyvonalra F-ben ez a pont. állított merőleges egyenes. A BC egyenes egyenlete tehát = 5. A kör egyenletébe helyettesítve kapjuk, hogy pont y = és y =. A szabályos háromszög másik két csúcsa: B ( 5 ; ) és C( 5 ; ). Összesen: Aki helyesen számol, de közelítő értéket használ, pontot veszít. írásbeli vizsga 0 / 0 0. május.

12 6. a) második megoldás Teljes négyzetté kiegészítéssel és rendezéssel adódik a kör egyenletének másik alakja: ( + ) + ( y + ) = 6, ahonnan a kör középpontja: K( ; ). (sugara: r = 4 ) Mivel KA szimmetriatengelye a háromszögnek, ezért KAB és KAC szögek 0 fokosak. A BA egyenes meredeksége így. A BA egyenes meredekségét és egy pontját ismerjük, ebből az egyenlete y = ( ). Ezt beírva a kör egyenletébe: ( + ) + ( y + ) 6 = = ( + ) = = Hárommal szorozva és rendezve: = 0. Ennek gyökei az és a 5. (Az = az A ponthoz tartozik.) Az = 5-höz tartozó y érték a, tehát B ( 5 ; ), C pont pedig a B pontnak az y = egyenesre vett tükörképe, azaz C ( 5 ; ). Összesen: Aki helyesen számol, de közelítő értéket használ, pontot veszít. írásbeli vizsga 0 / 0 0. május.

13 6. a) harmadik megoldás B a a K r A a C Teljes négyzetté kiegészítéssel és rendezéssel adódik a kör egyenletének másik alakja: ( + ) + ( y + ) = 6, ahonnan a kör középpontja: K( ; ) és sugara: r = 4. A körbe írt szabályos háromszög oldalának hosszát jelölje a. A kör középpontja a szabályos háromszög súlypontja, a ezért = 4, ahonnan a = 4. A szabályos háromszög másik két csúcsa illeszkedik az eredeti körre, és az A(; ) középpontú, a = 4 sugarú körre is, ezért koordinátáik a két kör egyenletéből álló egyenletrendszer megoldásaként adódnak. Ennek a körnek az egyenlete: ( ) + ( y + ) = 48, vagy más alakban + y + 4y 4 = 0. A két kör egyenletét kivonva egymásból adódik, hogy = 5. Visszahelyettesítés után kapjuk, hogy y = és y =. A szabályos háromszög másik két csúcsa: B ( 5 ; ) és C( 5 ; ). Összesen: pont Ha ezek a gondolatok csak a megoldásból derülnek ki, akkor is jár a pont. Aki helyesen számol, de közelítő értéket használ, pontot veszít. írásbeli vizsga 0 / 0 0. május.

14 6. a) negyedik megoldás B O 40 0 K A C Teljes négyzetté kiegészítéssel és rendezéssel adódik a kör egyenletének másik alakja: ( + ) + ( y + ) = 6, ahonnan a kör középpontja: K( ; ). (sugara: r = 4 ) A körbe írt (pozitív körüljárású) ABC szabályos háromszög B, illetve C csúcsát megkapjuk, ha az adott kör K középpontja körül elforgatjuk az A csúcsot +0 -kal, illetve +40 -kal. Forgassuk a KA vektort. KA= i Ekkor 4, azaz ( 4; 0) pont KA. KB = 4 i j + = i + j, KC = 4 i j = i j. Így a B csúcs helyvektora OB = OK + KB = = 5i + ( )j, azaz a háromszög B csúcsa: B 5;. ( ) A C csúcs helyvektora OC = OK + KC = = 5 i ( + )j, azaz a háromszög C csúcsa: C 5;. ( ) Összesen: Aki helyesen számol, de közelítő értéket használ, pontot veszít. írásbeli vizsga 0 4 / 0 0. május.

15 6. b) A kérdéses valószínűség a beírt szabályos háromszög és a kör területének hányadosa. pont Ha ez a gondolat csak a megoldásból derül ki, akkor is jár a pont. A kör területe: T r k = π. Ha a vizsgázó a területek Az r sugarú körbe írt szabályos háromszög területe: számszerű értékével számol ( Tk 50, 7 és r sin0 r T h = =. T h 0,78), akkor is 4 járnak ezek a pontok. T Ez a pont akkor is jár, ha h A keresett valószínűség: P = = 0, 4. Tk 4π a vizsgázó százalékként adja meg két tizedesjegy pontossággal a választ (4,5%). Összesen: 5 pont 7. a) 6 nyomólemez óránként 600 plakát elkészítését teszi lehetővé, ezért a teljes mennyiséghez = 9 óra 600 szükséges. A nyomólemezek előállítási költsége és a munkaidő további költségének összege: pont = Ft. Összesen: 4 pont Ha ez a gondolat csak a megoldásból derül ki, akkor is jár a pont. írásbeli vizsga 0 5 / 0 0. május.

16 7. b) első megoldás Ha a nyomda db nyomólemezt alkalmaz, akkor ennek költsége 500 forint. Az db lemezzel óránként 00 darab plakát készül el, ezért a darab kinyomtatása = 00 órát vesz igénybe, 6 5,76 0 és ez további forint költséget jelent. 6 5,76 0 A két költség összege: K( ) = forint, ahol az pozitív egész. Tekintsük a pozitív valós számok halmazán a K utasítása szerint értelmezett függvényt! * (Az így megadott K függvénynek a minimumát keressük. A K függvény deriválható, és minden 0 < esetén) 6 5,76 0 K ( ) = 500. A szélsőérték létezésének szükséges feltétele, hogy K ( ) = 0 legyen. 6 5, = 0, innen = 04, = 48 (mert 0<). Annak igazolása, hogy az = 48 (abszolút) minimumhely. A második derivált: 7,5 0 K ( ) =. Azaz 48 nyomólemez alkalmazása esetén lesz minimális a költség. 48 darab nyomólemez alkalmazása esetén a nyomólemezekre és a ráfordított munkaidőre jutó költségek összege: K( 48)= (forint). Összesen: pont *Megjegyzés: Egy pont jár annak említéséért, hogy bár a valós számokon értelmezett függvényt írtunk fel, a feladat megoldása csak pozitív egész lehet (például: a 48 pozitív egész szám, ezért megoldása a feladatnak). írásbeli vizsga 0 6 / 0 0. május.

17 7. b) második megoldás Ha a nyomda db nyomólemezt alkalmaz, akkor ezek ára 500 forint. Az db lemezzel óránként 00 darab plakát készül el, ezért a darab kinyomtatása = órát 00 vesz igénybe, 6 5,76 0 és ez további forint költséget jelent. 6 5,76 0 A két költség összege: K( ) = forint (ahol 0 < és egész). (Ennek a minimumát keressük.) Számtani és mértani közép közötti egyenlőtlenséggel: 6 6 5,76 0 5, , pont 6 5, ,44 0 =,4 0. (A két költség összege tehát nem lehet kevesebb forintnál.) 6 5,76 0 A Ft akkor lehetséges, ha 500 =, amiből ( > 0 miatt) = 48 adódik. A legkisebb költség tehát 48 darab nyomólemez alkalmazása esetén lép fel. A nyomólemezekre és a ráfordított munkaidőre jutó költség ekkor összesen forint. (A nyomdai előállítás óráig tart, a nyomólemezek ára forint, és ugyanennyi a ráfordított időből adódó további költség is.) Összesen: pont Ez a pont akkor is jár, ha csak a megoldásból derül ki, hogy ezt alkalmazza. írásbeli vizsga 0 7 / 0 0. május.

18 Megjegyzés: Ha a vizsgázó véges sok (akár csak néhány) eset vizsgálatával (pl. táblázattal, szisztematikus próbálkozással) arra a megállapításra jut, hogy 48 nyomólemez alkalmazása esetén lesz a legkisebb a költség, akkor erre a sejtésére kapjon pontot. A 48-hoz tartozó kétféle költség összegét kiszámolja: 40 ezer Ft. Ha a nyomólemezek száma 4 vagy kevesebb, akkor már csak a munkaórák száma miatt (legalább 6 munkaóra) legalább 40 ezer forint költség keletkezik, tehát ezeket az eseteket nem kell külön vizsgálni. Ha a nyomólemezek száma 96 vagy több, akkor már csak a nyomólemezek ára miatt is legalább 40 ezer Ft költség keletkezik, ezért ezeket az eseteket sem kell külön vizsgálni. Tehát a nyomólemezek száma több mint 4 és kevesebb, mint 96. A 5 és 95 közötti összes érték kiszámolása 5 pont Evvel egyenértékű bármely helyes indoklás is 5 pontot ér (például a vizsgázó kevesebb lépésben, hibátlan logikával szűkíti a nyomólemezek lehetséges számát). Ha a monotonitást csak az egyik irányban sikerül bizonyítania, akkor pontot kapjon, ha a monotonitást egyik irányban sem tudja bizonyítani, akkor ne kapjon pontot erre a részre. A legkisebb költség tehát 48 darab nyomólemez alkalmazása esetén lép fel. Az utolsó pontot nem kaphatja meg, ha az előző, 5 pontos részre nem kapott pontot. 8. Legyen a négyzetes oszlop alapéleinek hossza a (cm) és a magasság hossza b (cm). (Az a és b számok -nél nagyobb egészek.) Mivel minden él hossza legalább, azoknak az egységkockáknak lesz pontosan két lapja piros, melyek az élek mentén, de nem a csúcsokban helyezkednek el. A két db négyzetlap 8 élén 8 ( a ), a 4 oldalélen 4 ( b ) ilyen festett kocka van. 8 ( a ) + 4 ( b ) = 8, innen a + b =. Az élhosszak megfelelő értékei: a 5 4 b 5 7 A három lehetséges négyzetes oszlop térfogata rendre 75 cm, 80 cm és 6 6 pont cm. pont Összesen: 6 pont Ha ezt a gondolatot a megoldás során jól használja, ez a pont jár. A 6 pont a felírt diophantikus egyenlet helyes megoldásáért jár. Megfelelő (a; b) értékpáronként - pont. Ez a pont csak a három helyes adatpár esetén jár. Ha a vizsgázó indoklás nélkül közli a három lehetséges négyzetes oszlop méreteit, és megadja a térfogatokat, legfeljebb 6 pontot kaphat. írásbeli vizsga 0 8 / 0 0. május.

19 9. sin cos y = 0 () sin + sin y = 4 () Az () egyenletből, felhasználva, hogy egy szorzat értéke pontosan akkor 0, ha legalább az egyik szorzótényezője 0, adódnak a következő esetek: a) sin = 0 Az egyenletrendszer megoldásaira vonatkozó feltétel miatt három érték tesz eleget az () egyenletnek = ; = π ; π. ( ) 0 = A sin = 0 feltételt behelyettesítve a () egyenletbe: sin y =, 4 tehát sin y = (*), vagy sin y =. (**) Az első (*) egyenletnek a feltétel miatt két y érték π 5π tesz eleget y = ; y =. 6 6 A második (**) egyenletnek a feltétel miatt két y 7π π érték tesz eleget y = ; y4 =. 6 6 Így összesen négy y érték tesz eleget az egyenletrendszernek ebben az esetben. Tehát ebben az esetben összesen 4 = darab (; y) rendezett számpár tesz eleget az egyenletrendszernek. Ezt a pontot akkor is kapja meg, ha rossz eredményt ad meg a lehetséges és az y értékek számára, de helyesen összeszorozza ezeket a számokat. írásbeli vizsga 0 9 / 0 0. május.

20 b) cos y = 0 Az egyenletrendszer megoldásaira vonatkozó feltétel miatt két y érték tesz eleget a () egyenletnek π π y 5 = ; y6 =. Ha cos y = 0, akkor sin y =, amit behelyettesítve a () egyenletbe: sin =, 4 ami a [ ; π ] (,9897 5,45) 0 intervallumban két értékre teljesül. Ebben az esetben = 4 rendezett számpár tesz eleget az egyenletrendszernek. Ezt a pontot akkor is kapja meg, ha rossz eredményt ad meg a lehetséges és az y értékek számára, de helyesen összeszorozza ezeket a számokat. (Az a) és b) esetben különböző számpárokat kaptunk, így) összesen + 4 = 6 rendezett számpár tesz eleget az egyenletrendszernek. Összesen: 6 pont Megjegyzések:. Ha a vizsgázó megoldása során feltétel nélkül oszt sin vagy cos y kifejezéssel, megoldására legfeljebb ot kaphat.. A feladat megoldásához nem tartozik hozzá a számpárok megadása. Ezért a visszakeresésnél elkövetett hibákért ne vonjunk le pontot!. Ha a vizsgázó fokokban helyesen végezte a számításokat, akkor is teljes pontszámot kaphat. írásbeli vizsga 0 0 / 0 0. május.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1011 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 101 ÉRETTSÉGI VIZSGA 010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika középszint Javítási-értékelési útmutató MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04. május 6. Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1512 ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1411 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 101 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA EMIR azonosító: TÁMOP-3.1.8-09/1-2010-0004 Név: MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA I. ÍRÁSBELI VIZSGA 1412 Ideje: 2014. április 24. 14:00 Időtartama: 45 perc Fontos tudnivalók 1. A feladatok

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. október 21. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. október 13. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I. ) Az a n sorozat tagját! MATEMATIKA ÉRETTSÉGI 0 október KÖZÉPSZINT I számtani sorozat első tagja és differenciája is 4 Adja meg a a 04 ) Az A és B halmazokról tudjuk, hogy AB ; ; ; 4; ;, A\ ; AB ; A ;

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. EMELT SZINT 1) Jelölje A az pedig az x 4 0 x 3 x 3 4 MATEMATIKA ÉRETTSÉGI 013. május 7. EMELT SZINT Elemei felsorolásával adja meg az A B I. egyenlőtlenség egész megoldásainak a halmazát, B egyenlőtlenség egész megoldásainak

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika PRÉ megoldókulcs 013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Adott A( 1; 3 ) és B( ; ) 7 9 pont. Határozza meg

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. összetevő 1

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben