Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor"

Átírás

1 Szakközépiskola 9. évfolyam I/1 gyakorló feladatsor 1. Adott az A={1,,3,4,5,6} és a B={1,3,5,7,9} halmaz. Adjuk meg elemeinek felsorolásával az AUB és az A\B halmazokat!. Számítsuk ki a 40 és 560 legnagyobb közös osztóját, majd egyszerűsítsük a 40 következő törtet:! Végezzük el a négyzetre emelést: (3y+x)! Alakítsuk szorzattá a következő kifejezést: 16x -5! 6 5 b b 4. Hozzuk egyszerűbb alakra a következő kifejezést: 3 4 b b! 5. Add meg a testtömegedet grammban és tonnában majd írd fel az eredményt normálalakban! km 6. Az autó sebessége 80. Mennyi utat tesz meg 1 perc alatt? h 7. Az 5000 Ft-os szoknya árát felemelték 0%-kal, majd leárazták 0%-kal. Mennyibe kerül a második árváltozás után?

2 Szakközépiskola 9. évfolyam I/ gyakorló feladatsor 1. Adott az A = {7,8,9,10,11,1} és a B = {8,10,1,14,16} halmaz. Adjuk meg elemeinek felsorolásával az A B és a B\A halmazokat!. Számítsuk ki a 600 és 70 legkisebb közös többszörösét és végezzük el a 1 1 következő műveletet: +! Végezzük el a négyzetre emelést: (4x-3y)! Alakítsuk szorzattá az alábbi kifejezést: 49a -100b! x x 4. Hozzuk egyszerűbb alakra a következő kifejezést: x x! 8 m 5. Mennyi utat tesz meg a fény 45 perc alatt, ha sebessége 3 10? s 6. Egy téglalap alakú terület oldalai 6m és 8m hosszúak. Egy másik ugyanekkora területű téglalap alakú kert egyik oldala 4m. Milyen hosszú a másik oldala? 7. Mennyibe került eredetileg az a csizma, aminek árát először 30%-al felemelték, majd 30%-al csökkentették, s ekkor 8190Ft-ba került?

3 Szakközépiskola 9. évfolyam I/3 gyakorló feladatsor 1. 6 fős osztályban 15-en tanulnak angolul és 0-an németül. Azt is tudjuk, hogy mindenki tanulja a két nyelv legalább egyikét. Hányan tanulnak csak németül? A törtek egyszerűsítése után végezzük el az összeadásukat: +! a b 3. Egyszerűsítsd a következő törtet:! 3 1a b 4. Zsebszámológép használata nélkül számítsuk ki a következő kifejezés értékét: 716! 63 8 m 5. Mennyi idő alatt tesz meg a fény 1km-t, ha sebessége 3 10? s 6. Két város távolsága 480km. Hogyan változik a menetidő, ha az egyik városból a másik városba haladó jármű sebessége 0 km/h-ról 80 km/h-ra változik. 7. Laci bruttó fizetése 9000Ft. Mennyit utalnak a folyószámlájára, ha levonják a 41%-át?

4 Szakközépiskola 9. évfolyam I/4 gyakorló feladatsor 1. Egy 10 fős baráti társaságból 5 fő szereti a focit, 4 fő a kosárlabdát, egy valaki mind a két sportágat. Hányan nem kedvelik a két labdajáték egyikét sem ebből a társaságból? A törtek egyszerűsítése után végezzük el az összeadásukat:! a 30a 3. Egyszerűsítsd a következő törtet:! 3 5a 15a 4. Zsebszámológép használata nélkül számítsuk ki a következő kifejezés értékét: 5 1! Az egyik legfényesebb csillag az ALTAIR 16,5 fényév távolságra van a Földtől. 8 m Adjuk meg ezt a távolságot méterben, ha a fény terjedési sebessége s 6. Mennyi ideig beszélgetett Zoli mobiltelefonon júniusban, ha az alapdíj 1500Ft havonta és 0 Ft-ot kell fizetni percenként minden hálózatban. A számla végösszege 9500Ft volt. 7. Mennyi István bruttó fizetése, ha folyószámlájára 93000Ft-ot utalnak 38% levonása után?

5 Szakközépiskola 10. évfolyam I/1 gyakorló feladatsor 1. Végezzük el a következő műveletet: !. Oldjuk meg a megoldó képlet felhasználásával a következő egyenleteket: x 3x 4 0 x 4x Két négyzet területének összege 493 cm. Az egyik négyzet oldala 5 cm-rel nagyobb, mint a másik négyzeté. Mekkorák a négyzet oldalai? 4. Mely valós számpárok elégítik ki a következő egyenletrendszert? x+y=3 x +y= 5. Oldjuk meg a valós számok halmazán a következő egyenlőtlenséget: x 6x 7 0! 6. Mely valós számok a megoldásai a következő egyenletnek? x 4 3? 7. Oldjuk meg a valós számok halmazán a következő egyenletet: x 4 5x 4 0!

6 Szakközépiskola 10. évfolyam I/ gyakorló feladatsor 1. Végezzük el a következő műveletet: !. Oldjuk meg a megoldóképlet felhasználásával a következő egyenleteket! x +4x-5=0 x -4x-1=0 3. A spanyol labdarúgó-bajnokság őszi idényében, amikor minden csapat egyszer játszott mindegyikkel, összesen 190 mérkőzésre került sor. Hány csapat vett részt a bajnokságban? 4. Mely valós számpárok elégítik ki a következő egyenletrendszert? x -y= x+3y=5 5. Oldjuk meg a valós számok halmazán a következő egyenlőtlenséget! x -x Mely valós számok a megoldásai a következő egyenletnek? x Oldjuk meg a valós számok halmazán a következő egyenletet! x 4-10x +9=0

7 Szakközépiskola 10. évfolyam I/3 gyakorló feladatsor 1. Gyöktelenítsük a következő tört nevezőjét: 8 5!. Oldjuk meg a megoldóképlet felhasználásával a következő egyenleteket! x 4 1 3x 1 8 x 7x 3 7x 1 x 5 46x 9 3. Egy téglalap egyik oldala 3dm-rel hosszabb a másik háromszorosánál. Az átló 1 dmrel hosszabb, mint a nagyobb oldal. Mekkorák a téglalap oldalai? 4. Mely valós számpárok elégítik ki a következő egyenletrendszert? x-y=4 3x-y =8 5. Oldjuk meg a valós számok halmazán a következő egyenlőtlenséget! x -8x Mely valós számok a megoldásai a következő egyenletnek? x x 4 7. Oldjuk meg a valós számok halmazán a következő egyenletet! x 6-8x 3 +7=0

8 Szakközépiskola 10. évfolyam I/4 gyakorló feladatsor 1. Gyöktelenítsük a következő tört nevezőjét: 1 3 1!. Oldjuk meg a megoldóképlet felhasználásával a következő egyenleteket! 3x 4 3x x 5 x x 33 x 3x 1 x 8x 0 3. Két szomszédos szám szorzata 56-tal több, mint az összegük tízszerese. Melyik ez a két szám? 4. Mely valós számpárok elégítik ki a következő egyenletrendszert? x +3y=-1 x-5y=6 5. Oldjuk meg a valós számok halmazán a következő egyenlőtlenséget! -x -4x Mely valós számok a megoldásai a következő egyenletnek? x 8 x 4 7. Oldjuk meg a valós számok halmazán a következő egyenletet! x 6 +9x 3 +8=0

9 Szakközépiskola 11. évfolyam I/1 gyakorló feladatsor 1. A földbe szúrt karó árnyéka,1m, a Nap sugarai 41 -os szögben érnek a Földre. Milyen magas a karó föld feletti része?. Adja meg a sin40 pontos értékét a nevezetes szögek szögfüggvényeinek felhasználásával! 3. Ábrázolja az f(x)=cosx függvényt, adja meg minimumhelyét és a minimum értékét, ha 0<x< 4. Oldja meg a következő egyenletet a valós számok halmazán: sinx=! 5. Oldja meg a következő egyenletet a valós számok halmazán: cosx=! 6. Egy háromszögben a szokásos jelölésekkel adott az a=7cm, b=9 cm, =61. Mekkora az szög nagysága? 7. Egy háromszögben a szokásos jelölésekkel adott az a=9cm, b=6cm, c=10cm. Mekkora a háromszög legkisebb szöge?

10 Szakközépiskola 11. évfolyam I/ gyakorló feladatsor 1. Egy 3m hosszú létra egyik vége a falhoz támaszkodik, másik vége a faltól 80cm távolságra van. Hány fokos szöget zár be a létra a talajjal?. Adja meg a tg315 pontos értékét a nevezetes szögek szögfüggvényeinek felhasználásával! 3. Ábrázolja az f(x)=sinx függvényt, adja meg maximumhelyét és a maximum értékét, ha 0<x< 3 4. Oldja meg a következő egyenletet a valós számok halmazán: cosx=! 5. Oldja meg a következő egyenletet a valós számok halmazán: sinx= 1! 6. Egy háromszögben a szokásos jelölésekkel adott az a=7,7cm, =51, =48. Mekkora a b oldal hossza? 7. Egy háromszögben a szokásos jelölésekkel adott az a=11cm, b=7,cm. Mekkora a háromszög harmadik oldala, ha =68 4.

11 Szakközépiskola 11. évfolyam I/3 gyakorló feladatsor 1. Egy körhöz a középpontjától 10cm távolságra lévő pontból érintőket húzunk, amelyek 48 -os szöget zárnak be egymással. Mekkorák az érintőszakaszok?. Adja meg a tg150 pontos értékét a nevezetes szögek szögfüggvényeinek felhasználásával! 3. Ábrázolja az f(x)=sinx függvényt, adja meg minimumhelyét és a minimum értékét, ha 0<x< 4. Oldja meg a következő egyenletet a valós számok halmazán: cosx= 1! 3 5. Oldja meg a következő egyenletet a valós számok halmazán: sinx=! 6. Egy háromszög két szöge 50 és 95, szemközti oldalainak különbsége 0cm. Számítsuk ki oldalainak hosszát! 7. Mekkora eredő erőt hoz létre a 96 -os szöget bezáró 35N és 4N nagyságú erő? Mekkora szöget zár be az eredő erő két komponensével?

12 Szakközépiskola 11. évfolyam I/4 gyakorló feladatsor 1. Egy téglalap átlói 37,64cm hosszúak. Az átlók által bezárt szög Mekkorák a téglalap oldalai?. Adja meg a tg180 pontos értékét! 3. Ábrázolja az f(x)=cosx függvényt, adja meg maximumhelyét és a maximum értékét, ha 0<x< 4. Oldja meg a következő egyenletet a valós számok halmazán: sinx= 1! 5. Oldja meg a következő egyenletet a valós számok halmazán: cosx= 3! 6. Egy háromszög két oldalának összege 14cm, az általuk bezárt szög 60, a harmadik oldal 8cm. Számítsuk ki a hiányzó oldalait és szögeit! 7. Két erő közül csak az egyiket ismerjük, ez 19N és ezzel 41 -os szöget zár be a két erő 1N nagyságú eredője. Határozzuk meg a másik erő nagyságát és a két komponens hajlásszögét!

13 Szakközépiskola 1. évfolyam I/1 gyakorló feladatsor 1. Egy lány társaságban mindenki őszintén bevallotta, hogy hányas cipőt hord. A következő adatsor született: 38, 37, 40, 41, 39, 37, 37, 38, 40, 37, 39, 38, 38, 40, 38, 39, 39, 41. Adja meg a cipőméretek móduszát és terjedelmét!. Ábrázolja különböző számegyeneseken a következő számhalmazokat! E F G x Zés 3 x 4 x x Rés Nésx 3 x 3. Kati levelet ír öt barátjának. A borítékok megcímzése után véletlenül összekeverte a leveleket és úgy helyezte be azokat a borítékokba. Hányféleképpen lehet betenni az öt levelet az öt borítékba, ha mindegyikbe egyet teszünk? 4. Adjon meg olyan pozitív egész x-et, amelyre teljesül ; A -nek hányadik hatványa? 3 4 x! 6. Hány év alatt duplázódik meg az 1,5 millió Ft-os betétállomány, ha évenkénti tőkésítéssel évi 6%-os kamatot ad a bank? 7. Oldja meg a valós számok halmazán az alábbi egyenletet! x 4 3x 104 x

14 Szakközépiskola 1. évfolyam I/ gyakorló feladatsor 1. Egy csoport matematika dolgozatának eredményei: Érdemjegy Gyakoriság Számítsa ki a csoport átlagát és adja meg az adathalmaz mediánját!. Végezze el a következő műveleteket az intervallumokkal! 5;4 5;0 ;0 0;1 ;8 \;10= 3. Hány különböző zászlójelzést adhat le egy hajó, ha hét különböző zászlója van és minden jelzés az árbocra egymás fölé kirakott öt zászlóból áll? Hány különböző természetes számmal lehet egyszerűsíteni a következő törtet:? Írja fel 10 hatványaként a következő kifejezéseket! 0, Számolja ki mennyit ér 4 év múlva egy 3,9 millió Ft-ért vásárolt autó, ha első évben az autó értékcsökkenése 5%, majd a következő években átlagosan 17%-os értékcsökkenéssel lehet számolni! 7. Egy gép lefestéséhez 7 doboz festék kell. Ha három doboz sárga és négy doboz kék festéket veszünk, az 7840Ft-ba kerül. Ha négy doboz sárgát és három doboz kéket veszünk, az 8050Ft-ba kerül. Mennyibe kerül egy-egy doboz festék?

15 Szakközépiskola 1. évfolyam I/3 gyakorló feladatsor 1. 6 gyerek átlagosan 18 kg papírt vitt az iskolai papírgyűjtés akcióra. Öt gyerek papírját külön-külön lemérve 13,5kg, 43kg, 17,5kg, 10kg, 11kg lett a mérések eredménye. Hány kg papírt vitt a hatodik gyerek? Mekkora az adatok terjedelme?. Egy 3 fős osztályból 1 tanuló matematika, 9 tanuló fizika fakultációra jár, mindkét szakkört 6 fő látogatja. Hány tanuló nem jár biztosan egyik szakkörbe sem? Indokolja meg! 3. Az iskolai büfében már csak 8 különböző sütemény van. Alex, Bíbor, Csenge, Éva és Emil választ ezekből egyet-egyet. Hányféleképpen tehetik meg? 4. Mit kell írni az x helyére, hogy a következő tízes számrendszerbeli szám x osztható legyen 6-tal? Indokolja! 5. Számítsa ki az alábbi kifejezés számértékét, ha a=, b=-1! (a 3 b -5 ) 6. Számolja ki hány %-os az évi átlagos értékcsökkenése annak az autónak, amit 6, millió Ft-ért vásároltak és nyolc év múlva 3,1 millió Ft-ért lehetett eladni 7. Oldja meg az alábbi egyenleteket! ,5x 3x4 x 4x x x 16

16 Szakközépiskola 1. évfolyam I/4 gyakorló feladatsor 1. Egy 11. évfolyamos osztály tanulói megállapodtak, hogy az egészséges táplálkozás jegyében a tízóraihoz gyümölcsöt hoznak. Egyikük a nagyszünetben felmérést készített, ennek eredménye: alma banán körte narancs nektarin Készítsen kördiagramot a gyümölcsök eloszlásáról!. Az A és B halmazokra igaz, hogy az A elemeinek száma 0, a B elemeinek száma 30, az A\B elemeinek száma 13. Adja meg az A B és A B halmazok számosságát! Indokolja! 3. Egy pénzérmét négyszer egymás után feldobunk. Mennyi annak a valószínűsége, hogy a dobások között fej és írás lesz? 4. Adja meg azt a legkisebb egész számot, amellyel a 8-at megszorozva négyzetszámot kapok! 3 5. Hozza egyszerűbb alakra a következő algebrai törtet: b b R, b 0! 1 6. Egy cég a dolgozóinak évi 6,%-os béremelést ad. Számolja ki, ha most 10000Ft egy dolgozó bére, mennyi volt 5 évvel ezelőtt? 7. Oldja meg a következő egyenleteket a valós számok legbővebb részhalmazán, amelyet az egyenletben lévő kifejezések megengednek! lg 3x 5 lg x 3 log4 log3 log x 0 b

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK

EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket! ) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

IV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői

IV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

I. rész 1. Egy gyümölcsjoghurt árát egy akció során 20%-kal csökkentették, így 100 Ft-ért adták. Mi volt a joghurt eredeti ára?

I. rész 1. Egy gyümölcsjoghurt árát egy akció során 20%-kal csökkentették, így 100 Ft-ért adták. Mi volt a joghurt eredeti ára? Középszintű érettségi feladatsorok és megoldásaik Összeállította: Hraskó András 1. feladatsor (Tanulói példány) I. rész 1. Egy gyümölcsjoghurt árát egy akció során 20%-kal csökkentették, így 100 Ft-ért

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára

Részletesebben

Név:. Dátum: 2013... 01a-1

Név:. Dátum: 2013... 01a-1 Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2016. január 16.

PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím SG-s

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. Időtartam: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika

Részletesebben

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x

Részletesebben

Számtani- és mértani sorozatos feladatok (középszint)

Számtani- és mértani sorozatos feladatok (középszint) Számtani- és mértani sorozatos feladatok (középszint) (KSZÉV Minta (2) 2004.05/II/16) a) Egy számtani sorozat első tagja 9, különbsége pedig 4. Adja meg e számtani sorozat első 5 tagjának az összegét!

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 12 51 3. 14 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

Érettségi feladatok: Halmazok, logika 1/5

Érettségi feladatok: Halmazok, logika 1/5 Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása PÉNZÜGYI SZÁMÍTÁSOK I. Kamatos kamat számítása Kamat: a kölcsönök után az adós által időarányosan fizetendő pénzösszeg. Kamatláb: 100 pénzegység egy meghatározott időre, a kamatidőre vonatkozó kamata.

Részletesebben

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3 KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

Kőszegi Irén MATEMATIKA. 9. évfolyam

Kőszegi Irén MATEMATIKA. 9. évfolyam -- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I. 1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN

ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN Matematika A 3. évfolyam ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN 16. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 16. modul összeadás, kivonás az egy 0-ra végződő számok körében

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Elsőfokú egyenletek...

Elsőfokú egyenletek... 1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Valószínűség-számítás II.

Valószínűség-számítás II. Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az

Részletesebben

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2015. február 14. I. Időtartam: 45 perc STUDIUM

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

5. Egyszerre feldobunk egy-egy szabályos hat-, nyolc-, és tizenkét oldalú dobókockát.

5. Egyszerre feldobunk egy-egy szabályos hat-, nyolc-, és tizenkét oldalú dobókockát. 1. feladatsor 1. (a) Igazolja, hogy tetszőleges A, B, C eseményekre fennáll, hogy (A B) (A C) = A (B + C)! (b) Sorolja fel a valószínűség-számítás axiómáit! (a) c=? (4) (b) D(ξ)=? (0.4714) { c x 5 (c)

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

Neved: Iskolád neve: Iskolád címe:

Neved: Iskolád neve: Iskolád címe: 1. lap 1. feladat 2 dl 30 C-os ásványvízbe hány darab 15 cm 3 -es 0 C-os jégkockát kell dobni, hogy a víz hőmérséklete 14 C és 18 C közötti legyen? Hány fokos lesz ekkor a víz? g kj kj (A jég sűrűsége

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Versenyző kódja: 39 27/2012. (VIII. 27.) NGM rendelet 54 811 01-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 39 27/2012. (VIII. 27.) NGM rendelet 54 811 01-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 811 01-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 811 01 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Vendéglátó

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as

Részletesebben

I. fejezet: Százalékszámítás felhasználása gazdasági számításokban

I. fejezet: Százalékszámítás felhasználása gazdasági számításokban I. fejezet: Százalékszámítás felhasználása gazdasági számításokban Matematikai alapfogalmak: 1. Kenyérboltban 1 kg rozskenyér ára 200 Ft. a. Mennyibe kerül 10 dkg, negyed kg, fél kg, háromnegyed kg, másfél

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

M A T EMATIKA 9. évfo lyam

M A T EMATIKA 9. évfo lyam Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

MATEMATIKA tankönyvcsaládunkat

MATEMATIKA tankönyvcsaládunkat Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK

Részletesebben

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és

Részletesebben

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M 10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül

Részletesebben

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja MATEMATIKA C. évflyam 5. mdul Ismétlés a tudás anyja Készítette: Kvács Kárlyné Matematika C. évflyam 5. mdul: Ismétlés a tudás anyja Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben