2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:"

Átírás

1 1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe számjegyeket kell írni (0; 1; 2; 3; 4; 5; 6; 7; 8; 9). A sorok előtt, illetve az oszlopok fölött látható számok a sorban illetve oszlopban szereplő számjegyek összegét mutatják. Egy sorba vagy oszlopba több helyre is bekerülhet ugyanaz a számjegy. Néhány mezőt üresen hagytunk. Írj a mezőkbe számjegyeket úgy, hogy valamennyi megadott összeg helyes legyen! Add meg az összes megoldást!

2 Három lehetséges megoldás van Minden jó megoldás 3 pont. Ha egy megoldásban van hiba, akkor az 0 pont. Így maximum: 3 3 pont, azaz Összesen: 9 pont 2. Kis-Nagy Üzletház logisztikai központjából egyforma kamionokkal szállítják ki az árukat az üzletekbe. Az árukat két típusú konténerbe csomagolják, kicsibe és nagyba. Egy kamion egy fuvarban legtöbb 12 kis konténert, vagy 8 nagy konténert tud elszállítani (a kis és nagy konténerek egy szállítmányban kombinálhatók). Minden kamion öt üzletbe szállít havonta árut úgy, hogy azt teljesen megpakolják. Az egyik kamion az októberi hónapban 52 konténert szállít üzleteibe. Hány kis konténert szállított a kamion? Válaszod indokold! Ha csak kis konténereket szállítana, akkor 60 konténert szállítana öt fordulóban. 2 pont Minden alkalommal 3 kis konténer 2 nagyra cserélhető. 2 pont Ilyen konténer cserék során a konténerek száma eggyel csökken. Nyolc ilyen csere után elérjük az 52-es konténerszámot. Ebben az esetben az öt hét alatt = 36 kis konténert és 16 nagy konténert kell elszállítani, ami a = 52 formációban meg is valósítható. 2 pont Több megoldás nincs. A megoldás közlése, annak megmutatása nélkül, hogy több megoldás nincs 4 pont. Összesen: 9 pont 2

3 3. A 2014 egy olyan négyjegyű szám, melyben az egyes helyi értéken álló számjegy eggyel nagyobb, mint a többi helyi értéken álló számjegyek összege. Hány ilyen tulajdonságú négyjegyű szám van, ha az egyes helyi értéken álló számjegy nem nagyobb 6-nál? Minden helyesen leírt számra 0,25 pont jár, tehát a 35 számra 0,25pont x 35 A mondat megfogalmazása: Összesen 35 szám van. 8,75 pont 2,25 pont Összesen: 1 4. Egybevágó kockákból olyan testet építettünk, melyet elölről, illetve az egyik oldaláról megnézve az alábbi ábrákat látjuk: Hány kockából építhettünk ilyen testet. Keress több megoldást! Válaszaid indokold! A 3 3-as négyzetek mezőire a lehetséges kockák számát írjuk, a nézetek jók legyenek. Adott kockaszám esetén többféle elhelyezés is lehet. A további négyzetek különböző kockaszámra ad egy-egy jó elhelyezést kocka 7 kocka 8 kocka 9 kocka 10 kocka kocka A nézeteknek megfelelő testek építéséhez felhasznált kockák száma: 6, 7, 8, 9, 10 és 11 lehet. Számonként egy-egy pont 6 pont A kockák helyes elhelyezése a 3x3-as négyzetrácsba megoldásonként egy-egy pont 6 pont Összesen: 12 pont 3

4 5. Logikai feladat: Hanoi tornyai A játékban három rúd szerepel, amelyek közül az elsőn négy különböző méretű korong található. A korongok csökkenő méretek szerint vannak egymás tetejére helyezve (lásd ábra). A játék szabályai szerint az első rúdról az utolsóra kell átrakni a korongokat úgy, hogy minden lépésben egy korongot lehet áttenni, nagyobb korong nem tehető kisebb korongra. A középső rudat lehet használni a korongok átmeneti tárolására. Alaphelyzet: Oszlopok betűjele: A B C Korongok sorszáma: Add meg a korongok átrakásának lépéssorrendjét az A oszlopról a C oszlopra. Törekedj a lehető legkevesebb lépésre! Az egymás utáni lépéseket a következő módon írd le: Lépés sorszáma: A oszlop B oszlop C oszlop Alaphelyzet lépés lépés lépés lépés Az első lépésnél az 1-es számú korongot (a legkisebbet) tettük át az A oszlopról a B oszlopra. A második lépésnél a 2-es számú korongot tettük át az A oszlopról a C oszlopra. A harmadik lépésnél az 1-es számú korongot tettük át a B oszlopról a C oszlopra (a 2-es korong tetejére). A feladat megoldásához segítséget találsz a vagy oldalakon. A feladat minimálisan 15 lépést igényel. (2 n -1, ahol n a korongok száma) Egy lehetséges lépéssorozat: 4

5 Lépés sorszáma A oszlop B oszlop C oszlop Alaphelyzet lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés lépés Minden jó lépés. Ha egy lépés hibás, akkor az 0 pont. Így maximum: 15 pont. Összesen: 15 pont 5

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

Kenguru 2013 Maljuk, 2. osztály (75 perc)

Kenguru 2013 Maljuk, 2. osztály (75 perc) Kenguru 2013 Maljuk, 2. osztály (75 perc) Az 1. 5. feladatok 3 pontot érnek 1. Péter lemásolta a táblára felírt számjegyeket. Melyiket hagyta ki? А: 2 Б: 3 В: 4 Г: 5 Д: 6 2. A könyvespolcon 12 könyv volt.

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc. a feladat sorszáma elért összesen maximális II./A rész 13. 12 14. 12 15. 12 II./ B rész m nem választott feladat 17 17 ÖSSZESEN 70 maximáli s elért I. rész 30 II. rész 70 MINDÖSSZESEN 100 dátum javító

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes

Részletesebben

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN

MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 1. MODUL: IDŐBEN A TÉRBEN TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK Csak kezdőknek 1. Könnyű percek 15x15-ös vicces hagyományos egész oldalas skandi 19x15-ös plusz egy poén Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK 2. Lexikon nélkül Mozaikrejtvény szokatlan

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY Telefon: 483-540, 37-8900, Fax: 37-890 Kalmár László (matematikus) NSZFH nyilvántartásba vételi szám: E-0006/04 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő Második nap Javítási útmutató

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

Rekurzív logikai játékok

Rekurzív logikai játékok Rekurzív logikai játékok Vígh Viktor SZTE Bolyai Intézet 2014. december 11. Szent László Gimnázium, Budapest Hanoi tornyai Forrás: http://ordoglakat.blog.hu/2011/03/20/hanoi_tornyai Hanoi tornyai Szabály:

Részletesebben

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be?

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be? 1. osztályosok 1. Anya szeretne Zsófi kabátjára 3 gombot felvarrni. Ha zöld és kék színű gombokból válogat, akkor a kabáton hányféleképp alakulhat a színek sorrendje? 2. Zsófi blúzára anya 4 gombot varr,

Részletesebben

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás Tartalom Tartalom A szerzőről, a fordítóról és a lektorról.... 7 Bevezetés.................................................................... 9 Áttekintő táblázatok.... 11 I. rész Játékok és fejtörők:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Kombinatorika A A B C A C A C B

Kombinatorika A A B C A C A C B . Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Válogatott versenyfeladatok programozásból

Válogatott versenyfeladatok programozásból Válogatott versenyfeladatok programozásból Válogatott versenyfeladatok programozásból Összeállította: Juhász Tibor 2015 TARTALOM Fotózás... 7 Első fordulós feladatok... 7 Osztálybuli... 7 Mohó algoritmus...

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

Matematika versenyfeladatok 2. rész

Matematika versenyfeladatok 2. rész Matematika versenyfeladatok 2. rész 1. A 7 törpe házikójában valaki eltört egy tányért. Hófehérkének így számoltak be a történtekről: Tudor: Nem Szundi volt. Én voltam. Morgó: Nem én voltam. Nem Hapci

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények Máder Attila: Elemi matematika feladatok Matematikai rejtvények 1 1. Matematikai rejtvények 1. Feladat. Hová tünt a hiányzó törpe? 1 2. Feladat. Van egy falu, ahol 100 házaspár él és rajtuk kívül még egy

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

az Országzászlóra vonatkozó előírásokról és feltételekről, valamint a középületek és közterületek fellobogózásáról

az Országzászlóra vonatkozó előírásokról és feltételekről, valamint a középületek és közterületek fellobogózásáról BIRI KÖZSÉG ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETÉNEK 8/2000. (X.10.) önkormányzati rendelete az Országzászlóra vonatkozó előírásokról és feltételekről, valamint a középületek és közterületek fellobogózásáról

Részletesebben

Közoktatási Statisztika Tájékoztató 2012/2013. Használati útmutató

Közoktatási Statisztika Tájékoztató 2012/2013. Használati útmutató Közoktatási Statisztika Tájékoztató 2012/2013 Tartalomjegyzék 1. Technikai információk... 2 2. Publikus felület... 2 2.1 Bejelentkezés... 2 2.2 Összesítés... 3 2.2.1 Statisztikai tábla megtekintése...

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Kris Burm játéka. Tartozékok

Kris Burm játéka. Tartozékok Kris Burm játéka Én legyek erősebb, vagy az ellenfelemet gyengítsem? Ezt a húzós kérdést kell feltenni magadnak minden egyes körödben. Tartozékok - 1 játéktábla - 30 fehér korong: 6 Tzaar, 9 Tzarnő és

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT

1. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

SZŐLŐSGYÖRÖK KÖZSÉG ÖNKORMÁNYZATÁNAK 13/2000/09.27/ számú rendelete

SZŐLŐSGYÖRÖK KÖZSÉG ÖNKORMÁNYZATÁNAK 13/2000/09.27/ számú rendelete SZŐLŐSGYÖRÖK KÖZSÉG ÖNKORMÁNYZATÁNAK 13/2000/09.27/ számú rendelete az Országzászlóra vonatkozó előírásokról és feltételekről, valamint a középületek és közterületek fellobogózásáról Szőlősgyörök Község

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

INFORMÁCIÓK STRANDRÖPLABDA PÁLYA ÉPÍTÉSÉHEZ

INFORMÁCIÓK STRANDRÖPLABDA PÁLYA ÉPÍTÉSÉHEZ Strandröplabda bizottság INFORMÁCIÓK STRANDRÖPLABDA PÁLYA ÉPÍTÉSÉHEZ 1. Játékterület: A játékpálya 16 X 8 méteres négyszög alakú terület, melyet legalább 3 méteres kifutó vesz körül és légtere legalább

Részletesebben

RADIOKATÍV SUGÁRFORRÁSOK SZÁLLÍTÁSÁNAK BIZTONSÁGI FELTÉTELEI

RADIOKATÍV SUGÁRFORRÁSOK SZÁLLÍTÁSÁNAK BIZTONSÁGI FELTÉTELEI RADIOKATÍV SUGÁRFORRÁSOK SZÁLLÍTÁSÁNAK BIZTONSÁGI FELTÉTELEI Povázsai Sándor r. alezredes Országos Rendőr-főkapitányság Budapest, 2010. 09. 21-22. Rövid áttekintés Jogi szabályozás helyzete Engedélyezési

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály A sakk feltalálója Kevés játéknak van olyan regényes története, mint a sakknak. A tudomány mindmáig nem volt képes hitelt érdemlően feltárni eredetét, a körülötte terjengő legendákból viszont már évszázadokkal

Részletesebben

JÁSZLADÁNY NAGYKÖZSÉG ÖNKORMÁNYZATA. 20/2000.(XII.1.) számú rendelete

JÁSZLADÁNY NAGYKÖZSÉG ÖNKORMÁNYZATA. 20/2000.(XII.1.) számú rendelete JÁSZLADÁNY NAGYKÖZSÉG ÖNKORMÁNYZATA 20/2000.(XII.1.) számú rendelete az országzászlóra vonatkozó előírásokról és feltételekről, valamint a középületek és közterületek fellobogózásáról Jászladány Nagyközség

Részletesebben

TANMENETJAVASLAT. Matematika. 1. osztály

TANMENETJAVASLAT. Matematika. 1. osztály TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA

Részletesebben

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. összetevő 1

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

Vízi Viharjelző Rendszer Android 2.2 verziótól

Vízi Viharjelző Rendszer Android 2.2 verziótól Vízi Viharjelző Rendszer Android 2.2 verziótól 1. Telepítés SwsWidgetEsri.apk méret: kb. 7.5M A program telepítése során engedélyt kér a következő funkciókhoz: - Tárolás - Hardver szabályzók (fizikai visszajelzések

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70 a feladat sorszáma maximális elért összesen II./A rész 13. 1 14. 1 15. 1 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

2. MINTAFELADATSOR KÖZÉPSZINT

2. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA C 5. évfolyam 2. modul A KOCKA

MATEMATIKA C 5. évfolyam 2. modul A KOCKA MATEMATIKA C 5. évfolyam 2. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 2. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Szemléletfejlesztés,

Részletesebben

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Kedves Versenyző! A feladatok megoldását beküldheted: CD-n az azonosító kódnak megfelelő könyvtárban.

Részletesebben

1. Hány király él a mesében? egy... Hány lánya van neki? három... Hány országa van? három...

1. Hány király él a mesében? egy... Hány lánya van neki? három... Hány országa van? három... A SÓ (népmese) Hol volt, hol nem volt, élt egyszer egy öreg király s volt három szép lánya. Volt néki három dúsgazdag országa, mindhárom lányának jutott egy-egy ország. Hanem ahogy mondják: nincs három

Részletesebben

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok

Részletesebben

10 éves kortól 2-6 játékos számára 40-120 perc játékidő

10 éves kortól 2-6 játékos számára 40-120 perc játékidő 10 éves kortól 2-6 játékos számára 40-120 perc játékidő Scoville története Wilbur Scoville 1865 január 22-én született. A világ ezután már nem lesz ugyanaz.1912-ben Scoville megalkotta a Scoville Organoleptic

Részletesebben

Nyerni jó. 7.-8. évfolyam

Nyerni jó. 7.-8. évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni

Részletesebben

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3 Nagy feladat: Készítse el a programot saját tudása és ötletei alapján. Semmilyen grafikát (OpenGL, DirectX, stb) NE használjon. Minden grafikát csak szövegesen jelenítsen meg. Működőképes programot kell

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

A rendelet célja 1.. Az állandó jellegű fellobogózás 2.. (1) A helyi önkormányzat. a.) választott testülete

A rendelet célja 1.. Az állandó jellegű fellobogózás 2.. (1) A helyi önkormányzat. a.) választott testülete Bodrog Település Önkormányzatának 13/2000.(IX.12.) sz. rendelete Országzászlóra, valamint az Önkormányzati zászlóra vonatkozó előírásokról és feltételekről. A középületek és közterületek fellobogózásáról

Részletesebben

Cégtörténet. Célkitűzésünk. Transemex Kft. fejlődésének főbb állomásai:

Cégtörténet. Célkitűzésünk. Transemex Kft. fejlődésének főbb állomásai: Rólunk A TRANSEMEX Kft 1989-ben azzal a céllal alakult, hogy a hagyományos európai közúti szállítmányozási tevékenység mellett, megbízható szakmai hátteret biztosítson partnereinek a Törökország és Magyarország

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat!

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat! Szülőktől még megértően elfogadom: a táblajátékok logikus gondolkodásra nevelnek, de mindig indulatosan reagálok, ha pedagógustól, újabban pedig, ha játékpedagógustól hallom az általános közhelyet. A pedagógus

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA

Részletesebben