Megoldások III. osztály

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Megoldások III. osztály"

Átírás

1 Bolyai Farkas Elméleti Líceum Marosvásárhely, március Megoldások III. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe számjegyeket kell írni (0; 1; 2; 3; 4; 5; 6; 7; 8; 9). A sorok előtt, illetve az oszlopok fölött látható számok a sorban illetve oszlopban szereplő számjegyek összegét mutatják. Egy sorba vagy oszlopba több helyre is bekerülhet ugyanaz a számjegy. Néhány mezőt üresen hagytunk. Írj a mezőkbe számjegyeket úgy, hogy valamennyi megadott összeg helyes legyen! Add meg az összes megoldást!

2 Hat lehetséges megoldás van

3

4 Minden jó megoldás 3 pont. Ha egy megoldásban van hiba, akkor az 0 pont. Így maximum: 6 3 pont, azaz Összesen: 18 pont 4

5 2. Az 1; 2; 3; 4; 5 és a 6 számjegyeket egy-egy számkártyára írtuk le. Ezekből hány olyan háromjegyű szám rakható ki, melyekben a számjegyek növekvő sorrendben követik egymást? Írd le az összes ilyen háromjegyű számot! 123; 134; 145; ; 135; ; ; 245; ; ; Az első14 megoldás megoldásonként 0,5 pont, minden további jó megoldás. Ha a megoldások között van hibás, akkor 3 hibás után vonjunk le ot. Az összpontszám nem lehet negatív. Így maximum 13 pont lehet. Összesen: 13 pont 3. Nyuszi Gyuszi húsvét előtt a nekeresdi Általános Iskola három harmadik osztályának (3.a, 3.b, 3.c) a hímes tojásait három kosárkába rakta szét (minden tanuló egy hímes tojást fog kapni). Az első és a második kosárkába összesen 50, a második és a harmadik kosárkába összesen 46 hímes tojást tett Gyuszi. Hány hímes tojás volt a harmadik osztályok kosárkáiban, ha az iskola harmadik osztályaiba összesen 69 tanuló jár? Válaszaid indokold! Jelölje az osztály betűjele a gyerekek számát, így a + b = 50, 3 pont és b + c = pont Így a + b + c + b = 69 + b = pont Tehát b = 27. Ezek alapján a = 23 és c = 19. A nekeresdi Általános Iskola 5a osztályába 23, az 5b osztályába 27 és az 5c osztályába 19 tanuló jár. Összesen: 12pont 5

6 4. Misi bácsi ebben az évben ünnepli 75. születésnapját. Állítsd elő a 75-öt az 5-ös és a 7-es számok segítségével! Egy előállításban legfeljebb hét számjegyet használj (a számjegyek lehetnek egyformák is). Alkothatsz kétjegyű számokat és használhatod a négy alapműveletet, de zárójelet ne használj. Két előállítás nem különböző, ha csak a műveletek sorrendjében térnek el. (Tíz előállítást értékelünk.) = = :7 7:7 = :7 5:5 = :7 = = = = :7 = = 75 Megjegyzés: a felsoroltakon kívül vannak jó megoldások. Azokat is el kell fogadni. Az első 5 megoldás megoldásonként 2 pont, minden további jó megoldás. Ha a megoldások között van hibás, akkor 2 hibás után vonjunk le ot. Az összpontszám nem lehet negatív. Így maximum 15 pont lehet. Összesen: 15 pont 5. Logikai feladat: Az anekdota szerint az alábbi feladat eredeti változatát Einstein találta ki. (Lásd: Kié a hal? feladvány. Majd keress rá az interneten!) A feladatot átalakítottuk és kicsit leegyszerűsítettük. Rendelkezésünkre állnak az alábbi tények: 1. Van 4 ház, mindegyik más színű. (piros, kék, zöld, fehér) 2. Minden házban más-más nemzetiségű személy lakik. (német, olasz, angol, norvég) 3. Minden háztulajdonos valamilyen állatot tart. (kutya, macska, papagáj, hal) 4. Minden háztulajdonos más italt szeret. (tea, tej, kakaó, szörp) 5. A házak sorban egymás mellett vannak a táblázat szerint. Ismerünk néhány igaz állítást a lakókra vonatkozóan: a) Az angol a zöld házban lakik. b) Az olasz szívesen iszik teát. c) A norvég az első házban lakik. d) A zöld ház tulajdonosa kakaót iszik. e) A norvég kutyát tart. f) Aki teát iszik, az nem tart macskát. g) Nem az olaszé a hal. h) A férfi, aki nem szélső házban lakik, tejet iszik. i) Nem a kutyát tartó személy mellett lakik, akinek macskája van. j) A norvég a kék ház mellett lakik. k) A zöld ház a fehér ház mellett balra van. 6

7 Töltsd ki a táblázatot a tényeknek és az állításoknak megfelelően! 1. ház 2. ház 3. ház 4. ház állat: állat: állat: állat: ital: ital: ital: ital: nemzetiség: nemzetiség: nemzetiség: nemzetiség: ház színe: ház színe: ház színe: ház színe: Egyetlen helyes megoldás van. 1. ház 2. ház 3. ház 4. ház állat: kutya állat: hal állat: macska állat: papagáj ital: szörp ital: tej ital: kakaó ital: tea nemzetiség: norvég nemzetiség: német nemzetiség: angol nemzetiség: olasz ház színe: piros ház színe: kék ház színe: zöld ház színe: fehér Minden jól kitöltött táblázat mező. Ha egy megoldásban van hiba, akkor az -. Az összpontszám negatív nem lehet. Így: 16, azaz maximum Összesen: 16 pont 7

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény: 1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

Sorba rendezés és válogatás

Sorba rendezés és válogatás Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a

Részletesebben

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály 1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi

Részletesebben

SZKB_207_09. Kell egy csapat! I.

SZKB_207_09. Kell egy csapat! I. SZKB_207_09 Kell egy csapat! I. diak09.indd 55 2006.12.09. 22:01:12 DIÁKMELLÉKLET KELL EGY CSAPAT! I. 7. ÉVFOLYAM 57 DIÁKMELLÉKLET D1 Feladatlap a csoportmunkához b) A táblázat második oszlopában szereplő

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

FOLYTATÁS A TÚLOLDALON!

FOLYTATÁS A TÚLOLDALON! ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér. 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat helyes megoldása 7 pontot ér. 1. Bence talált öt négyzetet, amelyek egyik oldalán az A,

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,

Részletesebben

Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le!

Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le! 47. modul 1/A melléklet 2. évfolyam Feladatkártyák tanuló/1. Elrejtettem egy logikai lapot. Ezt kérdezték tőlem: én ezt feleltem:? nem? nem? nem nagy? nem? igen? nem Ha kitaláltad, rajzold le az elrejtett

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

MATEMATIKA VERSENY ABASÁR, 2018

MATEMATIKA VERSENY ABASÁR, 2018 MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Színezd ki négy különböző színnel az ábra tartományait úgy, hogy szomszédos tartományoknak nem lehet azonos színe!

Színezd ki négy különböző színnel az ábra tartományait úgy, hogy szomszédos tartományoknak nem lehet azonos színe! 1. LOGIKAI FELADATOK MINDENKINEK 1. Rajzold le az alábbi ábrát egy papírra, majd próbáld meg összekötni A-t A-val, B-t B-vel, C-t C-vel három folytonos vonallal úgy, hogy a vonalak ne keresztezzék egymást,

Részletesebben

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények Máder Attila: Elemi matematika feladatok Matematikai rejtvények 1 1. Matematikai rejtvények 1. Feladat. Hová tünt a hiányzó törpe? 1 2. Feladat. Van egy falu, ahol 100 házaspár él és rajtuk kívül még egy

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

1. FELADATLAP Eredmények I. rész

1. FELADATLAP Eredmények I. rész 05-06, I. félév. FELADATLAP Eredmények I. rész. Végezd el a következ½o m½uveleteket: (a) 56 + 56 56 56 56 = 56 (b) 5 ( ) 0 0 0 + 8 6 0 0 + 0 = (c) 98579 9 98576 9 + = 8 (d) ( + + 5 + : : : + 0) ( + + 6

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200

5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200 2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Köszöntünk titeket a negyedik osztályban!

Köszöntünk titeket a negyedik osztályban! Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô

Részletesebben

Bevezető Kedves Negyedik Osztályos Tanuló!

Bevezető Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet

Részletesebben

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT Javítókulcs 4. osztály megyei 1. Titkos üzenetet kaptál, amelyben a hét minden napja le van írva egyszer, kivéve azt a napot, amelyiken találkozol az üzenet küldőjével. Minden betű helyett egy szimbólumot

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló

MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló 1. feladat Péter egy építőjátékot kapott ajándékba. A játékban piros és kék színű golyók vannak, amelyekhez mágneses pálcikákat rögzítettek.

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

Latin négyzet és SUDOKU a tanítási órákon. készítette: Szekeres Ferenc

Latin négyzet és SUDOKU a tanítási órákon. készítette: Szekeres Ferenc Latin négyzet és SUDOKU a tanítási órákon készítette: Szekeres Ferenc a latin négyzet Leonhard Euler (1707 1783) svájci matematikustól származik eredetileg latin betűket használt szabályai: egy n x n es

Részletesebben

A 5-ös szorzó- és bennfoglalótábla

A 5-ös szorzó- és bennfoglalótábla A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd

Részletesebben

XI. PANGEA Matematika Verseny I. forduló 3. évfolyam

XI. PANGEA Matematika Verseny I. forduló 3. évfolyam 1. Mindkét zsebemben azonos nagyságú és ugyanannyi darab golyó van. A bal zsebemből átteszek a jobb zsebembe hat darabot. Hány golyóval lesz több a jobb zsebemben, mint a balban? A) 0 B) 6 C) 8 D) 10 E)

Részletesebben

A felelős állattartás néhány szabálya

A felelős állattartás néhány szabálya Tanuló neve: Dátum: A felelős állattartás néhány szabálya 1. Táplálás Egyetlen gyógyszer sem képes oly sok betegséget megelőzni, mintha olyan ételt eszünk, amilyenre szükségünk van. Gondoljunk csak arra,

Részletesebben

Állapottér reprezentáció/level1

Állapottér reprezentáció/level1 Állapottér reprezentáció/level1 kecske káposzta A tutajosnak át kell szállítani a folyó másik partjára egy farkast, egy kecskét és egy káposztát. A csónakban egyszerre csak az egyiket viheti át a három

Részletesebben

A logikai táblázat módszere I.

A logikai táblázat módszere I. A logikai táblázat módszere I. 1. feladat A Portia három ládikáján a következő feliratok vannak: Az aranyon: A kép ebben a ládikában van. Az ezüstön: A kép nem ebben a ládikában van. Az ólmon: A kép nem

Részletesebben

Köszöntünk titeket a harmadik osztályban!

Köszöntünk titeket a harmadik osztályban! Köszöntünk titeket a harmadik osztályban! Ez a számolófüzet a tankönyv és feladatgyűjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematika órán tanultakat. A következő

Részletesebben

1. Az allergiás betegekről azt tartjuk nyilván, hogy mire allergiások.

1. Az allergiás betegekről azt tartjuk nyilván, hogy mire allergiások. 1. Az allergiás betegekről azt tartjuk nyilván, hogy mire allergiások. Pl. [Peti [tej tojás] Lotti [tojás] Ákos [tojás liszt]] a., Kik allergiások a legtöbb anyagra [Peti Ákos] b. Gyűjtsük ki, hogy melyik

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Piroska, a nagymamája, a farkas és a vadász egymás mellett ülnek egy padon. Se a nagymama, se Piroska

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Feladatok a MATEMATIKA standardleírás 3. szintjéhez 2016. Oktatáskutató és Fejlesztő

Részletesebben

Invariánsok (a matematikai problémamegoldásban)

Invariánsok (a matematikai problémamegoldásban) Invariánsok (a matematikai problémamegoldásban) Nagy V. Gábor SZTE Bolyai Intézet Eötvös Loránd Kollégium, Matematika Műhely Szeged, 2018. április 27. ELK 18 1. feladat: Poharak 1/9 Feladat. 11 pohár van

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok

Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok Postára adási határidő: 2017. január 19. Tollal dolgozz! Feladatok 1.) Az ábrán látható piramis természetes számokkal megszámozott kockákból áll. Az alsó szinten semelyik két kockának nincs ugyanolyan

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag

Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag KOMPLEX ELADATOK Válogatott témák válogatott megoldások 3.6 Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag Életkor: ogalmak, eljárások: 10 14

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Kedves harmadik osztályosok!

Kedves harmadik osztályosok! Kedves harmadik osztályosok! Köszöntünk titeket a matematika birodalmában! 3. osztályban is folytatjuk a barangolást. Ismét új kalandok, új felfedezések és rejtvényes feladatok várnak rátok. tankönyv mellett

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV.

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D-89312 Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 2 LOGEO Egy

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat

Részletesebben

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük: 1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY. Írd be a körökbe a 2, 3, 4 és 5 számokat úgy, hogy a szomszédos számok különbsége -nél nagyobb legyen!

Részletesebben

2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály 01. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

JELENTKEZÉSI LAP KITÖLTÉSI ÚTMUTATÓ A HATOSZTÁLYOS KÉPZÉSRE JELENTKEZŐK SZÁMÁRA

JELENTKEZÉSI LAP KITÖLTÉSI ÚTMUTATÓ A HATOSZTÁLYOS KÉPZÉSRE JELENTKEZŐK SZÁMÁRA JELENTKEZÉSI LAP KITÖLTÉSI ÚTMUTATÓ A HATOSZTÁLYOS KÉPZÉSRE JELENTKEZŐK SZÁMÁRA Általános rész A felvételi eljárásban részt vevő tanuló tetszőleges számú Jelentkezési lapot állíthat ki. Egy Jelentkezési

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Rekurziók, algoritmusok 5-8. osztályban már bőven el lehet kezdeni. Erdős Gábor

Rekurziók, algoritmusok 5-8. osztályban már bőven el lehet kezdeni. Erdős Gábor Rekurziók, algoritmusok 5-8. osztályban már bőven el lehet kezdeni Erdős Gábor erdosgaborkanizsa@gmail.com www.microprof.hu Bábuk a sakktáblán Egy sakktábla bal alsó 3 3-as résztáblájának minden mezőjén

Részletesebben

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...

Részletesebben

Róka Sándor. 137 számrejtvény. Megoldások

Róka Sándor. 137 számrejtvény. Megoldások Róka Sándor számrejtvény Megoldások Budapest, 008 A könyv megjelenését a Varga Tamás Tanítványainak Közhasznú Emlékalapítványa támogatta. Róka Sándor, Typotex, 008 ISBN 98 9 9 89 0 Témakör: matematika

Részletesebben

TERMÉK ADATLAP. Szív nagy. Termék neve

TERMÉK ADATLAP. Szív nagy. Termék neve Szív nagy fonal X szalag egyéb: gipsz, festék, lakk, Alkalmazott technikák varrás X ragasztás X festés gyöngyözés 125 g gipsz, 3ml lakk, 10 cm organza szalag, 5 ml festék Szükséges eszközök gipsz kiöntő

Részletesebben

III. Földi János természettudományi verseny

III. Földi János természettudományi verseny III. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: 2015. október 20. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Mérd meg, hogy milyen magasra tud felrepülni egy

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted I. kötetét tartod a kezedben,

Részletesebben

Kenguru 2013 Maljuk, 2. osztály (75 perc)

Kenguru 2013 Maljuk, 2. osztály (75 perc) Kenguru 2013 Maljuk, 2. osztály (75 perc) Az 1. 5. feladatok 3 pontot érnek 1. Péter lemásolta a táblára felírt számjegyeket. Melyiket hagyta ki? А: 2 Б: 3 В: 4 Г: 5 Д: 6 2. A könyvespolcon 12 könyv volt.

Részletesebben

MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY

MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 6. MODUL: TALÁNY TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Református Iskolák XX. Országos Matematikaversenye osztály

Református Iskolák XX. Országos Matematikaversenye osztály 1. Pisti beledobott egy kezdetben üres - kosárba valahány piros és kék labdát, amelyeknek legalább 90%-a piros. Jenő találomra kivett 50 labdát, közöttük 49 piros volt. Julcsi megnézte a kosárban maradt

Részletesebben

Kombinatorika - kidolgozott típuspéldák

Kombinatorika - kidolgozott típuspéldák Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:

Részletesebben

SZÁMKERESZTREJTVÉNYEK

SZÁMKERESZTREJTVÉNYEK Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83

Részletesebben

Tanulók szóértésének felmérése a tankönyvekben előforduló szövegek alapján

Tanulók szóértésének felmérése a tankönyvekben előforduló szövegek alapján Tanulók szóértésének felmérése a tankönyvekben előforduló szövegek alapján Szervezi a Magyar Pedagógiai Társaság Szókincsháló Szakosztálya (bővebb információ a www.szokincshalo.hu honlapon) Ez a felmérés

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Függőleges. Vízszintes

Függőleges. Vízszintes 1. Fejtsd meg a rejtvényt! A főmegfejtés bizonyos karakterei a többi meghatározás egyes betűi alapján lesznek megfejthetőek. A meghatározásokat a lenti táblázatba írd, a megfelelő sorba. (10 pont a meghatározásokért

Részletesebben

ReszlAd fájl, kitöltési útmutató:

ReszlAd fájl, kitöltési útmutató: 1 ReszlAd fájl, kitöltési útmutató: A ReszlAd táblázat egy adott látogatás részletes adatait tartalmazza. A szaktanácsadó által hiánytalanul kitöltött, és elnevezett fájlt e-mail üzenetben kérjük elküldeni

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2014. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Móra Ferenc: A kesztyű - Lapbook

Móra Ferenc: A kesztyű - Lapbook Móra Ferenc: A kesztyű - Lapbook Hogyan képzeled el az erdőt és benne az ottfelejtett kasztyűt? Szerinted ki felejtette ott? Színezd ki a kártyákat, és ragaszd a megfelelő helyre: egy pár vagy fél pár

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 2. évfolyam MÉRŐLAPOK 7. modul 6. melléklet 2. évfolyam 1. mérőlap tanuló/1. 1. Írd le a számokat egymás mellé! ; ; ; ; 2. Tedd a kapott számokat csökkenő sorrendbe!

Részletesebben

Egész számok értelmezése, összehasonlítása

Egész számok értelmezése, összehasonlítása Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +

Részletesebben