V. osztály. Matematikai tehetségnap október 12. Megoldások

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások"

Átírás

1 V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel? Megoldás: Ha a leejtett labda ötödször 10 cm magasra pattant fel, és minden egyes esésénél feleakkora magasságra pattan fel mint, ahonnan leejtettük, akkor az ötödik esésnél a földt l 20cm-re van pont a negyediknél 40 cm-re ,5 pont harmadiknál 80cm-re ,5 pont a másodiknál 160 cm-re ,5pont az els nél pedig 320 cm-re ,5pont Tehát a labdát 320 cm magasságból ejtették le. 2. feladat. Van 8 kis kockánk, mindegyiknek 1 cm az éle. a) Hogyan színezzük ki a kis kockák lapjait, hogy ugyanazokkal a darabokkal akár kék, akár zöld 2cm él kockát tudjunk összeállítani? b) Meg tudunk-e színezni 27 kis kockát úgy, hogy azokból akár kék, akár zöld 3 cm él kockát lehessen összeállítani? c) Meg tudunk-e színezni 27 kis kockát úgy, hogy azokból akár kék, akár piros, akár zöld 3 cm él kockát lehessen összeállítani? Megoldás: a) Minden kiskockának 3 lapja látszik, tehát ha mindeniknek a látszó 3 szomszédos lapját kékre, a többit zöldre festjük a kirakás megvalósítható pont b) Egy zöld 3 cm él kockában 8 darab olyan kiskocka van, melynek 3 lapja látszik, 12 darab olyan amelynek 2 lapja látszik, 6 darab amelynek 1 lapja látszik és egy amelynek nem látszik egyetlen lapja sem. Így ha a kiskockák el bbi színezését használjuk a kirakás mindkét színnel megvalósítható, mert 8 kiskockának van 3 egyszín laja, 12-nek legalább 2 egyszín lapja(ami látszhat), 6-nak legalább egy kék vagy zöld lapja, az utolsó nem is látszik pont c) Mivel a 27 kiskockának 162 lapja van, és egy 3x3-as kocka felszínén pontosan 54 ilyen lap látszik, és 3x54 = 162 világos, hogy egyetlen színb l sem lehet 54 lapnál több kiszínezve. Egy ilyen színezés: 1

2 1 db. kocka 3 piros+3 kék lap 1 db. kocka 3 kék+3 zöld lap 1 db. kocka 3 zöld+3 piros lap 6 db. kocka 3 kék+2 piros+1 zöld lap 6 db. kocka 3 zöld+2 kék+1piros lap 6 db. kocka 3 piros+2 zöld+1kék lap 6 db. kocka 2 piros+2 zöld+2 kék lap pont 3. feladat. Vágd szét a négyzetet minél többféleképpen két részre úgy, hogy azok egyforma nagyságúak és alakúak legyenek! Csak a kis négyzetek oldalai mentén vághatsz! Megoldás: Minden helyes szétvágás 1,5 pont. 4. feladat. Egy kis faluban három egymás melletti házban három különböz foglalkozású ember lakik (ORVOS, MATEKTANÁR, HOKISTA). A házak más-más szín ek (SÁRGA, ZÖLD, PIROS), minden háztulajdonos más-más állatot tart (MACSKA, KECSKE, KUTYA), más-más a kedvenc itala (TEA,, GYÜMÖLCSLÉ), más-más járm vel mennek dolgozni (BICIKLI, MOTOR, ) és igazak az alábbi állítások: 1. Az ORVOS a PIROS házban lakik. 2

3 2. A KUTYA és a MACSKA nem szomszédok. 3. Az els házban lakó ember T vezet és nem tart KUTYÁT. 4. A SÁRGA ház tulajdonosának nincs BICIKLIJE. 5. A MATEKTANÁR KECSKÉT tart. 6. A PIROS házban lakó ember nem TEÁT iszik. 7. A KUTYÁT tartó ember a ZÖLD házban lakik. 8. A középs házban lakó ember ZIK. Ki MOTOROZIK? Ki iszik GYÜMÖLCSLEVET? Megoldás: ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI Részletesebben (egy lehetséges megoldás a sok közül): A h. állítás alapján a 2. házban lakó ember ZIK. A c. állítás alapján az 1. házban lakó ember T vezet.1 pont Állat A b. állítás alapján a KUTYA és a MACSKA nem szomszédok, azaz a középs házban lakik a KECSKE pont Állat KECSKE Az e. állítás alapján a MATEKTANÁR KECSKÉT tart, tehát a 2. házban lakik pont MATEKTANÁR Állat KECSKE A c. állítás alapján az 1. házban lakó ember nem tart KUTYÁT, tehát a KUTYA a 3. házban lakik és így a MACSKA lakik az 1. házban pont MATEKTANÁR A g. állítás alapján a KUTYÁT tartó ember a ZÖLD házban lakik, tehát a 3. ház ZÖLD pont 3

4 MATEKTANÁR ZÖLD Az a. állítás alapján az ORVOS a PIROS házban lakik, így ez a páros csak az 1. házba tehet be pont ORVOS MATEKTANÁR PIROS ZÖLD Következik, hogy a 3. házban lakik a HOKISTA, illetve a 2. ház SÁRGA pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD A d. állítás alapján a SÁRGA ház tulajdonosának nincs BICIKLIJE, tehát a BICIKLI a 3. házban van és így a MOTOR a 2. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD MOTOR BICIKLI Az f. állítás alapján a PIROS házban lakó ember nem TEÁT iszik, tehát a TEÁT a 3. házban isszák. Így pedig a GYÜMÖLCSLEVET az 1. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI 4

5 VI. osztály 1. feladat. Az 1, 1, 1, 1, számok összege 1 legyen?, számok közül melyiket (melyeket) kell eltávolítani ahhoz, hogy a a megmaradt 1. megoldás Mivel = = , pont Ezért a = 147 összegb l 27-et kell levenni. A 60 és a 30 nem húzható ki, mivel nagyobbak, mint 27. Marad a 20, 15, 12, pont Pontosan két számot kell kihúzzunk ezekb l, mivel egy nem elég (még a legnagyobb is kisebb 27-nél), három pedig már túl sok (a három legkisebb szám összege: = 37 > 27). A 20-as viszont nem lehet egy párosnak sem tagja, mivel = 30 > pont Maradnak a 15, 12, 10. Az ezekb l a számokból alkotható három pár közül ((15, 12), (15, 10) és (12, 10)) csak a (15, 12) jó. Tehát az 1-ot és az et kell kihúzzuk ahhoz, hogy a megmaradt törteknek az összege 1 legyen pont Valóban: = = megoldás A számok összege = = pont 40 9 Ahhoz, hogy a megmaradt számok összege 1 legyen, összeg számokat kell eltávolítani. Ehhez a törtet olyan törtek összegére kell bontani, amelyek nevez i 2, 4, 6, 8, 10, 12 lehetnek, a számlálók pedig (egyszer sítés után) mind 1 legyen pont 40 = 2 3 5, az 5-ös egyetlen tört nevez jében szerepel, ez biztosan kell szerepeljen az eltávolításban, és mivel = 1, a két tört, amit el kell távolítani az 1 és az pont Javítási javaslat: ha nem indokol a tanuló, de megtalálja a megoldást, 7-8 pontot kaphat. 2. feladat. A SIMPLEX szó bet inek hány darab különb öz átrendezésében van mindkét magánhangzó el l? (Például IESMPLX egy ilyen átrendezés, de ISMPLEX nem.) Megoldás. A magánhangzókat (E, I) el l kétféleképpen lehet elhelyezni: EI, IE pont A mássalhangzók a magánhangzók után 5 helyre tehet ek be:. Ez = 120 féleképpen lehetséges pont Tehát = 240 különböz átrendezés van a feladat feltételeinek megfelel en pont 3. feladat. Van 216 egyforma kis kockánk. Hány különböz alakú téglatestet építhetünk ezekb l, ha mindenik kockát fel kell használni? Megoldás: 216 = Meg kell keresni az összes olyan felbontást, amely a b c alakú és a b c, ezekb l mind különböz alakú téglatesteket kapunk. Összesen 19 téglatestet kapunk, közvetlen felsorolással is megkaphatjuk: , , , , , , , pont , , , , pont , , , pont 4 6 9, pont 4. feladat. Egy kis faluban három egymás melletti házban három k ülönböz foglalkozású ember lakik (ORVOS, MATEKTAN ÁR, HOKISTA). A házak más-más szín ek (SÁRGA, Z ÖLD, PIROS), minden háztulajdonos más-más állatot tart (MACSKA, KECSKE, KUTYA), más-más a kedvenc itala (TEA,, GYÜMÖLCSLÉ), más-más járm vel mennek dolgozni (BICIKLI, MOTOR, ) és igazak az alábbi állítá sok: 1. Az ORVOS a PIROS házban lakik. 2. A KUTYA és a MACSKA nem szomszédok. 3. Az els házban lakó ember T vezet és nem tart KUTYÁT. 5

6 4. A SÁRGA ház tulajdonosának nincs BICIKLIJE. 5. A MATEKTANÁR KECSKÉT tart. 6. A PIROS házban lakó ember nem TEÁT iszik. 7. A KUTYÁT tartó ember a ZÖLD házban lakik. 8. A középs házban lakó ember ZIK. Ki MOTOROZIK? Ki iszik GYÜMÖLCSLEVET? Megoldás: ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI Részletesebben (egy lehetséges megoldás a sok közül): A h. állítás alapján a 2. házban lakó ember ZIK. A c. állítás alapján az 1. házban lakó ember T vezet.1 pont Állat A b. állítás alapján a KUTYA és a MACSKA nem szomszédok, azaz a középs házban lakik a KECSKE pont Állat KECSKE Az e. állítás alapján a MATEKTANÁR KECSKÉT tart, tehát a 2. házban lakik pont MATEKTANÁR Állat KECSKE A c. állítás alapján az 1. házban lakó ember nem tart KUTYÁT, tehát a KUTYA a 3. házban lakik és így a MACSKA lakik az 1. házban pont MATEKTANÁR A g. állítás alapján a KUTYÁT tartó ember a ZÖLD házban lakik, tehát a 3. ház ZÖLD pont MATEKTANÁR ZÖLD 6

7 Az a. állítás alapján az ORVOS a PIROS házban lakik, így ez a páros csak az 1. házba tehet be pont ORVOS MATEKTANÁR PIROS ZÖLD Következik, hogy a 3. házban lakik a HOKISTA, illetve a 2. ház SÁRGA pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD A d. állítás alapján a SÁRGA ház tulajdonosának nincs BICIKLIJE, tehát a BICIKLI a 3. házban van és így a MOTOR a 2. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD MOTOR BICIKLI Az f. állítás alapján a PIROS házban lakó ember nem TEÁT iszik, tehát a TEÁT a 3. házban isszák. Így pedig a GYÜMÖLCSLEVET az 1. házban pont ORVOS MATEKTANÁR HOKISTA PIROS SÁRGA ZÖLD GYÜMÖLCSLÉ TEA MOTOR BICIKLI 7

8 VII. osztály 1. feladat. A SIMPLEX szó bet inek hány darab különböz átrendezésében van mindkét magánhangzó el l? (Például IESMPLX egy ilyen átrendezés, de ISMPLEX nem.) Megoldás. A magánhangzókat (E, I) el l kétféleképpen lehet elhelyezni: EI, IE pont A mássalhangzók a magánhangzók után 5 helyre tehet ek be:. Ez = 120 féleképpen lehetséges pont Tehát = 240 különböz átrendezés van a feladat feltételeinek megfelel en pont 2. feladat. Van 12 egyforma gyufaszálunk. Tekintsük egy területegységnek annak a négyzetnek a területét, amelyet négy gyufaszálból készítünk. Készíts olyan sokszögeket az összes gyufaszál felhasználásával, amelynek területe: a) 5 területegység b) 9 területegység c) 6 területegység d) 4 területegység e) 3 területegység a) megfelel pl. az 1 5-ös téglalap. Megoldás pont b) megfelel pl. a 3 3-as négyzet pont c) egy 2 3-as téglalap oldalaira kifele illetve befele egyenl oldalú háromszögeket állítunk, pl. a rajzon látható módon: pont d) hasonló módszerrel kapunk 4 terület sokszöget egy 1 4-es téglalapból ,5 pont 8

9 e) egy 1 3-as téglalapbó két egyenl oldalú háromszöget vágunk ki ,5 pont Minden alpontnál a maximális pontot megfelel indoklás esetén lehet elérni. 3. feladat. Amikor a nagyapám már elmúlt 65 éves, de még nem volt 90, a következ t mondta: Minden gyerekemnek annyi gyermeke van, mint testvére. Éveim száma pedig pontosan annyi, ahány gyermekem és unokám van összesen." Hány éves volt ekkor a nagyapám? Megoldás. Jelöljük a nagyapa gyerekeinek számát x-szel. Ebben az esetben minden gyermeknek x 1 testvére van, így x 1 gyermeke is pont Tehát összesen x(x 1) az unokák száma pont A gyermekek és az unokák száma így x + x (x 1) = x + x 2 x = x pont Olyan négyzetszámot keresünk, amely 65-nél nagyobb és 95-nél kisebb. Ilyen négyzetszám csak egy van, a pont 4. feladat. Az ábrán négy fogaskerék látható. A rajtuk lev számok a fogak számát mutatják. Amíg a legnagyobb egyszer körbefordul, hányszor fordul körbe a legkisebb? Megoldás. Mivel a fogaskerekek a fogak által össze vannak "kötve", ezért a mozgásuk is összekötött, egyszerre mozognak pont Tehát függetlenül attól, hogy a legnagyobb és a legkisebb fogaskerék között hány fogaskerék van, a legnagyobb és a legkisebb fogaskerék egyszerre mozog. Azaz akár az ábrán látható módon is elhelyezhetnénk ezeket és ez a feladaton nem változtatna pont Amíg a nagy egyszer körbefordul, addig a kicsi = 6-szor fordul körbe pont Indoklás (Ez azért van így, mert a kicsi fogaskerék egyszeri körbefordulása a nagyot éppen a kicsi fogaskerék hosszával viszi el re. Tehát meg kellene nézzük, hogy a kicsi fogaskerék hossza hányszor fér rá a nagyra. A nagy fogaskereket tekinthetjük 78 egység hosszúnak, a kicsit pedig 13-nak, mert ha például a nagy körre rajzolunk 78 9

10 fogat (azaz vonalkát), egy fog mentén "elvágjuk" a fogaskereket és kiegyenesítjük, akkor 79 vonalka keletkezik, ami 78 egységszakaszt határoz meg. Ugyanez van a kicsi fogaskerékkel is, amin - ahhoz, hogy a fogaskerekek m ködjenek - az egységek ugyanazok kell legyenek, mint a nagyon. Tehát csak azt kell megnézni, hogy a 13 hányszor van meg a 78-ban.) pont Kibontottabb megoldás. (Ha nem veszi észre a gyermek hogy mindegy, hogy középen hány fogaskerék van.) Mivel a fogaskerekek egyszerre mozognak, amíg az els egyszer körbefordul, addig a második szer fordul körbe. Amíg a második egyszer körbefordul, addig a harmadik szer fordul körbe. Amíg a harmadik egyszer körbefordul, addig a negyedik szor fordul körbe. Tehát amíg a legnagyobb fogaskerék egyszer körbefordul, addig a legkisebb = 6-szor fordul körbe. 10

11 VIII. osztály 1. feladat. Legyen n és k két darab háromjegy természetes szám úgy, hogy n + k = Igazold, hogy az n 2 és k 2 természetes számok utolsó három számjegye megegyezik! Megoldás Ha k = abc n 2 = (1000 k) 2 = k + k 2 n 2 = abc + k 2 = abc000 + k pont Ha n > k, akkor k 499 és abc000 = xy alakú, tehát n 2 utolsó három számjegyét épp a k 2 utolsó három számjegye adja pont Ha n < k hasonlóan járunk el felcserélve n és kszerepét Ha n = k az állítás azonnali pont Megjegyzés: Konkrét értékekkel való kisérletezés legtöbb 2pontot ér (+1). Minden más olyan megoldási kisérlet amely elvezet a megoldáshoz pontozandó. 2. feladat. Az ábrán négy fogaskerék látható. A rajtuk lev számok a fogak számát mutatják. Amíg a legnagyobb egyszer körbefordul, hányszor fordul körbe a legkisebb? Megoldás. Mivel a fogaskerekek a fogak által össze vannak "kötve", ezért a mozgásuk is összekötött, egyszerre mozognak pont Tehát függetlenül attól, hogy a legnagyobb és a legkisebb fogaskerék között hány fogaskerék van, a legnagyobb és a legkisebb fogaskerék egyszerre mozog. Azaz akár az ábrán látható módon is elhelyezhetnénk ezeket és ez a feladaton nem változtatna pont Amíg a nagy egyszer körbefordul, addig a kicsi = 6-szor fordul körbe pont Indoklás (Ez azért van így, mert a kicsi fogaskerék egyszeri körbefordulása a nagyot éppen a kicsi fogaskerék hosszával viszi el re. Tehát meg kellene nézzük, hogy a kicsi fogaskerék hossza hányszor fér rá a nagyra. A nagy fogaskereket tekinthetjük 78 egység hosszúnak, a kicsit pedig 13-nak, mert ha például a nagy körre rajzolunk 78 fogat (azaz vonalkát), egy fog mentén "elvágjuk" a fogaskereket és kiegyenesítjük, akkor 79 vonalka keletkezik, ami 78 egységszakaszt határoz meg. Ugyanez van a kicsi fogaskerékkel is, amin - ahhoz, hogy a fogaskerekek m ködjenek - az egységek ugyanazok kell legyenek, mint a nagyon. Tehát csak azt kell megnézni, hogy a 13 hányszor van meg a 78-ban.) pont Kibontottabb megoldás. (Ha nem veszi észre a gyermek hogy mindegy, hogy középen hány fogaskerék van.) Mivel a fogaskerekek egyszerre mozognak, amíg az els egyszer körbefordul, addig a második szer fordul körbe. Amíg a második egyszer körbefordul, addig a harmadik szer fordul körbe. Amíg a harmadik egyszer körbefordul, addig a negyedik szor fordul körbe. Tehát amíg a legnagyobb fogaskerék egyszer körbefordul, addig a legkisebb = 6-szor fordul körbe. 11

12 3. feladat. Egy konvex sokszögnek pontosan három szöge tompaszög. Legfennebb hány oldala lehet a sokszögnek? Megoldás. Egy n oldalú konvex sokszög szögeinek összege (n 2) pont Ha a sokszögnek pontosan három tompaszöge van, akkor (n 3) a hegyesszögek száma pont Ezért (n 2) 180 < (n 3) 90, ahonnan következik, hogy n < 7. Tehát a sokszögnek legfennebb 6 oldala lehet pont Ilyen sokszöget valóban lehet rajzolni: pont 4. feladat. Az ABCD négyzet oldalhossza 12m. Az A csúcsból egyszerre induló két kutya (K 1 illetve K 2 ) a négyzet oldalain úgy szalad, hogy a K 1 kutya a D felé kétszer akkora sebességgel iramodik, mint K 2 a B felé. Közben az A pontból induló R robot úgy mozog, hogy minden pillanatban a két kutyát összeköt szakasz felez pontjában helyezkedik el. a) Hol találkoznak a kutyák? b) Rajzold meg a robot útját, közben részletesen indokolj! c) Igazold, hogy ennek az útnak a hossza nagyobb, mint 17m. Megoldás. Legyen E az AB, F a DE,Ma BC, Ra K 1 K 2 felez pontja K 1 D-be ér mígk 2 E-be, K 1 végigmegy DC-n míg K 2 az EB-n végülk 1 megteszi a CN, K 2 a BN távolságot ahol CN = 2BN. Tehát a kutyák a BC oldal N harmadoló pontjában találkoznak pont Ha K 1 az AD-n mozog, akkor: AK1 AK 2 = AD AE = 1tehát 2 K 1K 2 DE minden pillanatban. Mivel AF oldalfelez ADE háromszögben felez minden DE-vel párhuzamos szakaszt, tehát K 1 K 2 -t is ( hasonlósággal igazolható tulajdonság). Tehát a K 1 K 2 szakasz Rfelez pontja az AF szakaszon mozog pont Ha K 1 az DC-n mozog, akkor: az RMszakasz mindig a K 1 K 2 BCtrapéz középvonala, tehát a K 1 K 2 szakasz Rfelez pontja az F Mszakaszon mozog. Ha K 1 és K 2 a BC-n mozog, akkor az Raz MNszakaszon mozog pont Megjegyzés: csak a rajz indoklások nélkül legtöbb 1pontot ér. ADE derékszög háromszögben F a háromszög köré írható kör középpontja, ezért AF = 1 2 DE = = pont F M a DEBCtrapéz középvonala, tehát F M = DC+EB 2 = 9 MN = MB NB = 6 4 = pont AF + F M + MN = > = pont 12

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1.

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1. 4.Lecke / 1. 4. Lecke Körök és szabályos sokszögek rajzolása Az előző fejezetekkel ellentétben most nem újabb programozási utasításokról vagy elvekről fogunk tanulni. Ebben a fejezetben a sokszögekről,

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Városok Viadala JUNIOR, 1990-91. sz, második forduló ... 99

Városok Viadala JUNIOR, 1990-91. sz, második forduló ... 99 JUNIOR, 990-9. sz, els forduló. Adott két pozitív valós szám. Bizonyítsuk be, hogy ha az összegük kisebb, mint a szorzatuk, akkor az összegük nagyobb 4-nél. (N. Vasziljev, 4 pont) 2. Egy szabályos háromszög

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Református Iskolák XXI. Országos Matematikaversenye 2013 7. osztály

Református Iskolák XXI. Országos Matematikaversenye 2013 7. osztály 1. Egy nap Mariska néni vett egy tyúkot a piacon. Miután a tyúk tojt két tojást, a tyúkot megették vacsorára. Vagy mindkét tojásból tyúk, vagy mindkét tojásból kakas kelt ki. Minden kakast megettek, a

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Kenguru 2013 Maljuk, 2. osztály (75 perc)

Kenguru 2013 Maljuk, 2. osztály (75 perc) Kenguru 2013 Maljuk, 2. osztály (75 perc) Az 1. 5. feladatok 3 pontot érnek 1. Péter lemásolta a táblára felírt számjegyeket. Melyiket hagyta ki? А: 2 Б: 3 В: 4 Г: 5 Д: 6 2. A könyvespolcon 12 könyv volt.

Részletesebben

Feladatok 7. osztály

Feladatok 7. osztály Feladatok 7. osztály 1. Egy ruha árának ötöde a kereskedő haszna. Ha megemelné az árat 200 Ft-tal, akkor már csak az ár harmada lenne a haszna? Mennyi a ruha ára? 2. Egy iskolában kémiát, angolt, franciát,

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18 Szöveges feladatok Életkori feladatok. Feladat. Egy anya 29 éves volt, amikor a a született. év múlva az életkora évvel lesz kevesebb, mint a a akkori életkorának kétszerese. Hány évesek most? Megoldás.

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR 6. osztály 1. Kati és Pali szeptemberben elhatározta, hogy takarékoskodni fog, ezért zsebpénzükből minden hónapban félretettek egy bizonyos összeget.

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

2. Melyek azok a kétjegyű egész számok, amelyekhez a számjegyek felcserélésével kapott

2. Melyek azok a kétjegyű egész számok, amelyekhez a számjegyek felcserélésével kapott F 1998/99. Iskolai (első) forduló 1998. november 7. osztály 1. Egy trópusi szigeten nem használnak pénzt. Tudjuk, hogy 50 banán 20 kókuszdiót, 30 kókuszdió 12 ananászt ér, és 100 ananászért pedig egy csónakot

Részletesebben

Interaktivitás a matematika órán

Interaktivitás a matematika órán Interaktivitás a matematika órán Kiindulópontunk a kocka Szakdolgozat Készítette: Szatmári Tünde Szak: Matematika BSc tanári szakirány Témavezető: Holló-Szabó Ferenc, a Matematikai Múzeum vezetője Eötvös

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Arányossággal kapcsolatos feladatok

Arányossággal kapcsolatos feladatok Arányossággal kapcsolatos feladatok 1. Egy régi óra 4 óra alatt 8 percet késik. Mennyivel kell elrevidd az órát este 10 órakor, ha reggel pontosan 7-kor akarsz ébredni?. 6 munkás egy munkát 1 nap alatt

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

10. évfolyam, negyedik epochafüzet

10. évfolyam, negyedik epochafüzet 10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK Csak kezdőknek 1. Könnyű percek 15x15-ös vicces hagyományos egész oldalas skandi 19x15-ös plusz egy poén Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK 2. Lexikon nélkül Mozaikrejtvény szokatlan

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás Soós Luca és Szári Laura MATEMATIKA FELADATGYŐJTEMÉNY. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás 0. 0.. Ő. JÁTÉK A FORMÁKKAL Nézd meg jól a képet! Mit gondolsz,

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló 2010.

Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló 2010. Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló 010. 1. feladat Kata egy dobozban tárolja 0 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete.

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat2 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat2 JVÍTÁSI-ÉRTÉELÉSI ÚTMUTTÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása

Részletesebben