MATEMATIKA VERSENY

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA VERSENY"

Átírás

1 Vonyarcvashegyi Eötvös Károly Általános Iskola Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket írd a megfelelő helyre! Jó munkát kívánunk! 1.) Írd be a megfelelő számokat az üres helyekre! a.) b.) c.) ) Számolj! Írd a műveletek mellé, hogy igaz (i) vagy hamis (h)! Írd le a részeredményeket is! a.) 6 (7 + 8) : 9 = 10 b.) (89 58 : 2) : 12 5 = 25 c.) 2 (3 + 2) 4 11 = 29 d.) ( ) : = 45 e.) = ) Színezd pirossal a 8, kékkel az 5 és zölddel a 6 többszöröseit! ) Tedd ki a megfelelő műveleti jeleket! a.) = = = 57

2 b.) = = = ) Húzd alá a jó szabályokat és töltsd ki a táblázatot! ( - 2) : = ( + 2) : = + 2 = ( - 2) : = 7 6.) a) Csibe azt mondta, hogy kitalálhatjuk kedvenc számát, ha megoldjuk a következő feladatot. A szám többet ér, mint a 7 ötszöröse, de kevesebb a 10 négyszeresénél, és a kilencnek többszöröse.? Melyik Csibe kedvenc száma? A. 37 B. 36 C. 39 D. 70

3 b) Az számjegyek közé alkalmas műveleti jeleket írva (+, -,, : ) különböző eredményeket kapunk. Melyik végeredményt nem kaphatjuk meg az alábbiak közül, ha a számok sorrendje állandó? A. 0 B. 11 C. 12 D. 29 c) Írd az alábbi állítások mellé, hogy igaz vagy hamis! 1.) 99 darab pozitív kétjegyű szám van: 2.) 5 darab páratlan számjegy van: 3.) Két egymást követő páros szám különbsége 2: 4.) Bármely két öttel osztható szám különbsége 5: 5.) A 36 közelebb van a számegyenesen a 25-höz, mint a 47-hez: Hány igaz állítás van a fentiek között? A. 1 B. 2 C. 3 D. 4 6 Mindösszesen: 36

4 Vonyarcvashegyi Eötvös Károly Általános Iskola Vonyarcvashegy, Fő u. 84/1. 3. osztály MATEMATIKA VERSENY név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket írd a megfelelő helyre! Jó munkát kívánunk! 1.) Folytasd a számsorozatot mindkét irányban a nyilaknak megfelelően! A nyilak jelentése + 170, ) Pontosan számolj! ( ) : = (804 : : 7) = 5 *3.) Írd a művelet eredményét a mennyiségek fölé, majd tedd ki a megfelelő relációs jelet! 50 dm + 52 cm 9 m 458 cm 6 hl 54 l 800 cl l fél kg g 618 g g 168 óra + 2 nap 2 hét 90 óra 6

5 4.) Válaszd ki és karikázd be a helyes megoldás betűjelét! a.) Hány egyenlő nagyságú kockára van legalább szükség ahhoz, hogy egy újabbat hozzunk létre? A 4 B 6 C 8 D 12 b.) Van egy 25 literes edényünk. 18 l víz van benne. Ha még 10 litert hozzáöntünk, mennyi víz lesz az edényben? A 33 l B 43 l C 28 l D 25 l c.) Egy csiga beleesett egy 10 méter mély kútba. Minden nap 2 métert mászott felfelé, éjjel 1 métert visszacsúszott. Hány nap alatt jutott ki a kútból? A 5 B 10 C 9 D ) Oldd meg a feladatot és válaszolj a kérdésre! Írd le, hogyan gondolkodtál! Ha egy liba meghizlalásához 12 kg kukorica szükséges, mennyivel több kukorica kell 5 liba meghizlalásához, mint hároméhoz? 5 6.) Írd a számokat a halmazábra megfelelő helyére! Számok 0 < X < 1000 páros 5-tel osztható 4 Összesen: 32

6 Vonyarcvashegyi Eötvös Károly Általános Iskola Vonyarcvashegy, Fő u. 84/1. 4. osztály MATEMATIKA VERSENY név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket írd a megfelelő helyre! Jó munkát kívánunk! 1.) Számítsd ki a műveletsor eredményét! : = 5 2.) A sorozat szomszédos elemei között ugyanannyi a különbség. A sorozat harmadik eleme 3400, a hetedik eleme Írd be a sorozat többi elemét! Egészítsd ki a mondatot! A sorozat szomszédos elemei között mindig a különbség. 5 3.a) Bence rejtvényben adta meg a telefonszámát a barátainak. A rejtvény sorainak kitöltésével találd ki te is a számot! A telefonszám: Bence telefonszáma a.) 429-nek a hétszerese b.) Hány pozitív egész szám van meg maradék nélkül 39-ben? c.) Hány cm-rel egyenlő 1 m + 11 dm cm? d.) Mennyi a 79 kisebbik páratlan szomszédja? e.) Vele minden szám osztható maradék nélkül. f.) Az szorzatban az egyesek helyén álló számjegy. 4

7 b.) Az alábbi zsákokra ráírták, mi van bennük. CUKOR 1 kg 20 dkg LISZT 1 kg 30 g SÓ 110 dkg BORS 1200 g KÁVÉ 1 kg 30 dkg Mi van abban a zsákban, amelyikre igaz, hogy a.) nehezebb a borsos zsáknál: b.) nem könnyebb a cukros zsáknál: c.) a legkönnyebb: d.) legalább 1200 g a tömege: e.) a tömege maximum 110 dkg: 5 4.) Három szám összege Ha mindegyik számból kivonjuk ugyanazt a számot, akkor a 150, 1320 és 3460 számokat kapjuk. Melyik ez a három szám, és melyik számot vonjuk ki? Írd le gondolkodásod menetét! A három szám: A kivont szám: 6 5.) A seholvári 4. osztály gyermeknapi rendezvényén tizenhatan lovagoltak, tizennégyen kocsikáztak. Tíz gyerek lovagolt is, kocsikázott is. Két gyerek nem akart lovagolni sem, kocsikázni sem. Töltsd ki a halmazábrát, válaszolj! 4. osztály tanulói Hány gyerek jár ebbe a 4. osztályba? lovagolt kocsikázott Hány gyerek volt, aki csak lovagolt? Hány gyerek volt, aki csak kocsikázott? 5

8 6.) Karikázd be a helyes válaszok betűjelét! a.) Artúr a barátaival futóversenyt rendezett. Hányadik lett Artúr a versenyen, ha a futók fele előtte, harmadrésze pedig mögötte végzett? A. 1. B. 5. C. 4. D. 2. E. 6. b.) Egy láda alma tömege ládástól 15 kg. Ebből a láda 3 kg. Egy termelőtől 10 ilyen láda almát vásárolt egy ivólét készítő üzem. Mennyi pénzt kapott a termelő, ha az alma kg-ja 60 Ft volt, és a ládák darabjáért 120 Ft-ot fizettek? A Ft B Ft C Ft D Ft E Ft c.) Hány olyan háromjegyű természetes szám van, amelyben a tízes helyi értéken páros számjegy áll? A. 45 B. 225 C. 405 D. 450 E Mindösszesen: 36

MATEMATIKA VERSENY

MATEMATIKA VERSENY Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek

Részletesebben

MATEMATIKA VERSENY ABASÁR, 2018

MATEMATIKA VERSENY ABASÁR, 2018 MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a

Részletesebben

Köszöntünk titeket a harmadik osztályban!

Köszöntünk titeket a harmadik osztályban! Köszöntünk titeket a harmadik osztályban! Ez a számolófüzet a tankönyv és feladatgyűjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematika órán tanultakat. A következő

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

Kedves harmadik osztályosok!

Kedves harmadik osztályosok! Kedves harmadik osztályosok! Köszöntünk titeket a matematika birodalmában! 3. osztályban is folytatjuk a barangolást. Ismét új kalandok, új felfedezések és rejtvényes feladatok várnak rátok. tankönyv mellett

Részletesebben

Köszöntünk titeket a negyedik osztályban!

Köszöntünk titeket a negyedik osztályban! Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted I. kötetét tartod a kezedben,

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 2. évfolyam MÉRŐLAPOK 7. modul 6. melléklet 2. évfolyam 1. mérőlap tanuló/1. 1. Írd le a számokat egymás mellé! ; ; ; ; 2. Tedd a kapott számokat csökkenő sorrendbe!

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Számok és műveletek 10-től 20-ig

Számok és műveletek 10-től 20-ig Számok és műveletek től 20ig. Hány gyerek vesz részt a síversenyen? 2. Hányas számú versenyző áll a 4. helyen, 3. helyen,. helyen? A versenyzők közül hányadik helyen áll a 4es számú, 3as számú, es számú?

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Feladatok a MATEMATIKA standardleírás 3. szintjéhez 2016. Oktatáskutató és Fejlesztő

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

Észpörgető matematika verseny / Eredmények/ Feladatok

Észpörgető matematika verseny / Eredmények/ Feladatok Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

A 5-ös szorzó- és bennfoglalótábla

A 5-ös szorzó- és bennfoglalótábla A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Kurucz Istvánné Tóth Ferencné Flór Lászlóné FELMÉRÉSEK AZ 1 2. OSZTÁLYOS MATEMATIKÁHOZ HARMADIK KIADÁS

Kurucz Istvánné Tóth Ferencné Flór Lászlóné FELMÉRÉSEK AZ 1 2. OSZTÁLYOS MATEMATIKÁHOZ HARMADIK KIADÁS Kurucz Istvánné Tóth Ferencné Flór Lászlóné FELMÉRÉSEK AZ 1 2. OSZTÁLYOS MATEMATIKÁHOZ HARMADIK KIADÁS Celldömölk, 200 A felmérések az 1. osztályos matematikához anyagát írta és összeállította Kurucz Istvánné

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 0 ÖSSZEHASONLÍTÁS Húzd át azokat, amelyek nincsenek a fenti képen! Karikázz be annyit,

Részletesebben

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? 1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére

Részletesebben

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Számelmélet, algebra Számfogalom kialakítása Segítséggel képes a számokat tízesek és egyesek összegére bontani

Részletesebben

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Maximum: 100 pont. Elért pont: Százalék: Név: Iskola:

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Maximum: 100 pont. Elért pont: Százalék: Név: Iskola: Borbély Sándor Országos Tanulmányi Verseny Vác 2016 Matematika 5. osztály Maximum: 100 pont lért pont: Százalék: Név: Iskola: 1. Gábor új mobiltelefont kapott. A számát rejtvényben árulta el barátainak.

Részletesebben

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! 1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány

Részletesebben

1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1

1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1 TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj

Részletesebben

Sorba rendezés és válogatás

Sorba rendezés és válogatás Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a

Részletesebben

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?

X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles

Részletesebben

JAVÍTÓKULCSOK Számfogalom

JAVÍTÓKULCSOK Számfogalom JAVÍTÓKULCSOK Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz

Részletesebben

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola:

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola: Borbély Sándor Országos Tanulmányi Verseny Vác 2016 Matematika 5. osztály Javítókulcs Összesen: 100 p Név: Iskola: 1. Gábor új mobiltelefont kapott. A számát rejtvényben árulta el barátainak. Keresd meg

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax: 5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.

Részletesebben

Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet!

Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet! 49. modul 1. melléklet 2. évfolyam tanítói fólia és tanuló Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet! 26 + 33 25 + 33 12 + 35 12 + 31 62 + 15 63 + 14 43 26 53 26 35 13 35 15 62 18 72

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 0 Az udvaron 9 gyerek játszott. Érkezett még gyerek. Hány gyerek játszik most?

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév

PYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév Kategória P 6 1. Zsombornak a szekrényben csak fekete, barna és kék pár zoknija van. Ingjei csak fehérek és lilák, nadrágjai csak kékek és barnák. Hányféleképpen felöltözve tud Zsombor iskolába menni,

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! 1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3

Részletesebben

III. Vályi Gyula Emlékverseny december

III. Vályi Gyula Emlékverseny december III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Bevezető. Kedves Negyedik Osztályos Tanuló!

Bevezető. Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 03 ÉV ELEJI ISMÉTLÉS Figyeld meg a fenti képet! Döntsd el, hogy igaz vagy hamis az

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából

Részletesebben

Egész számok értelmezése, összehasonlítása

Egész számok értelmezése, összehasonlítása Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Kedves Kollégák! Kedves Szülõk!

Kedves Kollégák! Kedves Szülõk! Kedves Kollégák! Kedves Szülõk! Az OKOS(K)ODÓ című kiadványunkat elsõsorban Az én matematikám című 1. osztályos tankönyvcsaládhoz készítettük. Természetesen használható más tankönyvek mellé, mert feladatsorai

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Megoldókulcs. Név: Iskola:

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Megoldókulcs. Név: Iskola: Borbély Sándor Országos Tanulmányi Verseny Vác 201 Matematika 5. osztály Megoldókulcs Név: Iskola: 1. Pótold a hiányzó számokat! A Fővárosi Állat- és Növénykert története: 1. -ban nyílt meg. 1866 2. -ban

Részletesebben

Mérések szabványos egységekkel

Mérések szabványos egységekkel MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos

Részletesebben

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám? A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat

Részletesebben

A) 7 B) 6 C) 5 D) 4 E) 3

A) 7 B) 6 C) 5 D) 4 E) 3 1. Végezd el a következő műveleteket: 246 27 5 12 11 2 150 70 2 A) 520 B) 1370 C) 1810 D) 1910 E) 3010 2. Egy tavacskában két csónak van a mólóhoz kikötve, mindkettő ponyvával lefedve. A nagyobb csónak

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

térképet, és válaszolj a kérdésekre római számokkal!

térképet, és válaszolj a kérdésekre római számokkal! A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

2. Melyik kifejezés értéke a legnagyobb távolság?

2. Melyik kifejezés értéke a legnagyobb távolság? 1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

Bevezető Kedves Negyedik Osztályos Tanuló!

Bevezető Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

IV. Vályi Gyula Emlékverseny november 7-9.

IV. Vályi Gyula Emlékverseny november 7-9. IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3

Részletesebben

IV. Matematika Konferencia Műszaki Kiadó

IV. Matematika Konferencia Műszaki Kiadó "Tervek - Táblák - Játékok" IV. Matematika Konferencia 2013. január 23. Szerepbővülés Cirkuszi mutatvány? Cirkuszi mutatvány? Tehetségfejlesztő szakember Pedagógus a digitális korban Pedagógus a digitális

Részletesebben

Kedves Kollégák! Kedves Szülõk!

Kedves Kollégák! Kedves Szülõk! 3 Kedves Kollégák! Kedves Szülõk! Az OKOS(K)ODÓ címû kiadványunkat elsõsorban a 2. osztályos matematika tankönyvcsaládunkhoz készítettük. Természetesen használható más tankönyvek mellé is, mert feladatsorai

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.

Részletesebben

Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le!

Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le! 47. modul 1/A melléklet 2. évfolyam Feladatkártyák tanuló/1. Elrejtettem egy logikai lapot. Ezt kérdezték tőlem: én ezt feleltem:? nem? nem? nem nagy? nem? igen? nem Ha kitaláltad, rajzold le az elrejtett

Részletesebben

6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2

6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2 T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Megoldások III. osztály

Megoldások III. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások III. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Én is tudok számolni 2.

Én is tudok számolni 2. Én is tudok számolni 2. ELSŐ KÖTET A kiadvány 2018. november 11-én tankönyvi engedélyt kapott a TKV/3490-11/2018. számú határozattal. A tankönyv megfelel az 51./2012. (XII. 21.) számú EMMI-rendelet 11.

Részletesebben

MÛVELETEK TIZEDES TÖRTEKKEL

MÛVELETEK TIZEDES TÖRTEKKEL MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy

Részletesebben