XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
|
|
- Krisztina Németh
- 5 évvel ezelőtt
- Látták:
Átírás
1 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) április 04. Készítette: Szafiánné Csécsei Tímea, Nyitrai Miklósné gyógypedagógusok
2 Kedves versenyző Gyerekek! Sok szeretettel köszöntünk Benneteket a XLII. Országos Komplex Tanulmányi Verseny megyei fordulójának Matematika állomásán! Figyelmesen olvassátok el a feladatokat, gondoljátok át jól a válaszokat! Itt mindenki önállóan dolgozik! A feladatok megoldására 30 percetek van. Jó munkát kívánunk Nektek!
3 Név: Csapat: 1. Dolgozz az idővel! (5 perc) 6 pont/ a.) Váltsd át! 1 hét+ 5 nap= nap 21 nap 1 hét= nap 2 év+ 3 hónap= hónap b.) Mennyi az idő? Olvasd le és írd az órák alá!
4 Név: Csapat: 2. Mérj pontosan! (5 perc) 7 pont/ a.) Váltsd át! 3 cm= mm 1dm= cm 50 mm= cm 1 m= cm 2,5 cm= mm 2 dm= mm b.) Mérd rá a szakaszokra a megadott hosszúságokat! Jelöld meg X- el a szakasz végpontját és nevezd el!
5 Név: Csapat: 3. Szöveges feladat (5 perc) 5 pont/ Zoli, Bence és Bori összehasonlítják milyen távol laknak az iskolától. Zoli 1 km, Bence 600 m, Bori 400 m-re lakik az iskolától. Válaszolj a kérdésekre, segít a rajz! a.) Ki lakik a legtávolabb az iskolától? b.) Ki lakik a legközelebb az iskolához? c.) Hány méterrel lakik távolabb az iskolától Zoli, mint Bence? d.) Hány méterrel lakik távolabb az iskolától Bence, mint Bori? e.) Hány méterrel lakik közelebb Bori az iskolához, mint Zoli?
6 Név: Csapat: 4. Számolj! a.) A Kovács család és a Virág család televíziót szeretne vásárolni. Segíts a két családnak összeszámolni mennyi készpénze és adóssága van. Számold ki anyagi helyzetüket és írd a vonalra! Számolj a négyzetrácsban! (8 perc) 10 pont/
7 b.) Válaszolj a kérdésekre! Melyik családnak van nagyobb adóssága? Melyik családnak marad több pénze az adósság kifizetése után?
8 Név: Csapat: 5. Végezd el a műveleteket! Számolj a négyzetrácsban és írd be a felhőkbe is az eredményt! A kapott eredményeket rendezd csökkenő sorrendbe! A hozzájuk tartozó betűket helyes sorrendbe rakva egy matematikai kifejezést kapsz. Írd le a megfejtést! (7 perc) 12 pont/ Csökkenő sorrend: Megfejtés: Elérhető pontszám összesen 40 pont Elért pontszám:
9 Név: Csapat: Pótfeladat 6. Geometria 3 pont/ Igaz vagy hamis az állítás? Írj I betűt az igaz, H betűt a hamis állítások elé! A négyzet minden oldala egyenlő hosszúságú. A négyzet is téglalap. A síkidomokat csak egyenes vonalak határolhatják. Pótfeladat: 3 pont/
10 7. Matematika javítókulcs Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) április 04. Készítette: Szafiánné Csécsei Tímea, Nyitrai Miklósné gyógypedagógusok
11 Név: Csapat: 1. Dolgozz az idővel! (5 perc) 6 pont/ a.) Váltsd át! 1 hét+ 5 nap= 12 nap 21 nap- 1 hét= 14 nap 2 év+ 3 hónap= 27 hónap Minden helyes megoldás 1 pont. A feladat a.) része 3 pontot ér, ha mindhárom váltás hibátlan. b.) Mennyi az idő? Olvasd le és írd az órák alá! 7 óra 52 perc 19 óra 52 perc 8 óra lesz 8 perc múlva 20 óra lesz 8 perc múlva háromnegyed 8 múlt 7 perccel 13 óra 30 perc 1 óra múlt 30 perccel fél 2 2 óra lesz 30 perc múlva 14 óra lesz 30 perc múlva 12 óra 40 perc 0 óra 40 perc 1 óra lesz 20 perc múlva 13 óra lesz 20 perc múlva fél 1 múlt 10 perccel háromnegyed 1 lesz 5 perc múlva Bármelyik helyes megoldás a felsoroltak közül, ill. egyéb helyes megoldás: 1 pont. A feladat b.) része 3 pontot ér, ha mindhárom óráról helyesen írták le az időpontokat az óralapok alá. Az 1. feladatban 6 pont szerezhető hibátlan megoldással.
12 Név: Csapat: 2. Mérj pontosan! (5 perc) 7 pont/ a.) Váltsd át! 3 cm= 30 mm 1dm= 10 cm 50 mm= 5 cm 1 m= 100 cm 2,5 cm= 25 mm 2 dm= 200 mm Minden helyes átváltás 0,5 pont. A feladat a.) része 3 pontot ér, ha hibátlan a megoldás. b.) Mérd rá a szakaszokra a megadott hosszúságokat! Minden szakasz pontos kimérésére, a szakasz végpontjának jelölésére és megfelelő betűjellel való elnevezésére 1 pont adható. Nem jár pont, ha pontatlan a mérés, hiányzik a szakasz végének jelölése X-el vagy álló egyenessel, ill. ha hiányzik a szakasz végének helyes betűjele. A b.) feladatban hibátlan megoldásért 4 pont adható. A 2. feladat hibátlan megoldásáért 7 pont jár.
13 Név: Csapat: 3. Szöveges feladat: (5 perc) 5 pont/ Zoli, Bence és Bori összehasonlítják milyen távol laknak az iskolától. Zoli 1 km, Bence 600 m, Bori 400 m-re lakik az iskolától. Válaszolj a kérdésekre, segít a rajz! a.) Ki lakik a legtávolabb az iskolától? Zoli b.) Ki lakik a legközelebb az iskolához? Bori c.) Hány méterrel lakik távolabb az iskolától Zoli, mint Bence? 400 méterrel d.) Hány méterrel lakik távolabb az iskolától Bence, mint Bori? 200 méterrel e.) Hány méterrel lakik közelebb Bori az iskolához, mint Zoli? 600 méterrel Minden helyes válasz 1 pont. A 3. feladatban hibátlan megoldással 5 pont szerezhető.
14 Név: Csapat: 4. Számolj! a.) A Kovács család és a Virág család televíziót szeretne vásárolni. Segíts a két családnak összeszámolni mennyi készpénze és adóssága van. Számold ki anyagi helyzetüket és írd a vonalra! Számolj a négyzetrácsban! (8 perc) 10 pont/ K o v á cs cs.: ah.: kp.: ad.:
15 V i r á g cs.: ah.: kp.: ad.: Családonként a készpénz és az adósság kiszámolásáért 1-1 pont, az anyagi helyzet beírásáért 1 pont jár. (2x 3 pont) A feladat a.) részében hibátlan megoldás esetén 6 pont adható. b.) Válaszolj a kérdésekre! Melyik családnak van nagyobb adóssága? Kovács család Melyik családnak marad több pénze az adósság kifizetése után? Virág család A helyes válasz esetén 2-2 pont jár. A feladat b.) részében csak a jó válaszokért adható 4 pont. A 4. feladatban hibátlan megoldás esetén 10 pont adható.
16 Név: Csapat: 5. Végezd el a műveleteket! Számolj a négyzetrácsban és írd be a felhőkbe is az eredményt! A kapott eredményeket rendezd csökkenő sorrendbe! A hozzájuk tartozó betűket helyes sorrendbe rakva egy matematikai kifejezést kapsz. Írd le a megfejtést! (7 perc) 12 pont/ Minden művelet helyes eredményéért 2 pont jár. (5x2 pont=10 pont) Csökkenő sorrend: 73311, 67441, 53620, 52671, Csak ezekkel a helyes eredményekkel fogadható el a csökkenő sorrend. Csak hibátlan sorrendért jár az 1 pont. Megfejtés: OSZTÓ Helyes megfejtésért 1 pont jár. Ha az eredmények hibásak, de a megfejtés helyes, jár az 1 pont érte. Az 5. feladatban hibátlan megoldás esetén 12 pont szerezhető.
17 Pótfeladat Név: Csapat: 6. Geometria 3 pont/ Igaz vagy hamis az állítás? Írj I betűt az igaz, H betűt a hamis állítások elé! I A négyzet minden oldala egyenlő hosszúságú. I A négyzet is téglalap. H A síkidomokat csak egyenes vonalak határolhatják. Minden helyes megoldás 1 pontot ér. Ebben a feladatban hibátlan megoldásért 3 pont ját. Összesen elérhető pontszám: 40 pont + 3 pont a pótfeladatért.
18 Eszközszükséglet XLII. Országos Komplex Tanulmányi Verseny Matematika tantárgy (egyéni) 7. évfolyam 1. feladat grafitceruza, radír 2. feladat vonalzó, grafitceruza, radír 3. feladat grafitceruza, radír 4. feladat grafitceruza, radír 5. feladat grafitceruza, radír 6. pótfeladat grafitceruza, radír
19 - Gyömrő Forrásjegyzék 7. osztály Előlap: Idézet: 1 /b feladat: 3. feladat: Balassa Lné- Csehné Sz. K. Szilas Áné: Harmadik matematika könyvem Oktatáskutató és Fejlesztő Intézet, Bp pótfeladat: osztaly/teglalap-es-negyzet-tulajdonsagai/specialis-teglalap
20 Matematika 7. osztály név:. csapat:. A feladat megnevezése Idő Elérhető pontszám Elért pontszám 1. Dolgozz az idővel! 2. Mérj pontosan! 3. Szöveges feladat 4. Számolj! 5. Végezd el a műveleteket! a.) 3 pont b.) 3 pont 5 perc Összesen: 6 pont a.) 3 pont b.) 4 pont 5 perc Összesen: 7 pont 5 perc 5 pont a.) 6 pont b.) 4 pont 8 perc Összesen: 10 pont 7 perc 12 pont Összesen: 30 perc 40 pont % Pótfeladat 3 pont % Zsűri tagok aláírása:... Gyömrő, április 4. Szafiánné Csécsei Tímea Nyitrai Miklósné gyógypedagógusok
XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
6. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,
RészletesebbenMatematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei
RészletesebbenMATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
RészletesebbenMatematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a
Részletesebben4. évfolyam A feladatsor
Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat
RészletesebbenA pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
RészletesebbenMatematika. 1. évfolyam. I. félév
Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése
RészletesebbenA fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
RészletesebbenFeladatok a MATEMATIKA. standardleírás 2. szintjéhez
Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.
RészletesebbenBevezető Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet
RészletesebbenMATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
RészletesebbenFeladatok a MATEMATIKA. standardleírás 3. szintjéhez
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Feladatok a MATEMATIKA standardleírás 3. szintjéhez 2016. Oktatáskutató és Fejlesztő
RészletesebbenFejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok a MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ standardleírás
RészletesebbenMatematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
RészletesebbenÉszpörgető matematika verseny / Eredmények/ Feladatok
Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.
RészletesebbenSzorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros
RészletesebbenPótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
RészletesebbenSzerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
RészletesebbenMATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
Részletesebben1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat!
Matematika A 10. évfolyam Témazáró dolgozat 1. negyedév 1 A CSOPORT 1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat! 8 ; 7 1 ; ; ; 1. Oldd meg a
RészletesebbenOktatási azonosító Tantárgy Elért pontszám Magyar nyelv Matematika Magyar nyelv Matematika
Oktatási azonosító Tantárgy Elért pontszám 76894971600 Magyar nyelv 28 76894971600 Matematika 18 75983808936 Magyar nyelv 22 75983808936 Matematika 17 78988181589 Magyar nyelv 32 78988181589 Matematika
RészletesebbenKövetelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
RészletesebbenBemeneti mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat
Bemeneti mérés 009/010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat Minden a javítókulcsban megadott leírás szerinti helyes válasz (a tevékenység helyes elvégzése) értéke: 1 pont, ha
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenMATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
RészletesebbenXLI. Országos Komplex Tanulmányi Verseny FÖLDRAJZ 2015/2016.
FÖLDRAJZ 2015/2016. minden földrajzi tudománynak természetszerűleg a szülőföldés honismeret a kiindulása és kezdete. Egyént és népet egyaránt saját környezete érdekel legelőször /Fodor Ferenc / A csapat
Részletesebben1 m = 10 dm 1 dm 1 dm
Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm
RészletesebbenKompetenciaalapú mérés 2008/2009. M A T E M A T I K A 9. é v f o l y a m Javítókulcs A változat
Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Kompetenciaalapú mérés 008/009. M A T E M A T I K A 9. é v f o l y a m Javítókulcs A változat Minden
Részletesebben2018. MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR. Szakképesítés: Bőrdíszműves
MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Bőripari anyagok jellemzői, szabás és előkészítő
Részletesebben1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1
TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
RészletesebbenSzerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából
Részletesebbentérképet, és válaszolj a kérdésekre római számokkal!
A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe
Részletesebben1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki
Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes
RészletesebbenFeladatok a MATEMATIKA. standardleírás 2. szintjéhez
Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Számelmélet, algebra Számfogalom kialakítása Segítséggel képes a számokat tízesek és egyesek összegére bontani
RészletesebbenSorba rendezés és válogatás
Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenA HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.
Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat
RészletesebbenHarmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
RészletesebbenTANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
RészletesebbenÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5.
ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa 2005. április 5. Számítási feladatok Valamennyi számítási feladat javítására érvényes: ha a versenyző számítási hibát vét, de
RészletesebbenA 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
Részletesebben835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
Részletesebben2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
RészletesebbenÉLETVITEL ÉS GYAKORLATI ISMERETEK
XLI. Országos Komplex Tanulmányi Verseny ÉLETVITEL ÉS GYAKORLATI ISMERETEK 2015/2016 Az emberi nemnek hivatása nem rontás, pusztítás, megsemmisítés, hanem hogy munkáljon, alkosson, teremtsen (gróf Széchenyi
RészletesebbenMATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
RészletesebbenSZINVIZSGA. II. feladat Mezőgazdasági gépész. Feladat sorozatjele: Mg II.
Magyar Agrár-, Élelmiszergazdasági és Vidékfejlesztési Kamara SZINVIZSGA SZAKMAI GYAKORLATI FELADAT az 56/2016. (VIII. 19.) FM rendelet alapján II. feladat Szakképesítés azonosító száma és megnevezése:
Részletesebben1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!
RészletesebbenBorbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Megoldókulcs. Név: Iskola:
Borbély Sándor Országos Tanulmányi Verseny Vác 201 Matematika 5. osztály Megoldókulcs Név: Iskola: 1. Pótold a hiányzó számokat! A Fővárosi Állat- és Növénykert története: 1. -ban nyílt meg. 1866 2. -ban
Részletesebben4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
RészletesebbenXLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Földrajz. Szép vagy Magyarország! április 4. Giriczné Kulcsár Anita
Földrajz Szép vagy Magyarország! A verseny ideje: Készítette: 2017. április 4. Giriczné Kulcsár Anita 1. Hazánkkal szomszédos országok (4 perc) a) Tegyétek helyes sorrendbe az összekeveredett betűket úgy,
RészletesebbenNyitott mondatok tanítása
Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam
RészletesebbenBorbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Név: Iskola:
Borbély Sándor Országos Tanulmányi Verseny Vác 201 Matematika 5. osztály Név: Iskola: 1. Pótold a hiányzó számokat! A Fővárosi Állat- és Növénykert története: 1. -ban nyílt meg. 2. -ban érkezett az első
Részletesebben91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg
Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek
RészletesebbenIV. Matematika Konferencia Műszaki Kiadó
"Tervek - Táblák - Játékok" IV. Matematika Konferencia 2013. január 23. Szerepbővülés Cirkuszi mutatvány? Cirkuszi mutatvány? Tehetségfejlesztő szakember Pedagógus a digitális korban Pedagógus a digitális
Részletesebben1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
RészletesebbenEgész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
RészletesebbenXLI. Megyei Komplex Tanulmányi Verseny FÖLDRAJZ 2015/2016.
FÖLDRAJZ 2015/2016. minden földrajzi tudománynak természetszerűleg a szülőföldés honismeret a kiindulása és kezdete. Egyént és népet egyaránt saját környezete érdekel legelőször /Fodor Ferenc / Dunaújváros,
RészletesebbenPRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
RészletesebbenSzerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es
RészletesebbenKövetelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
RészletesebbenFényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)
Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit
RészletesebbenTÖRTÉNELEM. XLI. Országos Komplex Tanulmányi Verseny. Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését.
XLI. Országos Komplex Tanulmányi Verseny TÖRTÉNELEM Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését. A csapat száma, neve: Arisztotelész Dunaújváros, 2016. június 3.-4. Törökné
RészletesebbenKedves Második Osztályos Tanuló!
Kedves Második Osztályos Tanuló! Reméljük, hogy az első osztályban megkedvelted a matematikát. Ebben a feladatgyűjteményben is sok érdekes feladattal találkozhatsz. Akad közöttük tréfás, gondolkodtató,
RészletesebbenMATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
RészletesebbenHasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet!
49. modul 1. melléklet 2. évfolyam tanítói fólia és tanuló Hasonlítsd össze! Melyik nagyobb, mennyivel? Tedd ki a jelet! 26 + 33 25 + 33 12 + 35 12 + 31 62 + 15 63 + 14 43 26 53 26 35 13 35 15 62 18 72
RészletesebbenMatematika (alsó tagozat)
Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára
RészletesebbenMATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok
RészletesebbenBor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...
RészletesebbenMegoldások IV. osztály
Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy
RészletesebbenFejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez
Oktatáskutató és Fejlesztő ntézet TÁMOP-3.1.1-11/1-2012-0001 XX. századi közoktatás (fejlesztés, koordináció). szakasz Fejlesztőfeladatok a MATEMATKA és az ANYANYELV KOMMUNKÁCÓ standardleírás szintjeihez
RészletesebbenKompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat
Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
Részletesebben;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Részletesebben2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
RészletesebbenOKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET TESZT matematikából a 2014/2015-es tanévben
RészletesebbenOrszágos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA
Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA III. (országos) forduló 2009. április 17. Kecskeméti Humán Középiskola, Szakiskola és Kollégium Széchenyi István Idegenforgalmi
RészletesebbenMIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY
FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2008/2009. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
Részletesebbenb) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?
A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat
RészletesebbenBorbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola:
Borbély Sándor Országos Tanulmányi Verseny Vác 2016 Matematika 5. osztály Javítókulcs Összesen: 100 p Név: Iskola: 1. Gábor új mobiltelefont kapott. A számát rejtvényben árulta el barátainak. Keresd meg
RészletesebbenXLI. Megyei Komplex Tanulmányi Verseny TÖRTÉNELEM Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését.
TÖRTÉNELEM Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését. Arisztotelész Dunaújváros, 2016. április 5. Törökné Nagy Zsuzsanna gyógypedagógus 1. sz. feladatlap A Római Birodalom
RészletesebbenSzerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2018/2019-es tanévben TESZT. matematikából
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
RészletesebbenEMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet
RészletesebbenÉLETVITEL ÉS GYAKORLATI ISMERETEK
XLI. Megyei Komplex Tanulmányi Verseny ÉLETVITEL ÉS GYAKORLATI ISMERETEK 2015/2016 Az emberi nemnek hivatása nem rontás, pusztítás, megsemmisítés, hanem hogy munkáljon, alkosson, teremtsen (gróf Széchenyi
RészletesebbenDÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
RészletesebbenMATEMATIKÁBÓL TESZT UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
RészletesebbenSorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag
KOMPLEX ELADATOK Válogatott témák válogatott megoldások 3.6 Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag Életkor: ogalmak, eljárások: 10 14
RészletesebbenMEGOLDÓKULCSOK. 1. feladatsor (1. osztály)
MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért
RészletesebbenFELVÉTELI FELADATOK 4. osztályosok számára B-2 feladatlap
FELVÉTELI FELADATOK 4. osztályosok számára B- feladatlap 001. február Név:.. Születési év: hó:. nap:. Kedves Felvételiző! A feladatlap megoldási ideje: 45 perc Zsebszámológépet nem használhatsz! Mivel
RészletesebbenVersenyző kódja: 4 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny.
34 542 01-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 34 542 01 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Bőripari anyagok
RészletesebbenMATEMATIKA C 12. évfolyam 4. modul Még egyszer!
MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. Az írásbeli próbavizsga időtartama: 240 perc Kérjük, nyomtatott,
RészletesebbenEVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ Test 2 Judeţul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2017 Pagina
RészletesebbenBor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
RészletesebbenSzerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából
RészletesebbenFeladatgyűjtemény matematikából
Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes
Részletesebben