Nyitott mondatok tanítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nyitott mondatok tanítása"

Átírás

1 Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam meg. Készítettem minden diákomnak egy számegyenest kemény papírból mínusz 12-tıl indulva, plusz 23-ig. Fogtam egy akkora fonaldarabot, hogy körbeérje a számegyenest, ráfőztem 2 darab gyöngyöt és a fonalat a számegyenesre körbe raktam és a hátulján megragasztottam. 9< Így olvassuk: valamennyi nagyobb 9-nél. = Mindig ki kell próbálni a valamennyi helyén a számokat és elolvasni a nyitott mondatot, utána eldönteni, hogy igaz vagy hamis az állítás. 9<10 Így olvassuk 9 kisebb 10-nél, igaz stb.. Fogjuk a számegyenest és az egyik gyöngyöt a 9-hez húzzuk. Megnézzük jobbra vagy balra vannak a 9-nél nagyobb számok és máris sorolhatjuk a jó megoldásokat. Megállapítjuk, hogy nagyon sok megoldás van, ezért a jó megoldások után teszünk 3 pontot jelezve, hogy még sok szám van,ami jó megoldás. Ha már ügyesebbek mőveletet is lehet végezni. Tudatosítsuk, hogy elsı dolgunk kiszámolni a kijelölt mőveletet csak utána mehetünk tovább < Így olvassuk: valamennyi nagyobb 12-nél. = A következı nyitott mondatnál már mindkét gyöngyöt használjuk < <8+7 Így olvassuk: valamennyi nagyobb 9-nél, kisebb15-nél. =

2 Itt az egyik gyöngyöt a 9-hez, a másik gyöngyöt a 15 höz húzzuk, jól láthatóak a megoldások, melyek a két szám között vannak. Tudatosítani kell a tanulókkal, hogy két jel esetén minden megoldást megtalálunk. A nagyobbaknál már nehezebb nyitott mondatokkal próbálkozunk. Itt jó, ha megtanítjuk a következı fontos dolgokat a nyitott mondatok megoldásához: Oldjuk meg a kijelölt mőveleteket, írjuk a nyitott mondat fölé. Keressük meg az egyenlıt./ Megtanítjuk hogyan./ Elindulunk az egyenlınél nagyobb vagy kisebb szám kipróbálásával. /Azt javaslom, hogy csak eggyel nagyobb vagy kisebb legyen mindig a szám./ <38+43 Így olvassuk: 57 meg valamennyi kisebb 81-nél. = Kiszámoljuk az egyenlıt: a meglévı két számmal dolgozunk vagy összeadjuk a két számot vagy a nagyobb számból elvesszük a kisebbet, mivel a valamennyi oldala kisebb, így kivonást végzünk /ellenkezı mőveletet, mint ami ott van/ =24 Így megkaptuk az egyenlıt, innen indulunk tovább. Kipróbálunk az egyenlınél nagyobb számot < kisebb 81-nél, hamis. Most visszamegyünk az egyenlıhöz és kisebb számokat próbálunk ki < kisebb 81-nél, igaz. Még kipróbálunk néhány számot, amíg a tanulók rájönnek arra, hogy minden 24-nél kisebb számra igaz ez a nyitott mondat. A gyengébb tanulókkal ezeket a próbálgatásokat le is íratjuk. 4

3 5

4 HELYIÉRTÉK T (tízezres) E (ezres) sz (százas) t (tízes) e (egyes) 6

5 HELYIÉRTÉKTÁBLÁZAT MÉRTÉKVÁLTÁSSAL KOMBINÁLVA Tízezres T Ezres E százas sz tízes t egyes e Tízezer Ezer van. Ide kerülnek be a számkártyák, 0-9-ig, mindegyikbıl 9 db Ide tesszük be a mértékváltáshoz való csíkokat. Használható még alaki érték és valódi érték leolvasására. 7

6 T Ö M E G tonna t kilogramm kg dekagram m dkg gramm g Ő R hektoliter hl liter l deciliter dl H O S S Z Ú S Á G kilométer km méter m deciméter dm centiméter cm milliméter mm 8

7 ÍRÁBELI MŐVELETEK ÉS ELNEVEZÉSEIK ÍRÁSBELI ÖSSZEADÁS 438 ÖSSZEADANDÓK vagy TAGOK ÖSSZEG ELLENİRZÉS KIVONÁSSAL, AZ ÖSSZEGBİL ELVESZEM AZ EGYIK TAGOT vagy ÖSSZEADANDÓT. ÍRÁSBELI KIVONÁS 912 KISEBBÍTENDİ -347 KIVONANDÓ 565 KÜLÖNBSÉG ELLENİRZÉS ÖSSZEADÁSSAL,A KÜLÖNBSÉGHEZ HOZZÁADOM A KIVONANDÓT. ÍRÁSBELI SZOZÁS SZORZANDÓ ELLENİRZÉS OSZTÁSSAL, A SZORZÓ SZORZATOT ELOSZ- 825 SZORZAT TOM A SZORZÓVAL. ÍRÁSBELI OSZTÁS OSZTANDÓ OSZTÓ ELLENİRZÉS SZORZÁS- SAL, A HÁNYADOST SZO- 871:6=245 ROZZUK AZ OSZTÓVAL HÁNYADOS 1 MARADÉK 9

8 Írásbeli szorzás név Kati ruhaanyagot vásárolt, egy méter anyag 978 Ft-ba került. Mennyit fizetett, ha 5 métert vásárolt? 5. A virágboltban hétfın 786 rózsát, kedden 3-szor annyi szegfőt adtak el. Hány szegfőt adtak el? Hány virágot adtak el két nap alatt? 10

9 ÍRÁSBELI MŐVELETEK név B: B: B: B: B: B: B: B :8= 12563:9= 15700:7= 13502:4= :18= 12563:32= 15700:48= 13502:24= Ellenırzés: + feladat A takaróm 15 cm oldalú négyzetekbıl áll. 11 négyzet széles és 25 négyzet hosszú. Mekkora a takaróm területe? ( A rajz segít a megoldásban!) 11

10 ÍRÁSBELI MŐVELETEK név 1. Számold ki a feladatot és írd fel az írásbeli összeadás elnevezéseit! Becslés, ellenırzés Számold ki a feladatot és írd fel az írásbeli kivonás elnevezéseit! Becslés, ellenırzés B: B: B: B: B: B: B: B. 5 Az iskolában 2325 tanuló van, ebbıl 1536-an elmentek iskolafogászatra. Hány tanuló marad az iskolában? 6 Old meg a nyitott mondatot! <2500 = 12

11 E. Végezd el a kijelölt mőveleteket! = 6 3 : 9 = 6 3 = 7 2 : 9 = 1 9 = 2 4 : 6 = 4 8 = 6 4 : 8 = 5 1 = 2 0 : 1 0 = 9 5 = 3 5 : 5 = = 7 : 7 = 7 6 = 4 : 4 = 2 6 = 3 2 : 8 = 8 9 = 5 0 : 5 = 8 7 = 2 0 : 4 = 7 8 = : 1 0 = 2 3 = 8 0 : 1 0 = 3 2 = 9 : 1 = 7 6 = 3 0 : 6 = 4 1 = 8 : 2 = 9 5 = 7 0 : 1 0 = 9 3 = 3 : 1 = = 2 8 : 4 = 5 7 = 1 6 : 8 = = 4 5 : 9 = 8 7 = 4 : 2 = 3 8 = 6 : 3 = 4 6 = 2 4 : 3 = 2 9 = 1 0 : 1 = 1 9 = 6 0 : 6 = 2 5 = 6 0 : 1 0 = 3 8 = 4 9 : 7 = 9 8 = 5 : 5 = 2 2 = 1 8 : 9 = 6 9 = 2 8 : 7 = 6 8 = 1 8 : 6 = = 6 : 1 = 7 1 = 1 6 : 2 = 8 8 = 2 : 2 = 6 3 = 2 1 : 7 = 3 9 = 4 0 : 5 = 5 4 = 4 5 : 5 = 7 8 = 2 7 : 3 = 3 6 = 1 4 : 7 = 6 5 = 1 : 1 = 4 7 = 4 8 : 6 = 9 6 = 3 6 : 4 = = 2 1 : 3 = 2 2 = 8 0 : 8 = 9 6 = 3 6 : 6 = = 2 0 : 2 = 8 8 = 8 1 : 9 = = 8 : 4 = 9 7 = 1 2 : 3 = 13

12 F. Végezd el a kijelölt mőveleteket! 3 3 = 8 0 : 1 0 = = 5 6 : 8 = 1 8 = 6 4 : 8 = = 7 : 1 = 8 8 = 2 : 1 = = 4 2 : 7 = 4 9 = 3 0 : 5 = = 2 1 : 7 = 7 9 = 4 5 : 9 = = 3 5 : 7 = 3 4 = 5 : 5 = 4 7 = 1 0 : 2 = 7 2 = 5 : 1 = = 6 : 1 = 1 5 = 5 4 : 9 = = 4 5 : 5 = 9 1 = 4 0 : 1 0 = 9 8 = 2 0 : 1 0 = 1 2 = 1 0 : 5 = 6 7 = 1 4 : 2 = 7 4 = 2 0 : 5 = = 9 : 9 = 4 5 = 3 0 : 1 0 = 6 5 = 4 0 : 5 = 4 3 = 3 2 : 4 = 8 6 = 1 4 : 7 = 2 7 = 3 6 : 9 = 1 1 = 2 : 2 = 9 2 = 1 6 : 8 = 4 4 = 2 7 : 9 = 3 7 = 5 0 : 5 = 1 6 = 3 6 : 6 = 4 1 = 8 1 : 9 = 8 4 = 8 : 8 = = 9 0 : 1 0 = 2 2 = 6 0 : 6 = 5 4 = 6 : 6 = 8 5 = 1 6 : 2 = 9 7 = 1 5 : 3 = = 2 4 : 4 = 2 1 = 7 0 : 1 0 = 8 2 = 1 8 : 6 = 4 2 = 3 0 : 3 = 7 5 = 4 2 : 6 = 3 6 = 6 3 : 9 = = 2 4 : 3 = 7 8 = 5 0 : 1 0 = 2 5 = 4 8 : 6 = 9 9 = 7 2 : 8 = = 9 0 : 9 = 14

13 G. Végezd el a kijelölt mőveleteket! 8 1 = 1 8 : 9 = 1 7 = 6 4 : 8 = 2 9 = 1 0 : 5 = 8 8 = 4 5 : 5 = 3 8 = 5 0 : 5 = 7 6 = 3 2 : 4 = 4 7 = 4 9 : 7 = 4 5 = 2 4 : 8 = 9 6 = 9 0 : 1 0 = = 2 0 : 4 = = 8 0 : 8 = 9 2 = 9 : 3 = 7 7 = 8 : 2 = 3 5 = 2 0 : 5 = 6 3 = 5 : 1 = 4 3 = 8 : 1 = 6 4 = 4 0 : 1 0 = 6 5 = 1 4 : 7 = 3 9 = 3 0 : 3 = = 9 0 : 9 = = 9 : 9 = 9 8 = 2 4 : 6 = 7 8 = 1 6 : 4 = 1 2 = 1 2 : 3 = = 3 : 3 = 6 6 = 6 : 3 = 5 6 = 6 3 : 7 = 5 8 = 5 6 : 7 = 2 4 = 4 0 : 4 = 9 5 = 8 : 4 = = 4 0 : 8 = 1 3 = 1 2 : 6 = 6 8 = 2 1 : 7 = 1 4 = 3 0 : 1 0 = 7 2 = 1 : 1 = 8 3 = 1 2 : 4 = 8 7 = 6 : 6 = 2 5 = 3 6 : 6 = 5 5 = 1 5 : 3 = 8 5 = 6 0 : 6 = 2 3 = 2 : 2 = = 3 : 1 = = 2 4 : 4 = 2 6 = 9 : 1 = = 1 0 : 1 0 = = 1 0 : 1 = 1 5 = 2 : 1 = 9 4 = 4 2 : 7 = = 1 5 : 5 = 1 9 = 5 4 : 9 = 15

14 H. Végezd el a kijelölt mőveleteket! 8 4 = 1 8 : 2 = 1 3 = 1 : 1 = 8 3 = 4 8 : 6 = = 8 : 1 = 2 3 = 9 : 1 = 3 4 = 4 5 : 9 = 4 1 = 3 6 : 9 = 4 7 = 6 : 2 = 9 4 = 5 4 : 9 = = 4 : 1 = 1 1 = 4 5 : 5 = = 1 2 : 2 = 9 2 = 4 0 : 1 0 = 3 8 = 1 2 : 4 = = 4 8 : 8 = 7 4 = 2 8 : 4 = 9 8 = 1 0 : 2 = 7 8 = 4 : 2 = 4 8 = 3 2 : 4 = 7 3 = 4 9 : 7 = 7 2 = 3 0 : 6 = 3 2 = 1 6 : 2 = 4 5 = 2 7 : 3 = 2 5 = 4 0 : 8 = 9 3 = 7 0 : 7 = 9 9 = 3 5 : 5 = 3 1 = 8 : 8 = 2 2 = 2 : 1 = = 9 : 9 = 3 9 = 2 5 : 5 = 9 1 = 6 3 : 7 = 7 9 = 1 0 : 1 = 6 4 = 4 2 : 6 = 8 6 = 6 : 3 = 3 3 = 1 6 : 4 = = 5 0 : 1 0 = 8 5 = : 1 0 = = 2 4 : 4 = = 4 0 : 4 = 6 2 = 3 0 : 3 = 2 9 = 8 0 : 8 = 2 4 = 9 0 : 9 = = 9 : 3 = 8 7 = 2 1 : 3 = 4 3 = 2 4 : 6 = 1 2 = 7 0 : 1 0 = 2 1 = 8 : 4 = 1 5 = 8 : 2 = 5 1 = 8 1 : 9 = = 1 2 : 3 = 16

15 TUDÁSPRÓBA 1. Számold ki a négyzet kerületét és területét! Gondolj a mértékváltásra is! A négyzet oldala 39cm. 2. Számold ki a téglalap kerületét és területét! Gondolj a mértékváltásra is! A téglalap hosszúsága 47dm, szélessége 28dm. 3. Egy négyzet alakú kertet 72m dróttal bekerítettünk, be akarjuk vetni lucernával. Mekkora a területe? 4. Egy téglalap kerülete 96cm. Hosszúsága 39cm. Mekkora a területe? 17

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

JAVÍTÓKULCSOK I. Számfogalom

JAVÍTÓKULCSOK I. Számfogalom JAVÍTÓKULCSOK I. Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h)

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

JAVÍTÓKULCSOK Számfogalom

JAVÍTÓKULCSOK Számfogalom JAVÍTÓKULCSOK Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz

Részletesebben

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám? A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7

Részletesebben

A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés.

A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés. 20. modul 1. melléklet 4. évfolyam csoport A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés. 20. modul 2. melléklet 4. évfolyam

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?

X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2

6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2 T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A tájékozódó felmérő feladatsorok értékelése A tájékozódó felmérések segítségével a tanulók

Részletesebben

Számtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA

Számtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA Számtani alapok TÉMAKÖR TARTALMA - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag ALAPMŐVELETEK A matematikai alapmőveletek az összeadás

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat. Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

Előadó: Horváth Judit

Előadó: Horváth Judit Előadó: Horváth Judit Az új NAT fejlesztésterületeihez kapcsolódó eredménycélok Alapműveletek - Helyesen értelmezi a 10 000-es számkörben az összeadást, a kivonást, a szorzást, a bennfoglaló és az egyenlő

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

MATEMATIKA. 1. osztály

MATEMATIKA. 1. osztály MATEMATIKA 1. osztály Gondolkodás tudjon egyszerű tárgyakat, elemeket sorba rendezni, összehasonlítani, szétválogatni legyen képes a halmazok számosságának megállapítására (20-as számkörben) használja

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két szám összege 20. Az egyik összeadandó 18. Írjátok le a másik összeadandót! 2. Gyuri este leírta az összes számot 1-től 25-ig. Reggel a számokat össze-vissza leírva találta, volt olyan

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a

Részletesebben

4. évfolyam. 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika

4. évfolyam. 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika 4. évfolyam Ismeretek 1.1 Halmazok Számok, geometriai alakzatok összehasonlítása 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika A nagyságbeli viszonyszavak a tanult geometriai alakzatok

Részletesebben

Bevezető. Kedves Negyedik Osztályos Tanuló!

Bevezető. Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.

Részletesebben

Számokkal kapcsolatos feladatok.

Számokkal kapcsolatos feladatok. Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17

Részletesebben

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á

Részletesebben

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő

Részletesebben

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú

Részletesebben

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE . Az alábbi ábrákon a beszínezett rész -et ér. Mennyit ér a rajz be nem színezett része? Mennyit ér a teljes rajz? a) b) c) d) e) f). Állítsd növekvő sorrendbe

Részletesebben

1. osztály. Gondolkodási módszerek alapozása A tanuló:

1. osztály. Gondolkodási módszerek alapozása A tanuló: Gondolkodási módszerek alapozása 1. osztály tudjon számokat, elemeket sorba rendezni, összehasonlítani, szétválogatni legyen képes a halmazok számosságának megállapítására, használja helyesen a több, kevesebb,

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat

Részletesebben

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei

Részletesebben

Vizsgakövetelmények matematikából a 2. évfolyam végén

Vizsgakövetelmények matematikából a 2. évfolyam végén Vizsgakövetelmények matematikából az 1. évfolyam végén - - Ismert halmaz elemeinek adott szempont szerinti összehasonlítására, szétválogatására. Az elemek közös tulajdonságainak felismerésére, megnevezésére.

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti Tankönyvkiadó) Tananyagbeosztás: Éves óraszám: 148 óra Heti óraszám:

Részletesebben

térképet, és válaszolj a kérdésekre római számokkal!

térképet, és válaszolj a kérdésekre római számokkal! A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe

Részletesebben

MATEMATIKA VERSENY ABASÁR, 2018

MATEMATIKA VERSENY ABASÁR, 2018 MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

2. Melyik kifejezés értéke a legnagyobb távolság?

2. Melyik kifejezés értéke a legnagyobb távolság? 1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK 1. a) I; b) H; c) I; d) I; e) I.. a) I; b) I; c) H; d) I; e) H. Természetes számok. 5555 < 7788< 7878< 7887< 8787< 8877< 8888. 4.

Részletesebben

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft.

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft. Csehné Hossó Aranka Matematika pontozófüzet 1 8. osztályig az eltérő tantervű tanulók számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2005 Összeállította: Csehné Hossó Aranka EAN 599

Részletesebben

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia fejlesztése Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia Készségek Gondolkodási képességek Kommunikációs képességek Tudásszerző képességek Tanulási képességek

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

1 m = 10 dm 1 dm 1 dm

1 m = 10 dm 1 dm 1 dm Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra TANMENETJAVASLAT Bevezető A harmadik osztály tananyagát a kerettantervhez igazodva heti négy matematikaórára dolgoztuk ki. A tanmenetjavaslat 3. osztályban 120 tervezett órát tartalmaz. A fennmaradó időben

Részletesebben

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal: Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold

Részletesebben

ALAPOZÓ/MEGÚJÍTÓ FEJLESZTÉS

ALAPOZÓ/MEGÚJÍTÓ FEJLESZTÉS KULCSKOMPETENCIÁK FEJLESZTÉSE KÉPZÉSI PROGRAM ALAPOZÓ/MEGÚJÍTÓ FEJLESZTÉS (Újra olvasok, írok, számolok!) Számolás MODULFÜZET Türr István Képző és Kutató Intézet Budapest Fejlesztő Damó Eszter Szakmai

Részletesebben

Fejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez

Fejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok a MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ standardleírás

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

A 5-ös szorzó- és bennfoglalótábla

A 5-ös szorzó- és bennfoglalótábla A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Mérések szabványos egységekkel

Mérések szabványos egységekkel MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 40. évfolyam, 2018/2019-es tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 40. évfolyam, 2018/2019-es tanév KATEGÓRIA P3 KATEGÓRIA P3 1. A 38 és a 22 összegét kisebbítsétek 10-zel. Írjátok le a kisebbítés után kapott számot! 2. A 24 -ba kerülő könyv 8 -val lett olcsóbb. A 26 -ba kerülő leporelló 9 -val lett olcsóbb. Írjátok

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 39. évfolyam, 2017/2018-as tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 39. évfolyam, 2017/2018-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le azt a betűt, amelyik az összeadás eredményét jelöli: 2 + 4 + 6 + 8 + 10 + 11 + 3 + 5 + 7 + 9 = A: 43 B: 45 C: 50 D: 65 2. Írjátok le azt a számot, amelyet az X helyére kell írni,

Részletesebben

33. modul 1. melléklet 3. évfolyam Mérőlap/1. Név:. 1. Becsüld meg az összegeket! A tagok százasokra kerekített értékeivel végezd a becslést! Majd végezd is el az összeadásokat. Számításaidat kivonással

Részletesebben

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3 KATEGÓRIA P3. Tudjuk, hogy az L betű az 5-ös számot rejti, az E betű a 2-es számot, az S betű pedig a 20-as számot. Írjátok le azt a betűt, amely az L+E+S által elrejtett számot jelöli: A: 25 B: 32 C:

Részletesebben

Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb!

Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! Írásbeli összeadás Háromjegyű számok összeadása 1. Végezd el az összeadásokat! 254 + 200 = 162 + 310 = 235 + 240 = 351 + 124 = 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! 213 Ft 164 Ft 222 Ft

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Matematika 5. osztály Osztályozó vizsga

Matematika 5. osztály Osztályozó vizsga Matematika 5. osztály Osztályozó vizsga A TERMÉSZETES SZÁMOK A tízes számrendszer A természetes számok írása, olvasása 1 000 000-ig. Helyi-értékes írásmód a tízes számrendszerben, a helyiérték-táblázat

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM

OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM MATEMATIKA - számfogalom húszas számkörben - nyitott mondatok, hiányos műveletek, relációk - egyszerű szöveges feladatok - összeadás, kivonás, bontás, pótlás

Részletesebben

MATEMATIKA I. E Z R E S E K T Í Z E Z R E S E K T Í Z E S E K S Z Á Z A S O K

MATEMATIKA I. E Z R E S E K T Í Z E Z R E S E K T Í Z E S E K S Z Á Z A S O K - -. A tízes számrendszerben használt számjegyek: A tízes számrendszerben a következő számjegyeket használjuk: 0,,,, 4,, 6, 7, 8, 9. Ezzel a tíz számjeggyel a tízes számrendszerben bármilyen nagy szám

Részletesebben

Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ

Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA

Részletesebben

ü ú ú ü ú ú ú ú

ü ú ú ü ú ú ú ú ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á

Részletesebben

Észpörgető matematika verseny / Eredmények/ Feladatok

Észpörgető matematika verseny / Eredmények/ Feladatok Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben