Nyitott mondatok tanítása
|
|
- Artúr Takács
- 7 évvel ezelőtt
- Látták:
Átírás
1 Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam meg. Készítettem minden diákomnak egy számegyenest kemény papírból mínusz 12-tıl indulva, plusz 23-ig. Fogtam egy akkora fonaldarabot, hogy körbeérje a számegyenest, ráfőztem 2 darab gyöngyöt és a fonalat a számegyenesre körbe raktam és a hátulján megragasztottam. 9< Így olvassuk: valamennyi nagyobb 9-nél. = Mindig ki kell próbálni a valamennyi helyén a számokat és elolvasni a nyitott mondatot, utána eldönteni, hogy igaz vagy hamis az állítás. 9<10 Így olvassuk 9 kisebb 10-nél, igaz stb.. Fogjuk a számegyenest és az egyik gyöngyöt a 9-hez húzzuk. Megnézzük jobbra vagy balra vannak a 9-nél nagyobb számok és máris sorolhatjuk a jó megoldásokat. Megállapítjuk, hogy nagyon sok megoldás van, ezért a jó megoldások után teszünk 3 pontot jelezve, hogy még sok szám van,ami jó megoldás. Ha már ügyesebbek mőveletet is lehet végezni. Tudatosítsuk, hogy elsı dolgunk kiszámolni a kijelölt mőveletet csak utána mehetünk tovább < Így olvassuk: valamennyi nagyobb 12-nél. = A következı nyitott mondatnál már mindkét gyöngyöt használjuk < <8+7 Így olvassuk: valamennyi nagyobb 9-nél, kisebb15-nél. =
2 Itt az egyik gyöngyöt a 9-hez, a másik gyöngyöt a 15 höz húzzuk, jól láthatóak a megoldások, melyek a két szám között vannak. Tudatosítani kell a tanulókkal, hogy két jel esetén minden megoldást megtalálunk. A nagyobbaknál már nehezebb nyitott mondatokkal próbálkozunk. Itt jó, ha megtanítjuk a következı fontos dolgokat a nyitott mondatok megoldásához: Oldjuk meg a kijelölt mőveleteket, írjuk a nyitott mondat fölé. Keressük meg az egyenlıt./ Megtanítjuk hogyan./ Elindulunk az egyenlınél nagyobb vagy kisebb szám kipróbálásával. /Azt javaslom, hogy csak eggyel nagyobb vagy kisebb legyen mindig a szám./ <38+43 Így olvassuk: 57 meg valamennyi kisebb 81-nél. = Kiszámoljuk az egyenlıt: a meglévı két számmal dolgozunk vagy összeadjuk a két számot vagy a nagyobb számból elvesszük a kisebbet, mivel a valamennyi oldala kisebb, így kivonást végzünk /ellenkezı mőveletet, mint ami ott van/ =24 Így megkaptuk az egyenlıt, innen indulunk tovább. Kipróbálunk az egyenlınél nagyobb számot < kisebb 81-nél, hamis. Most visszamegyünk az egyenlıhöz és kisebb számokat próbálunk ki < kisebb 81-nél, igaz. Még kipróbálunk néhány számot, amíg a tanulók rájönnek arra, hogy minden 24-nél kisebb számra igaz ez a nyitott mondat. A gyengébb tanulókkal ezeket a próbálgatásokat le is íratjuk. 4
3 5
4 HELYIÉRTÉK T (tízezres) E (ezres) sz (százas) t (tízes) e (egyes) 6
5 HELYIÉRTÉKTÁBLÁZAT MÉRTÉKVÁLTÁSSAL KOMBINÁLVA Tízezres T Ezres E százas sz tízes t egyes e Tízezer Ezer van. Ide kerülnek be a számkártyák, 0-9-ig, mindegyikbıl 9 db Ide tesszük be a mértékváltáshoz való csíkokat. Használható még alaki érték és valódi érték leolvasására. 7
6 T Ö M E G tonna t kilogramm kg dekagram m dkg gramm g Ő R hektoliter hl liter l deciliter dl H O S S Z Ú S Á G kilométer km méter m deciméter dm centiméter cm milliméter mm 8
7 ÍRÁBELI MŐVELETEK ÉS ELNEVEZÉSEIK ÍRÁSBELI ÖSSZEADÁS 438 ÖSSZEADANDÓK vagy TAGOK ÖSSZEG ELLENİRZÉS KIVONÁSSAL, AZ ÖSSZEGBİL ELVESZEM AZ EGYIK TAGOT vagy ÖSSZEADANDÓT. ÍRÁSBELI KIVONÁS 912 KISEBBÍTENDİ -347 KIVONANDÓ 565 KÜLÖNBSÉG ELLENİRZÉS ÖSSZEADÁSSAL,A KÜLÖNBSÉGHEZ HOZZÁADOM A KIVONANDÓT. ÍRÁSBELI SZOZÁS SZORZANDÓ ELLENİRZÉS OSZTÁSSAL, A SZORZÓ SZORZATOT ELOSZ- 825 SZORZAT TOM A SZORZÓVAL. ÍRÁSBELI OSZTÁS OSZTANDÓ OSZTÓ ELLENİRZÉS SZORZÁS- SAL, A HÁNYADOST SZO- 871:6=245 ROZZUK AZ OSZTÓVAL HÁNYADOS 1 MARADÉK 9
8 Írásbeli szorzás név Kati ruhaanyagot vásárolt, egy méter anyag 978 Ft-ba került. Mennyit fizetett, ha 5 métert vásárolt? 5. A virágboltban hétfın 786 rózsát, kedden 3-szor annyi szegfőt adtak el. Hány szegfőt adtak el? Hány virágot adtak el két nap alatt? 10
9 ÍRÁSBELI MŐVELETEK név B: B: B: B: B: B: B: B :8= 12563:9= 15700:7= 13502:4= :18= 12563:32= 15700:48= 13502:24= Ellenırzés: + feladat A takaróm 15 cm oldalú négyzetekbıl áll. 11 négyzet széles és 25 négyzet hosszú. Mekkora a takaróm területe? ( A rajz segít a megoldásban!) 11
10 ÍRÁSBELI MŐVELETEK név 1. Számold ki a feladatot és írd fel az írásbeli összeadás elnevezéseit! Becslés, ellenırzés Számold ki a feladatot és írd fel az írásbeli kivonás elnevezéseit! Becslés, ellenırzés B: B: B: B: B: B: B: B. 5 Az iskolában 2325 tanuló van, ebbıl 1536-an elmentek iskolafogászatra. Hány tanuló marad az iskolában? 6 Old meg a nyitott mondatot! <2500 = 12
11 E. Végezd el a kijelölt mőveleteket! = 6 3 : 9 = 6 3 = 7 2 : 9 = 1 9 = 2 4 : 6 = 4 8 = 6 4 : 8 = 5 1 = 2 0 : 1 0 = 9 5 = 3 5 : 5 = = 7 : 7 = 7 6 = 4 : 4 = 2 6 = 3 2 : 8 = 8 9 = 5 0 : 5 = 8 7 = 2 0 : 4 = 7 8 = : 1 0 = 2 3 = 8 0 : 1 0 = 3 2 = 9 : 1 = 7 6 = 3 0 : 6 = 4 1 = 8 : 2 = 9 5 = 7 0 : 1 0 = 9 3 = 3 : 1 = = 2 8 : 4 = 5 7 = 1 6 : 8 = = 4 5 : 9 = 8 7 = 4 : 2 = 3 8 = 6 : 3 = 4 6 = 2 4 : 3 = 2 9 = 1 0 : 1 = 1 9 = 6 0 : 6 = 2 5 = 6 0 : 1 0 = 3 8 = 4 9 : 7 = 9 8 = 5 : 5 = 2 2 = 1 8 : 9 = 6 9 = 2 8 : 7 = 6 8 = 1 8 : 6 = = 6 : 1 = 7 1 = 1 6 : 2 = 8 8 = 2 : 2 = 6 3 = 2 1 : 7 = 3 9 = 4 0 : 5 = 5 4 = 4 5 : 5 = 7 8 = 2 7 : 3 = 3 6 = 1 4 : 7 = 6 5 = 1 : 1 = 4 7 = 4 8 : 6 = 9 6 = 3 6 : 4 = = 2 1 : 3 = 2 2 = 8 0 : 8 = 9 6 = 3 6 : 6 = = 2 0 : 2 = 8 8 = 8 1 : 9 = = 8 : 4 = 9 7 = 1 2 : 3 = 13
12 F. Végezd el a kijelölt mőveleteket! 3 3 = 8 0 : 1 0 = = 5 6 : 8 = 1 8 = 6 4 : 8 = = 7 : 1 = 8 8 = 2 : 1 = = 4 2 : 7 = 4 9 = 3 0 : 5 = = 2 1 : 7 = 7 9 = 4 5 : 9 = = 3 5 : 7 = 3 4 = 5 : 5 = 4 7 = 1 0 : 2 = 7 2 = 5 : 1 = = 6 : 1 = 1 5 = 5 4 : 9 = = 4 5 : 5 = 9 1 = 4 0 : 1 0 = 9 8 = 2 0 : 1 0 = 1 2 = 1 0 : 5 = 6 7 = 1 4 : 2 = 7 4 = 2 0 : 5 = = 9 : 9 = 4 5 = 3 0 : 1 0 = 6 5 = 4 0 : 5 = 4 3 = 3 2 : 4 = 8 6 = 1 4 : 7 = 2 7 = 3 6 : 9 = 1 1 = 2 : 2 = 9 2 = 1 6 : 8 = 4 4 = 2 7 : 9 = 3 7 = 5 0 : 5 = 1 6 = 3 6 : 6 = 4 1 = 8 1 : 9 = 8 4 = 8 : 8 = = 9 0 : 1 0 = 2 2 = 6 0 : 6 = 5 4 = 6 : 6 = 8 5 = 1 6 : 2 = 9 7 = 1 5 : 3 = = 2 4 : 4 = 2 1 = 7 0 : 1 0 = 8 2 = 1 8 : 6 = 4 2 = 3 0 : 3 = 7 5 = 4 2 : 6 = 3 6 = 6 3 : 9 = = 2 4 : 3 = 7 8 = 5 0 : 1 0 = 2 5 = 4 8 : 6 = 9 9 = 7 2 : 8 = = 9 0 : 9 = 14
13 G. Végezd el a kijelölt mőveleteket! 8 1 = 1 8 : 9 = 1 7 = 6 4 : 8 = 2 9 = 1 0 : 5 = 8 8 = 4 5 : 5 = 3 8 = 5 0 : 5 = 7 6 = 3 2 : 4 = 4 7 = 4 9 : 7 = 4 5 = 2 4 : 8 = 9 6 = 9 0 : 1 0 = = 2 0 : 4 = = 8 0 : 8 = 9 2 = 9 : 3 = 7 7 = 8 : 2 = 3 5 = 2 0 : 5 = 6 3 = 5 : 1 = 4 3 = 8 : 1 = 6 4 = 4 0 : 1 0 = 6 5 = 1 4 : 7 = 3 9 = 3 0 : 3 = = 9 0 : 9 = = 9 : 9 = 9 8 = 2 4 : 6 = 7 8 = 1 6 : 4 = 1 2 = 1 2 : 3 = = 3 : 3 = 6 6 = 6 : 3 = 5 6 = 6 3 : 7 = 5 8 = 5 6 : 7 = 2 4 = 4 0 : 4 = 9 5 = 8 : 4 = = 4 0 : 8 = 1 3 = 1 2 : 6 = 6 8 = 2 1 : 7 = 1 4 = 3 0 : 1 0 = 7 2 = 1 : 1 = 8 3 = 1 2 : 4 = 8 7 = 6 : 6 = 2 5 = 3 6 : 6 = 5 5 = 1 5 : 3 = 8 5 = 6 0 : 6 = 2 3 = 2 : 2 = = 3 : 1 = = 2 4 : 4 = 2 6 = 9 : 1 = = 1 0 : 1 0 = = 1 0 : 1 = 1 5 = 2 : 1 = 9 4 = 4 2 : 7 = = 1 5 : 5 = 1 9 = 5 4 : 9 = 15
14 H. Végezd el a kijelölt mőveleteket! 8 4 = 1 8 : 2 = 1 3 = 1 : 1 = 8 3 = 4 8 : 6 = = 8 : 1 = 2 3 = 9 : 1 = 3 4 = 4 5 : 9 = 4 1 = 3 6 : 9 = 4 7 = 6 : 2 = 9 4 = 5 4 : 9 = = 4 : 1 = 1 1 = 4 5 : 5 = = 1 2 : 2 = 9 2 = 4 0 : 1 0 = 3 8 = 1 2 : 4 = = 4 8 : 8 = 7 4 = 2 8 : 4 = 9 8 = 1 0 : 2 = 7 8 = 4 : 2 = 4 8 = 3 2 : 4 = 7 3 = 4 9 : 7 = 7 2 = 3 0 : 6 = 3 2 = 1 6 : 2 = 4 5 = 2 7 : 3 = 2 5 = 4 0 : 8 = 9 3 = 7 0 : 7 = 9 9 = 3 5 : 5 = 3 1 = 8 : 8 = 2 2 = 2 : 1 = = 9 : 9 = 3 9 = 2 5 : 5 = 9 1 = 6 3 : 7 = 7 9 = 1 0 : 1 = 6 4 = 4 2 : 6 = 8 6 = 6 : 3 = 3 3 = 1 6 : 4 = = 5 0 : 1 0 = 8 5 = : 1 0 = = 2 4 : 4 = = 4 0 : 4 = 6 2 = 3 0 : 3 = 2 9 = 8 0 : 8 = 2 4 = 9 0 : 9 = = 9 : 3 = 8 7 = 2 1 : 3 = 4 3 = 2 4 : 6 = 1 2 = 7 0 : 1 0 = 2 1 = 8 : 4 = 1 5 = 8 : 2 = 5 1 = 8 1 : 9 = = 1 2 : 3 = 16
15 TUDÁSPRÓBA 1. Számold ki a négyzet kerületét és területét! Gondolj a mértékváltásra is! A négyzet oldala 39cm. 2. Számold ki a téglalap kerületét és területét! Gondolj a mértékváltásra is! A téglalap hosszúsága 47dm, szélessége 28dm. 3. Egy négyzet alakú kertet 72m dróttal bekerítettünk, be akarjuk vetni lucernával. Mekkora a területe? 4. Egy téglalap kerülete 96cm. Hosszúsága 39cm. Mekkora a területe? 17
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!
RészletesebbenPótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
RészletesebbenSzorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros
Részletesebben4. évfolyam A feladatsor
Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat
RészletesebbenPYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =
RészletesebbenJAVÍTÓKULCSOK I. Számfogalom
JAVÍTÓKULCSOK I. Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h)
Részletesebben1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
RészletesebbenMatematika (alsó tagozat)
Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára
RészletesebbenA fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
RészletesebbenJAVÍTÓKULCSOK Számfogalom
JAVÍTÓKULCSOK Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz
Részletesebben91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg
Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek
RészletesebbenMatematika. 1. évfolyam. I. félév
Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése
RészletesebbenMatematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
Részletesebbenb) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?
A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat
RészletesebbenTanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.
Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt
RészletesebbenEgész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
RészletesebbenMEGOLDÓKULCSOK. 1. feladatsor (1. osztály)
MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért
RészletesebbenCurie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
RészletesebbenA mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés.
20. modul 1. melléklet 4. évfolyam csoport A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés. 20. modul 2. melléklet 4. évfolyam
RészletesebbenTANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
RészletesebbenMATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
RészletesebbenX. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?
1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles
Részletesebben;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
RészletesebbenMatematika, 1 2. évfolyam
Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és
Részletesebben6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2
T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A tájékozódó felmérő feladatsorok értékelése A tájékozódó felmérések segítségével a tanulók
RészletesebbenSzámtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA
Számtani alapok TÉMAKÖR TARTALMA - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag ALAPMŐVELETEK A matematikai alapmőveletek az összeadás
RészletesebbenCOMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.
RészletesebbenComenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.
Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű
RészletesebbenÍrásbeli szorzás. a) b) c)
Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2
RészletesebbenSzámrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.
Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10
RészletesebbenA pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
RészletesebbenElőadó: Horváth Judit
Előadó: Horváth Judit Az új NAT fejlesztésterületeihez kapcsolódó eredménycélok Alapműveletek - Helyesen értelmezi a 10 000-es számkörben az összeadást, a kivonást, a szorzást, a bennfoglaló és az egyenlő
RészletesebbenGál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez
Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9
Részletesebben4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
Részletesebben1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki
Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes
RészletesebbenMATEMATIKA. 1. osztály
MATEMATIKA 1. osztály Gondolkodás tudjon egyszerű tárgyakat, elemeket sorba rendezni, összehasonlítani, szétválogatni legyen képes a halmazok számosságának megállapítására (20-as számkörben) használja
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Két szám összege 20. Az egyik összeadandó 18. Írjátok le a másik összeadandót! 2. Gyuri este leírta az összes számot 1-től 25-ig. Reggel a számokat össze-vissza leírva találta, volt olyan
RészletesebbenMatematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a
Részletesebben4. évfolyam. 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika
4. évfolyam Ismeretek 1.1 Halmazok Számok, geometriai alakzatok összehasonlítása 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika A nagyságbeli viszonyszavak a tanult geometriai alakzatok
RészletesebbenBevezető. Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.
RészletesebbenSzámokkal kapcsolatos feladatok.
Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17
RészletesebbenÖ Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű
Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á
Részletesebbenő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö
Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő
RészletesebbenÖ ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú
ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú
RészletesebbenTÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE
TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE . Az alábbi ábrákon a beszínezett rész -et ér. Mennyit ér a rajz be nem színezett része? Mennyit ér a teljes rajz? a) b) c) d) e) f). Állítsd növekvő sorrendbe
Részletesebben1. osztály. Gondolkodási módszerek alapozása A tanuló:
Gondolkodási módszerek alapozása 1. osztály tudjon számokat, elemeket sorba rendezni, összehasonlítani, szétválogatni legyen képes a halmazok számosságának megállapítására, használja helyesen a több, kevesebb,
Részletesebben3. OSZTÁLY A TANANYAG ELRENDEZÉSE
Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek
RészletesebbenA HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.
Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat
RészletesebbenMatematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei
RészletesebbenVizsgakövetelmények matematikából a 2. évfolyam végén
Vizsgakövetelmények matematikából az 1. évfolyam végén - - Ismert halmaz elemeinek adott szempont szerinti összehasonlítására, szétválogatására. Az elemek közös tulajdonságainak felismerésére, megnevezésére.
RészletesebbenMatematika tanmenet/4. osztály
2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti Tankönyvkiadó) Tananyagbeosztás: Éves óraszám: 148 óra Heti óraszám:
Részletesebbentérképet, és válaszolj a kérdésekre római számokkal!
A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe
RészletesebbenMATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
RészletesebbenKövetelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Részletesebben2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
RészletesebbenKOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK
KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK 1. a) I; b) H; c) I; d) I; e) I.. a) I; b) I; c) H; d) I; e) H. Természetes számok. 5555 < 7788< 7878< 7887< 8787< 8877< 8888. 4.
RészletesebbenCsehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft.
Csehné Hossó Aranka Matematika pontozófüzet 1 8. osztályig az eltérő tantervű tanulók számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2005 Összeállította: Csehné Hossó Aranka EAN 599
RészletesebbenMatematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya
Matematikai kompetencia fejlesztése Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia Készségek Gondolkodási képességek Kommunikációs képességek Tudásszerző képességek Tanulási képességek
RészletesebbenMATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
RészletesebbenXLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,
Részletesebben1 m = 10 dm 1 dm 1 dm
Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm
RészletesebbenMűveletek egész számokkal
Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.
Részletesebben1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra
TANMENETJAVASLAT Bevezető A harmadik osztály tananyagát a kerettantervhez igazodva heti négy matematikaórára dolgoztuk ki. A tanmenetjavaslat 3. osztályban 120 tervezett órát tartalmaz. A fennmaradó időben
RészletesebbenGyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
RészletesebbenALAPOZÓ/MEGÚJÍTÓ FEJLESZTÉS
KULCSKOMPETENCIÁK FEJLESZTÉSE KÉPZÉSI PROGRAM ALAPOZÓ/MEGÚJÍTÓ FEJLESZTÉS (Újra olvasok, írok, számolok!) Számolás MODULFÜZET Türr István Képző és Kutató Intézet Budapest Fejlesztő Damó Eszter Szakmai
RészletesebbenFejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok a MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ standardleírás
RészletesebbenTANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő
2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.
RészletesebbenA 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenPISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
RészletesebbenMérések szabványos egységekkel
MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 40. évfolyam, 2018/2019-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A 38 és a 22 összegét kisebbítsétek 10-zel. Írjátok le a kisebbítés után kapott számot! 2. A 24 -ba kerülő könyv 8 -val lett olcsóbb. A 26 -ba kerülő leporelló 9 -val lett olcsóbb. Írjátok
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 39. évfolyam, 2017/2018-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le azt a betűt, amelyik az összeadás eredményét jelöli: 2 + 4 + 6 + 8 + 10 + 11 + 3 + 5 + 7 + 9 = A: 43 B: 45 C: 50 D: 65 2. Írjátok le azt a számot, amelyet az X helyére kell írni,
Részletesebben33. modul 1. melléklet 3. évfolyam Mérőlap/1. Név:. 1. Becsüld meg az összegeket! A tagok százasokra kerekített értékeivel végezd a becslést! Majd végezd is el az összeadásokat. Számításaidat kivonással
RészletesebbenEVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3
KATEGÓRIA P3. Tudjuk, hogy az L betű az 5-ös számot rejti, az E betű a 2-es számot, az S betű pedig a 20-as számot. Írjátok le azt a betűt, amely az L+E+S által elrejtett számot jelöli: A: 25 B: 32 C:
RészletesebbenÍrásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb!
Írásbeli összeadás Háromjegyű számok összeadása 1. Végezd el az összeadásokat! 254 + 200 = 162 + 310 = 235 + 240 = 351 + 124 = 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! 213 Ft 164 Ft 222 Ft
RészletesebbenSZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
RészletesebbenMatematika 5. osztály Osztályozó vizsga
Matematika 5. osztály Osztályozó vizsga A TERMÉSZETES SZÁMOK A tízes számrendszer A természetes számok írása, olvasása 1 000 000-ig. Helyi-értékes írásmód a tízes számrendszerben, a helyiérték-táblázat
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK
Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.
RészletesebbenMATEMATIKA 1-2. ÉVFOLYAM
A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
RészletesebbenOSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM
OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM MATEMATIKA - számfogalom húszas számkörben - nyitott mondatok, hiányos műveletek, relációk - egyszerű szöveges feladatok - összeadás, kivonás, bontás, pótlás
RészletesebbenMATEMATIKA I. E Z R E S E K T Í Z E Z R E S E K T Í Z E S E K S Z Á Z A S O K
- -. A tízes számrendszerben használt számjegyek: A tízes számrendszerben a következő számjegyeket használjuk: 0,,,, 4,, 6, 7, 8, 9. Ezzel a tíz számjeggyel a tízes számrendszerben bármilyen nagy szám
RészletesebbenSzerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Részletesebbenü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
RészletesebbenÉszpörgető matematika verseny / Eredmények/ Feladatok
Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.
RészletesebbenMatematika tanmenet 2. osztály részére
2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:
Részletesebben