Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat."

Átírás

1 Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke A római számírás szabályai: 1) Ha az egyik számjegyet többször - de legfeljebb háromszor - egymás után írjuk, azokat össze kell adni: II =, XXX = 0, CC = 00, MMM = 000 ) Ha nagyobb érték számjegyektl jobbra kisebb érték áll, akkor ezeket össze kell adni a nagyobb számjeggyel A kisebb érték számjegy ismétldhet is: XII = 1, LXXXVII = 87, MDCCLXVI = 1766 ) Ha kisebb érték számjegy áll a nagyobb érték számjegytl balra, akkor a kisebb érték számjegyet ki kell vonni a nagyobb értékl Ekkor nem ismétldhet a kisebb érték számjegy: XL = 0, XC = 90, IV =, IX = 9, ID = 99, EM = 999 ) Nem vonható ki, és nem ismételhet meg a V, L és D 5) Az I csak V és X eltt állhat azért, hogy leírhassuk az egyeseket Az X csak L és C eltt állhat azért, hogy leírhassuk az tízeseket A C csak D és M eltt állhat azért, hogy leírhassuk az százasokat Például 99 = XCIX és nem IC; 1999 = MCMXCIX és nem MIM 6) A 999-nél nagyobb számoknál az ezreseket jelöl számcsoport után írunk egy m bett, vagy azok fölé húzunk egy vonalat, a milliósok fölé két vonalat stb: XXImDCXII = 161, ÍVC -100, QCDXDC = Könnyen belátható, hogy ez a számképzési szabály, túl nagy számok esetén, körülményes A tízes számrendszerben való számíráskor tízesével csoportosítunk Ez azt jelenti, hogy tíz alacsonyabb rend csoport alkot egy magasabb rend csoportot Vagyis tíz db egyes = egy tízes, tíz db tízes = egy db százas, és így tovább Tehát az egységrendek: egyesek, tízesek, százasok, ezresek, tízezresek, százezresek, milliósok, tízmilliósok, százmilliósok, milliárdosok, tízmilliárdosok, százmilliárdosok Az egységrendek hármasával csoportosítva osztályokat alkotnak Minden harmadik egységrend egyben az illet osztály nevét is adja: egyesek, ezresek, milliósok, milliárdosok Az ezt követ megnevezések nem egységesek Magyarországon így következnek: milliárd, billió, billiárd, trillió, Romániában: milliárd, trillió, kvatrillió, kvintillió, következik A szakirodalom ezen nagy számok esetén kerüli a megnevezéseket, tíz hatványaival jelöli a számok nagyságrendjét Minden helyiértékes számírás esetén a számjegyeknek van: alaki értékük, helyi értékük (az illet számban melyik egységrend helyén állnak), a kett együtt adja az illet számjegy valódi értékét Az is megjegyzend, hogy a tízesével való csoportosításból értelemszeren adódik, hogy a számok írásához tíz számjegyet használunk: 0, 1,,,, 5, 6, 7, 8, 9

2 Más alapú számrendszerek A nem tízes számrendszerben, a megalkotás módja analóg a tízes számrendszerével Ha a -as számrendszerben dolgozunk, akkor egyes alkot egy magasabb rend csoportot, egy I rend csoportot, egy hármast (ez lesz a tízesek megfelelje) tízes alkot egy II rend csoportot, egy 9-est ( = 9) (ez lesz a százasok megfelelje) És így tovább Nézzük mindezt egy példával Legyen a szám a Ábrázoljuk és írjuk fel a megadott mennyiséget rendre a tízes, hármas és kettes számrendszerben a)a felírása a tíz többszörösei segítségével: 10 vagyis ha van darab pont, akkor abból tízesével csoportosítva db tízes csoport lesz és még megmarad db pont, tehát ez számjegyekkel leírva a -as számot eredményezi b)mi lesz a szám hármas számrendszerbeli alakja? Ha a pontot hármasával csoportosítjuk, elször is lesz 7 db hármas csoport (lásd a kis karikákat) Másképpen: :=7, kimarad pont, vagyis egyes De db tízes (így nem nevezhetem, mert nem 10-et ér!) ( pontot tartalmazó kis karika) alkot egy nagyobb karikát, vagyis egy százast Ennek a pontos megnevezése 9-es, vagy -as, vagy II rend egység Ilyenbl a rajzon két db van, mert ezeket az elleg kapott 7 tízes csoportosításával alakítottuk ki Osztással: 7:=, marad 1 (tízes) Mivel nincs legalább db II rend egységünk, azaz 9-es csoportunk, százasunk, itt megállunk a csoportosítással, tehát megkaptuk a -as szám -as számrendszerbeli alakját: 1

3 Kiolvasása kett egy kett a -as számrendszerben Ha eltekintünk a rajztól és az elvégzett osztásokat egymás mellé helyezzük, az utolsó hányados és hátulról eléfelé mellé írva a maradékokat, megkapjuk az elleg már felírt 1 alakot: : = 7 7 : = 1 Tehát = 1 c) Most keressük meg a kettes számrendszerbeli alakját Készítsünk rajzot! Ha a -at kettes számrendszerbe írjuk elször 11 db -es csoportot lehet kialakítani és kimarad ebbl 1 :=11, m=1 (Kérem ezt rajzon ellenrizni!) A 11 db kettes csoportból kettesével 5 db négyes csoportot lehet kialakítani és megmarad 1 kettes csoport 11:=5, m=1 Az 5 db négyes csoportból lesz db nyolcas csoport, db III rend egység, megmarad 1 négyes csoport 5:=, m=1 A két db nyolcas csoport viszont egy tizenhatos csoportot alkot, nyolcas csoport nem marad ki a csoportosításból :=1, m=0 Tehát így az () számot kaptuk Ha az osztásokat folyamatosan egymás mellé írjuk, az átalakítás így néz ki: : = : = 5 5 : = : = Tehát a bekeretezett számjegyeket jobbról balra haladva írjuk egymás után és megkapjuk () alakot, ami a -as szám kettes számrendszerbeli alakja Megjegyzés Figyeljük meg, milyen számjegyek fordulnak el a hármas számrendszerben, milyenek a kettes számrendszerben Az átalakítás módjából adódik, hogy egy tetszleges k alapú számrendszerben dolgozva a számrendszer számjegyei 0-tól (k-1)-ig terjednek, lévén hogy ezeket k-val való osztások maradékaiként kapjuk és az osztásokat addig végezzük, amíg az osztandó kisebb nem lesz az osztónál, ami egyben a számrendszer alapszáma (alapja) is A tízes számrendszerbl egy másikba való átírás módja mutatja a visszaalakítást is Nézzük ezt meg elször a hármas számrendszerbe átírt esetében Ha a = 1 kialakítási módját figyeljük, látható hogy a szám áll db II rend csoportból ( darab 9-esbl, db ²-ból) 1 db I rend csoportból (1 db -asból) db egyesbl Összefoglalva: 1 = A kettes számrendszerben: Megjegyzés ( )

4 -Ha a tízes számrendszerben egy számot a 10 hatványaival írhatunk föl, ezt egészen természetesnek tekintjük A k alapú számrendszer kialakításának a módjából adódik tehát, hogy egy tetszleges szám k rendszerbeli bontott alakjában a k hatványai szerepelnek, vagyis: n n1 anan 1 a1a0 a k a ( ) n n 1 k a1 k a k 0 -Ha pl k = 10, akkor a megnevezésük: egyesek, tízesek, százasok = 10², ezresek = 10³, -Ha pl k =, akkor a megnevezésük: egyesek, -esek, ² = -esek, ³ = 8-asok, Pl Alakítsuk át tízes számrendszerbe a következ számot, majd visszaalakítással ellenrizzük az átalakítás helyességét: A visszaalakítása 6-os számrendszerbe: : 6 = 1 1 : 6 = : 6 = : 6 = 0 0 : 6 = veletek a különböz alapú számrendszerekben A nem tízes alapú számrendszerekben a mveletek elvégzésének algoritmusa ugyanaz, mintha 10- es számrendszerben dolgoznánk Csupán a helyérték átlépésekre kell figyelni Mind a négy alapmveletet konkrét példán mutatjuk be, magyarázattal Összeadás Tehát az összeadásban a szokásos módon jobbról balra haladunk: 10 +1=, leírom a 0-t az egyesek helyére, megy tovább az =, leírom a 0-t (a -asok helyére), megy tovább az =, leírom az 1-et (a ²-osok helyére), megy tovább az =5, leírom a -t (a ³-osok helyére), megy tovább az =, leírom az 1-et (a -esek helyére)és leírom az 1-et az eltte való egységrend helyére (a 5 -esek helyére) Kiolvasom az összeget Az összeadás helyességét ellenrizend, az összeadandókat átírjuk 10-es számrendszerbe, elvégezzük az összeadást, majd az összeget visszaírjuk -as számrendszerbe Próbáljuk ezt önállóan elvégezni : 1 19, m 1 0, 19 : , m 0, : Tehát az összeadást helyesen végeztük el 1, m 1, 1 :, m, : 1, m 1 Végezzük el a következ összeadásokat önállóan Ha szükséges, itt következik a példák megoldása is: ( 5)

5 (5) Kivonás 0--at, nem lehet Az 1 db négyest felbontjuk db egyesre, -=1, leírjuk az 0010() egyesek helyére () Az I rend egység helyén 0 db négyes maradt 0--t, nem lehet 1101() A felbontásig elre kell mennünk a IV rend egységekig A db egyikét felbontjuk db III rend egységgé, tehát 1db IV rend egység marad Ebbl 1 db III rend egységet felbontunk db II rend egységre (marad tehát db III rend egység) A db II rend egység egyikét felbontjuk db I rend egységre (marad tehát db II rend egység) -=, leírjuk az I rend egységek helyére A II rend egységek helyén maradt db -=0, leírjuk a 0-t a II rend egységek helyére A III rend egységek helyén maradt db -=1, leírjuk a III rend egységek helyére A IV rend egységek helyén 1 db maradt 1 magában 1, leírjuk az 1-et a IV rend egységek helyére -Az ellenrzést az összeadáshoz hasonlóan végezzük el 0010 () : () 8, m 1, : 0, m, 0 : () Az eredmény egyezik, tehát a kivonás helyes 5, m 0, 5 : 1, m 1 -Végezzük el a következ kivonásokat: ( ) (9) () () (9) (9) Szorzás

6 55 A részszorzatok: 5 5x5=5, leírom az 1-et, megy tovább a 051 5x5+=9, leírom az 5-öt, megy tovább a 1 5 5x+=, leírom a 0-t, megy tovább a x+=1, leírom a -t, leírom a -t A második részszorzat: 10 1 x5=15, leírom a -at, megy tovább a x5+=17, leírom az 5-öt, megy tovább a x+=1, leírom a -t, megy tovább a x+=8, leírom a -t, leírom az 1-et A harmadik részszorzat: x5=0, leírom a -t, megy tovább a x5+=, leírom az 5-öt, megy tovább a x+=19, leírom az 1-et, megy tovább a x+=11, leírom az 5-öt, leírom az 1-et A részszorzatokat összeadjuk, így a szorzat 101 -Ellenrizzük a szorzás helyességét Az ellenrzés most is úgy történik, hogy a tényezket átírva 10-es számrendszerbe, így végezzük el a szorzást, majd a kapott szorzatot visszaalakítjuk a 6-os számrendszerbe : 6 7 : , m 1, 78, m, : : 6 1, m 0, 8, m, 1 : Tehát valóban visszakaptuk az el szorzás eredményét Még két példa Végezzük el a szorzásokat: 65 ( 7) : 6, m 1 7, m, ) ( 5 10 ) ( 1 Osztás Mivel az osztás egyenlsége, (a maradékos osztás tétele): O o h m, 0 m o, o 0, érvényes bármely számrendszerben, ezért az osztások próbáit ez alapján fogjuk elvégezni

7 (5) 1 : 11 próba : A hányados számjegyeinek megkeresésekor próbálkozunk: 0-ben a nincsen meg, tehát próbáljuk 00-ban, tehát ez jó, aláírjuk és kivonjuk 1-ben keressük a -at, ez nem jó, tehát csak 1-szer van meg 11 Tovább már az elek alapján adódik az osztás maradék része -Végezzük el a következ osztásokat, valamint próbájukat szorzással: 105 ( 6) : : 65 (5) : 5 : próba : próba : Megjegyzés A fenti mveletek elvégzésére koncentrálva egy kis empátiával ízelítt kaphatunk abból, hogy milyen nehézségekkel kell megküzdenie, fleg a kicsit gyengébb képesség alsós gyereknek akkor, amikor a mveletek elvégzésének algoritmusát kell megértenie és bevésnie Ezért a számrendszerekkel való munkát egy kicsit empátiafejleszt tréningnek is tekinthetjük, de mindenképpen fejleszti a koncentrációt és mélyíti a mveletvégzés algoritmusát

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl: Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Nyitott mondatok tanítása

Nyitott mondatok tanítása Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Természetes számok. d) A kétjegyû páros és páratlan számok száma megegyezik. e) A tízes számrendszerben minden szám leírható tíz számjeggyel.

Természetes számok. d) A kétjegyû páros és páratlan számok száma megegyezik. e) A tízes számrendszerben minden szám leírható tíz számjeggyel. Természetes számok Természetes számok: 0; 1; 2; 3; A természetes számok halmazának jele: Tízes számrendszerben bármely természetes szám felírható tíz számjegy (0; 1; 2; 3, 4; 5; 6; 7; 8; 9) segítségével.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843.

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843. SZÁMRENDSZEREK 1933. A megadott sorrendet követve írtuk át a számokat: a) 2-es számrendszerben: 11; 1001; 1100; 10001; 10111; 100110; 1011011. b) 3-as számrendszerben: 21;110;1011; 1020; 10100; 10102;

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft.

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft. Csehné Hossó Aranka Matematika pontozófüzet 1 8. osztályig az eltérő tantervű tanulók számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2005 Összeállította: Csehné Hossó Aranka EAN 599

Részletesebben

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17. Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

Számrendszerek, számábrázolás

Számrendszerek, számábrázolás Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18 Szöveges feladatok Életkori feladatok. Feladat. Egy anya 29 éves volt, amikor a a született. év múlva az életkora évvel lesz kevesebb, mint a a akkori életkorának kétszerese. Hány évesek most? Megoldás.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Bemelegítő feladatok Számok, számhalmazok, műveletek 3. feladatcsomag

Bemelegítő feladatok Számok, számhalmazok, műveletek 3. feladatcsomag SZÁMTAN, ALGERA Számok, számhalmazok, műveletek 1.3 emelegítő feladatok Számok, számhalmazok, műveletek 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 14 alapműveletek elvégzése a természetes, az egész

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti Tankönyvkiadó) Tananyagbeosztás: Éves óraszám: 148 óra Heti óraszám:

Részletesebben

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás Tartalom Tartalom A szerzőről, a fordítóról és a lektorról.... 7 Bevezetés.................................................................... 9 Áttekintő táblázatok.... 11 I. rész Játékok és fejtörők:

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.

Részletesebben

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva:

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva: . Elméleti alapok Számrendszerek.. A kettes számrendszerről Számlálás közben mi tízesével csoportosítunk (valószínűleg azért, mert ujjunk van). Ezt a számírásunk is követi. A helyiértékek: egy, tíz, száz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 3 TANMENET javaslat a szorobánnal számoló 3. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

1. A TERMÉSZETES SZÁMOK A TÍZES SZÁMRENDSZER

1. A TERMÉSZETES SZÁMOK A TÍZES SZÁMRENDSZER 1. A TERMÉSZETES SZÁMOK Ebben a fejezetben átismételjük mindazt, amit az alsó tagozatban a természetes számokról és a velük végzett műveletekről tanultunk. Közben kibővítjük ismereteinket, magasabb számkörbe

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

MATEMATIKA I. E Z R E S E K T Í Z E Z R E S E K T Í Z E S E K S Z Á Z A S O K

MATEMATIKA I. E Z R E S E K T Í Z E Z R E S E K T Í Z E S E K S Z Á Z A S O K - -. A tízes számrendszerben használt számjegyek: A tízes számrendszerben a következő számjegyeket használjuk: 0,,,, 4,, 6, 7, 8, 9. Ezzel a tíz számjeggyel a tízes számrendszerben bármilyen nagy szám

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

Mintafeladat az RSA algoritmus szemléltetésére

Mintafeladat az RSA algoritmus szemléltetésére Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja

Részletesebben

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben. Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

Tartalom 1 SZÁMOK GEOMETRIA ELŐSZÓ 8 BEVEZETÉS 10

Tartalom 1 SZÁMOK GEOMETRIA ELŐSZÓ 8 BEVEZETÉS 10 Tartalom ELŐSZÓ 8 BEVEZETÉS 0 SZÁMOK GEOMETRIA Bevezetés a számok világába 4 Összeadás 6 Kivonás 7 Szorzás 8 Osztás Prímszámok 6 Mértékegységek 8 Az idő 0 Római számok Pozitív és negatív számok 4 Hatványok

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.

Részletesebben

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata 7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

33. modul 1. melléklet 3. évfolyam Mérőlap/1. Név:. 1. Becsüld meg az összegeket! A tagok százasokra kerekített értékeivel végezd a becslést! Majd végezd is el az összeadásokat. Számításaidat kivonással

Részletesebben

0512. MODUL TERMÉSZETES SZÁMOK. Számrendszerek. Készítette: Pintér Klára

0512. MODUL TERMÉSZETES SZÁMOK. Számrendszerek. Készítette: Pintér Klára 0512. MODUL TERMÉSZETES SZÁMOK Számrendszerek Készítette: Pintér Klára 0512. Természetes számok Számrendszerek Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Hraskó András: FPI tehetséggondozó szakkör 11. évf

Hraskó András: FPI tehetséggondozó szakkör 11. évf FPI tehetséggondozó szakkör 11. évf. I. foglalkozás, 2012. szeptember 18. I.1. Bejárható-e egy 5 5-ös sakktábla lóval, a) ha nem kell ugyanott befejeznünk, ahonnan indultunk? b) ha ugyanott kell befejeznünk,

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben