JAVÍTÓKULCSOK I. Számfogalom

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "JAVÍTÓKULCSOK I. Számfogalom"

Átírás

1 JAVÍTÓKULCSOK I. Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz d) száztizenhárom i) nyolcszáznyolcvannyolc e) háromszázöt j) kilencszáz 3. a) ötszázhetvenhét b) háromszázhuszonhét c) háromszázhetvenkettı d) hetvenöt e) nyolcszázegy f) százhat 4. a) 1001 f) 6322 b) 1307 g) 6709

2 c) 1984 h) 7200 d) 2052 i) 8021 e) 3679 j) a) ezeregyszáz f) ötezer-kilencszáznyolcvankettı b) ezerkilencszázhét g) hatezer-háromszázkilencven c) kétezer-kilencvenöt h) nyolcezer-négyszázhat d) négyezer-háromszázhetvenegy i) kilencezer-hétszázkilencvennégy e) négyezer-ötszázöt j) kilencezer-kilencszázkilencvenkilenc 6. a) háromezer-hétszáznegyvenkilenc b) kétezer-negyvenöt c) hétezer-egy d) háromezer-nyolcszázhúsz e) ötezer-kétszázhárom f) hatezer-hetvenhét Helyi érték 7. HELYI ÉRTÉK százas tízes egyes a) b) c) 1 2 3

3 d) e) f) g) h) i) j) HELYI ÉRTÉK tízezres ezres százas tízes egyes a) b) c) d) e) f) g) h) i) j)

4 9. HELYI ÉRTÉK tízezres ezres százas tízes egyes szám a) b) c) d) e) f) g) h) i) j) a) 430; 431; 432 f) 691; 791; 891; 991 b) 279 g) 50; 51; 52; 53; 60; 61; 62; 63; 70; 71; 72; 73; 80; 81; 82; 83; 90; 91; 92; 93 c) 10; 11; 12; 13; 14; 15 h) 780; 781; 782; 783; 784; 785 d) 57; 58; 59 i) 2680; 2681; 2682; 2683; 2684; 2685; 2686; 2687 e) 933; 943; 953; 963; 973; 983; 993 j) 3209; 3219; 3229 Számok és a számegyenes 11. a)

5 b) c) d) e) f) g) h) i) j)

6 12. a) A = 2; B = 9; C = 13; D = 20; E = 23 b) A = 4; B = 13; C = 26; D = 35; E = 44 c) A = 10; B = 40; C = 55; D = 75; E = 95 d) A = 140; B = 220; C = 260; D = 380; E = 440 e) A = 120; B = 280; C = 440; D = 560; E = 760 f) A = 50; B = 150; C = 325; D = 425; E = 500 g) A = 500; B = 1800; C = 2700; D = 3200; E = 4600 h) A = 400; B = 1600; C = 5200; D = 6800; E = 8800 i) A = 3100; B = 3250; C = 3400; D = 3825; E = 4050 j) A = 1000; B = 4000; C = ; D = ; E =

7 II. Írásbeli mőveletek Összeadás 1. a) 3 f) 12 b) 7 g) 14 c) 9 h) 15 d) 8 i) 12 e) 8 j) a) 18 f) 39 b) 32 g) 83 c) 39 h) 99 d) 24 i) 88 e) 43 j) a) 118 f) 100 b) 105 g) 129 c) 145 h) 130 d) 131 i) 125 e) 137 j) a) 137 f) 386 b) 209 g) 733 c) 433 h) 897 d) 151 i) 948 e) 810 j) 951

8 5. a) 1264 f) 3740 b) 2028 g) 4457 c) 3961 h) 8214 d) 2846 i) 9530 e) 3873 j) a) 9725 f) b) g) c) h) d) i) e) 9548 j) Kivonás 7. a) 3 f) 5 b) 4 g) 2 c) 1 h) 2 d) 0 i) 1 e) 2 j) 1 8. a) 4 f) 16 b) 12 g) 22 c) 20 h) 10 d) 25 i) 51 e) 39 j) 53

9 9. a) 29 f) 59 b) 17 g) 34 c) 18 h) 16 d) 29 i) 27 e) 18 j) a) 84 f) 306 b) 109 g) 220 c) 207 h) 594 d) 361 i) 591 e) 326 j) a) 999 f) 2890 b) 1115 g) 1468 c) 2184 h) 1321 d) 2902 i) 759 e) 2990 j) a) 7782 f) 1175 b) 4792 g) 2112 c) 774 h) 1989 d) 3858 i) 8500 e) 1 j) 8782

10 Szorzás 13. a) 3 f) 90 b) 12 g) 56 c) 20 h) 42 d) 32 i) 16 e) 42 j) a) 48 f) 240 b) 48 g) 448 c) 115 h) 204 d) 42 i) 765 e) 259 j) a) 286 f) 1150 b) 195 g) 1674 c) 306 h) 2380 d) 483 i) 4902 e) 1394 j) a) 492 f) 2982 b) 468 g) 3975 c) 2736 h) 1257 d) 742 i) 3661 e) 6768 j) 6768

11 17. a) 60 f) b) 6210 g) 2610 c) 2100 h) d) 3200 i) e) j) a) 1716 f) b) 7161 g) c) h) 9768 d) i) e) j) Osztás 19. a) 3 f) 8 b) 2 g) 8 c) 3 h) 9 d) 2 i) 8 e) 6 j) a) 57 f) 14 b) 17 g) 13 c) 13 h) 11 d) 17 i) 12 e) 24 j) 19

12 21. a) 12 f) 24 b) értelmetlen g) 26 c) 2 h) 340 d) 16 i) 618 e) 8 j) a) 84 f) 134 b) 156 g) 79 c) 146 h) 43 d) 195 i) értelmetlen e) 125 j) a) 4 c) b) 6 d) a) 652 f) 104 b) 935 g) 240 c) 1589 h) 401 d) 1074 i) 434 e) 942 j) 1010

13 Mőveletek sorrendje 25. a) 58 f) 552 b) 35 g) 390 c) 41 h) 698 d) 61 i) 2577 e) 61 j) a) 342 f) 2023 b) 512 g) 3647 c) 86 h) 7389 d) 606 i) 24 e) 6302 j) a) 14 f) b) 48 g) 1371 c) 2754 h) d) 1368 i) 1092 e) 3024 j) a) 189 f) b) 2590 g) c) 4608 h) d) 7752 i) 88 e) j) 97 és a maradék 2

14 29. a) 301 f) 1432 b) 92 g) 1577 c) 322 h) 328 d) 11 i) e) 967 j) a) 271 c) b) d) értelmetlen Szöveges feladatok Ft-ja maradt még Gábornak Ft-ba került egy mozijegy Ft-ot keres hétfıtıl péntekig.

15 Ft-ot keresett óránként Imi. 35. a) 37 m-re. b) 50 m-t Ft-ot fizettek külön-külön Ft-juk van összesen. 38. a) 81 szalvétája van Gábornak. b) 561 szalvétájuk van összesen m hosszú anyagot kell vásárolnia. 40. a) 2485 Ft-ba kerül az autós mesekönyv. b) 6325 Ft-ba kerül a két könyv összesen.

16 III. Kerekítés, becslés Kerekítés tízesekre 1. a) 0 f) 90 b) 20 g) 410 c) 30 h) 380 d) 30 i) 1950 e) 50 j) a) a = 0; 1; 2; 3; 4 b = 4 c = nincs ilyen szám d = 5 b) a = nincs ilyen szám b = nincs ilyen szám c = 0 d = 5; 6; 7; 8; 9 c) a = 5; 6; 7; 8; 9 b = 3 c = nincs ilyen szám d = 1 Kerekítés százasokra 3. a) 0 f) 3500 b) 100 g) 5800 c) 200 h) 8100 d) 600 i) e) 1600 j) a) a = 1 b = 6 c = 5; 6; 7; 8; 9 d = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 b) a = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 b = 0; 1; 2; 3; 4 c = 8 d = 4 c) a = 5 b = 1 c = 0; 1; 2; 3; 4 d = nincs ilyen szám

17 Kerekítés ezresekre 5. a) 0 f) 6000 b) 1000 g) 5000 c) 2000 h) 8000 d) 4000 i) e) 4000 j) a) a = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 b = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 c = 0; 1; 2; 3; 4 d = 1 b) a = 4 b = 5; 6; 7; 8; 9 c = 0; 2; 3; 4; 5; 6; 7; 8; 9 d = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 c) a = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 b = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 c = 5; 6; 7; 8; 9 d = 8 Összeg becslése 7. a) 80 f) 1500 b) 250 g) 4690 c) 100 h) 3050 d) 340 i) e) 910 j) 5530 nagyobb a becsült érték: a); b); e); g) 8. a) 190; pontos érték: 189 f) 6700; pontos érték: 6627 b) 1000; pontos érték: 979 g) ; pontos érték: c) 700; pontos érték: 638 h) ; pontos érték: d) 1400; pontos érték: 1478 i) 7500; pontos érték: 7496 e) 3700; pontos érték: 3758 j) ; pontos érték: nagyobb a becsült érték: a); b); c); e); f); g); h); i)

18 Különbség becslése 9. a) 40 f) 90 b) 60 g) 160 c) 60 h) 210 d) 0 i) 280 e) 50 j) 1230 kisebb a becsült érték: a); d); e); f); h); j) 10. a) 200; pontos érték: 143 f) 8000; pontos érték: 8051 b) 300; pontos érték: 238 g) 3700; pontos érték: 3722 c) 900; pontos érték: 906 h) 1700; pontos érték: 1680 d) 600; pontos érték: 688 i) 3700; pontos érték: 3700 e) 2600; pontos érték: 2581 j) 1900; pontos érték: 1956 nagyobb a becsült érték: a); b); e); h) Szorzat becslése 11. a) 100 f) 6400 b) 300 g) 2000 c) 400 h) 5600 d) 900 i) 4000 e) 400 j) 2400 nagyobb a becsült érték: b); c); d); f); g)

19 12. a) ; pontos érték: f) ; pontos érték: b) ; pontos érték: g) ; pontos érték: c) ; pontos érték: h) ; pontos érték: d) ; pontos érték: i) ; pontos érték: e) ; pontos érték: j) ; pontos érték: nagyobb a becsült érték: g) Hányados becslése 13. a) 10; pontos érték: 11 f) 40; pontos érték: 43 b) 12; pontos érték: 13 g) 109; pontos érték: 121 c) 12; pontos érték: 12 h) 35; pontos érték: 32 d) 40; pontos érték: 41 i) 48; pontos érték: 40 e) 30; pontos érték: 30 és marad a 2 j) 80; pontos érték: 76 nagyobb a becsült érték: h); i); j) 14. a) 12 f) 90 b) 25 g) 97 c) 42 h) 101 d) 57 i) 127 e) 74 j) 183

20 IV. Törtek Ismerkedés a törtekkel 1. a) 5 ötöd f) 12 tizenketted b) 7 heted g) 20 huszad c) 10 tized h) 9 kilenced d) 3 harmad i) 100 század e) 8 nyolcad j) 1000 ezred 2. a) negyed része színezett f) fele színezett b) nyolcad része színezett g) nyolcad része színezett c) tizenötöd része színezett h) fele színezett d) negyed része színezett i) kilenced része színezett e) ötöd része színezett j) egész része színezett 3. a) tizenhatod részét f) negyed részét b) negyed részét g) felét c) felét h) nyolcad részét d) nyolcad részét i) egész részét e) negyed részét j) negyed részét a) d) h) b) e) f) j) c) g) i) 4. a) j; e f) b b) c g) a c) g h) h d) f; i i) egyiknek se e) d j) j; e

21 5. 6.

22 7. a) 2 negyed f) 2 hatod b) 4 nyolcad g) 3 kilenced c) 3 hatod h) 6 kilenced d) 2 nyolcad i) 4 hatod e) 4 tizenhatod j) 4 nyolcad 8. a) 2 negyed része színezett f) 5 hatod része színezett b) 3 nyolcad része színezett g) 5 nyolcad része színezett c) 4 tizenötöd része színezett h) 5 tizenketted része színezett d) 3 negyed része színezett i) 6 kilenced (= 2 harmad) része színezett e) 2 ötöd része színezett j) 0 része színezett 9. a) 13 huszad részét f) 3 negyed részét b) 1 ketted részét g) 9 huszad részét c) 3 huszad részét h) 1 ötöd részét d) 1 tized részét i) 11 huszad részét e) 7 huszad részét j) 2 ötöd részét d) c) h) e) j) g) b) i) a) f) 10. a) f f) b b) d g) c c) g h) h d) e i) egyiknek se e) h j) j

23

24 13. a) 10 dm b) 2 dm c) 6 dm d) 7 dm 14. a) 50 cm b) 60 cm c) 83 és 1 harmad cm d) 70 cm 15. a) 10 cm b) 2 cm c) 6 cm d) 7 cm 16. a) 50 mm b) 60 mm c) 66 és 2 harmad mm d) 90 mm 17. a) 200 cm 3 negyede > 200 cm 3 nyolcada; különbség: 75 cm b) 60 m 1 harmada < 60 m 1 kettede; különbség: 10 m c) 420 dm 5 hatoda > 420 dm 4 hetede; különbség: 110 dm d) 320 dkg 5 nyolcada > 320 dkg 3 nyolcada; különbség: 80 dkg e) 108 g 3 kilencede < 108 g 2 negyede; különbség: 18 g

25 f) 100 liter 3 ötöde = 100 liter 6 tizede; különbség: 0 liter g) 250 dl 3 huszonötöde < 250 dl 7 tizede; különbség: 145 dl h) 4900 cl 3 hetede > 4900 cl 2 hetede; különbség: 700 cl i) 1 óra 1 negyede < 1 óra 2 harmada; különbség: 25 perc j) 800 Ft 3 ötöde > 800 Ft 3 nyolcada; különbség: 180 Ft Szöveges feladatok 18. a) 1000 Ft-ot költött Andi mozira. b) 300 Ft-ba került az üdítı. c) 200 Ft-ja maradt Andinak. 19. a) 305 másodpercig tartott. b) 1220 másodperc alatt futotta le (20 perc 20 másodperc). 20. a) 148 virágos szalvétája van Zsuzsinak. b) 222 nem virágos szalvétája van Zsuzsinak. 21. a) 8 süteményt evett meg Dóri. b) A sütemények 7 kilenced része maradt meg. 22. a) 1400 Ft-ba került a színházjegy. b) 630 Ft-ot költött Eszter szendvicsekre. c) 2170 Ft-ja maradt Eszternek.

26 23. a) Zsolti futott eddig gyorsabban. b) 3 m-rel volt lemaradva a második fiú. 24. a) A teljes út ötödénél tart Kata. b) 2 órát kell még vezetnie. 25. a) 48 sportautója van Máténak. b) 22 munkagépe van Máténak. c) 10 kamionja van Máténak.

27 V. Sorozatok Szabály felismerése 1. a) 1; 4; 7; 10; 13; 16; 19; 22; 25 A szabály: A sorozat következı eleme mindig 3-mal nagyobb. b) 3; 8; 13; 18; 23; 28; 33; 38; 43 A szabály: A sorozat következı eleme mindig 5-tel nagyobb. c) 42; 39; 36; 33; 30; 27; 24; 21; 18 A szabály: A sorozat következı eleme mindig 3-mal kisebb. d) 132; 126; 120; 114; 108; 102; 96; 90; 84 A szabály: A sorozat következı eleme mindig 6-tal kisebb. e) 455; 432; 409; 386; 363; 340; 317; 294; 271 A szabály: A sorozat következı eleme mindig 23-mal kisebb. f) 879; 914; 949; 984; 1019; 1054; 1089; 1124; 1159 A szabály: A sorozat következı eleme mindig 35-tel nagyobb. 2.

28 3. a) 1; 4; 16; 64; 256; 1024; 4096; A szabály: A sorozat következı eleme mindig 4-szerese az elızı elemnek. b) 3072; 1536; 768; 384; 192; 96; 48; 24 A szabály: A sorozat következı eleme mindig fele az elızı elemnek. c) 3; 9; 27; 81; 243; 729; 2187; 6561 A szabály: A sorozat következı eleme mindig 3-szorosa az elızı elemnek. d) 1024; 512; 256; 128; 64; 32; 16; 8 A szabály: A sorozat következı eleme mindig fele az elızı elemnek. 1 e) ; 1; 5; 25; 125; 625; 3125; A szabály: A sorozat következı eleme mindig 5-szöröse az elızı elemnek. 1 f) ; 1; 2; 4; 8; 16; 32; 64 2 A szabály: A sorozat következı eleme mindig 2-szerese az elızı elemnek. 4.

29 5. a) 1; 4; 10; 22; 46; 94; 190; 382 A szabály: A sorozat következı eleme mindig az elızı elem 2-szeresénél 2-vel nagyobb szám. b) 4; 6; 12; 30; 84; 246; 732; 2190 A szabály: A sorozat következı eleme mindig az elızı elem 3-szorosánál 6-tal kisebb szám. c) 195; 170; 145; 120; 95; 70; 45; 20 A szabály: A sorozat következı eleme mindig 25-tel kisebb, mint az elızı elem. d) 5; 11; 23; 47; 95; 191; 383; 767 A szabály: A sorozat következı eleme mindig az elızı elem 2-szeresénél 1-gyel nagyobb szám. e) 7; 11; 19; 35; 67; 131; 259; 515 A szabály: A sorozat következı eleme mindig az elızı elem 2-szeresénél 3-mal kisebb szám. f) 10; 30; 70; 150; 310; 630; 1270; 2550 A szabály: A sorozat következı eleme mindig az elızı elem 2-szeresénél 10-zel nagyobb szám. Sorozat megadása adott szabály alapján 6. a) 4; 12; 20; 28; 36; 44 b) 48; 46; 44; 42; 40; 38 c) 27; 33; 39; 45; 51; 57 d) 820; 806; 792; 778; 764; 750 e) 9; 12; 15; 18; 21; 24 f) 465; 454; 443; 432; 421; a) 1; 4; 16; 64; 256; 1024 b) ; 8192; 4096; 2048; 1024; 512 c) 1; 3; 9; 27; 81; 243 d) 0; 0; 0; 0; 0; 0

30 e) 1; 5; 25; 125; 625; 3125 f) 0; 0; 0; 0; 0; 0 8. a) 16; 20; 24; 28; 32; 36 b) 120; 115; 110; 105; 100; 95 c) 13; 20; 27; 34; 41; 48 d) 372; 353; 334; 315; 296; 277 e) 100; 173; 246; 319; 392; 465 f) 329; 286; 243; 200; 157; a) 3; 11; 27; 59; 123; 251 b) 5; 14; 41; 122; 365; 1094 c) 4; 4; 4; 4; 4; 4 d) 3; 6; 18; 66; 258; 1026 e) 9; 21; 45; 93; 189; 381 f) 8; 33; 108; 333; 1008; 3033 Szöveges feladatok 10. a) 14 oldalt olvasott a könyvbıl Gabi a harmadik napon. b) 34 oldal volt még hátra a könyvbıl a harmadik nap végén. c) 5 nap alatt olvasta ki Gabi a könyvet. 11. a) 45 percet fut Csabi csütörtökönként. b) 315 percet fut Csabi egy héten összesen. c) 2-szer annyi percet fut vasárnap, mint hétfın.

31 12. a) 14-en tudnak leülni a negyedik sorba. b) 30 szék van az elsı 3 sorban összesen. c) Nem tud leülni 100 ember ezen a rendezvényen. 13. a) 300 m-t úszik Eszti péntekenként. b) 1750 m-t úszik Eszti összesen egy héten. c) Szerdán úszik feleannyit, mint vasárnap. 14. a) 20 lépcsıfok van összesen a lépcsısoron. b) 105 cm magasan van a hetedik lépcsıfok teteje. 15. a) 40 szék van a hatodik sorban. b) 380 férıhelyes a mozi. 16. a) 3 banánt evett Gori az elsı napon. b) A hetedik napon evett Gori 15 banánt. c) 10 nap alatt evett meg Gori összesen 120 banánt. 17. a) 37 oldalt olvasott a könyvbıl Kata a nyolcadik napon. b) 41 oldal volt még hátra a könyvbıl a nyolcadik nap végén. c) 9 nap alatt olvasta ki Kata a könyvet.

32 18. a) 12 lépcsıfok van összesen a lépcsısoron. b) 120 cm magasan van a hatodik lépcsıfok teteje. c) 300 cm magasra vinne fel a lépcsısor. 19. a) 55 percet edz Laci csütörtökönként. b) 385 percet edz Laci egy héten összesen. 20. a) 9 autó fér el a harmadik sorban. b) 6 sorban állhatnak az autók.

33 VI. Geometria Tükrös alakzatok 1. tengelyesen tükrösek: a); b); d); g); i); k); l); m); o) 2. a) tengelyesen tükrösek: a); d); e); f); h); k); l); m); n); o) b) tengelyek száma: a) 1; d) 1; e) 1; f) 2; h) 1; k) 1; l) 1; m) 2; n) 1; o) 1 3. a) tengelyesen nem tükrösek: b); g); h); n); o); r); s); t) b) tengelyek száma: a) 1; c) 2; d) 1; e) 1; f) 5; i) 4; j) 4; k) 1; l) 1; m) 4; p) végtelen sok; q) 2 4. tükörképek: d); e) 5.

34 6.

35 7.

36 8.

37 9.

38 10. a) b) Minden esetben az eredeti alakzatot kaptuk a tükrözéssel. c) Minden esetben az egyik szimmetriatengelyre kellett tükrözni az alakzatokat.

39 Nagyítás, kicsinyítés 11. ugyanolyan alakúak: a); c); e); f); h) 12. a) b) ugyanolyan alakúak: 5. és ugyanolyan alakúak: c); d); g); h); i); j)

40 a) szélessége: 20 m; hosszúsága: 42 m b) szélessége: 29 m; hosszúsága: 45 m c) a rajzon: 16 mm; a valóságban: 16 m

41 16. a) b) ugyanolyan alakúak: 5. és 6. Vegyes geometriai feladatok 17. a) b) ugyanolyan alakúak: 1. és 4.

42 18. a) b) ugyanolyan alakúak: 1. és a) b) nem ugyanolyan alakúak: az 1. és 4. kivételével mindegyik

43 20.

44 lehetséges megoldás:

45 22. ugyanolyan alakúak: mindegyik 23.

46 24. a) b) A körnek.

47 VII. Kerület, terület Kerület 1.

48 2. 3. l) f) a) j) c) d) b) k) h) e) i) g) a) K = 16 g) K = 30 b) K = 22 h) K = 24 c) K = 20 i) K = 28 d) K = 20 j) K = 18 e) K = 28 k) K = 22 f) K = 14 l) K = 6

49 4. g) e) i) b) h) d) k) c) a) j) f) l) a) K = 9 g) K = 15 b) K = 12 h) K = 12 c) K = 10 i) K = 14 d) K = 11 j) K = 9 e) K = 14 k) K = 11 f) K = 6 l) K = 3 5. a) A) K = 12 F) K = 30 B) K = 18 G) K = 24 C) K = 24 H) K = 36 D) K = 12 I) K = 48 E) K = 36 J) K = 18 b) A) K = 6 F) K = 15 B) K = 9 G) K = 12 C) K = 12 H) K = 18 D) K = 6 I) K = 24 E) K = 18 J) K = 9 c) A) K = 4 F) K = 10 B) K = 6 G) K = 8 C) K = 8 H) K = 12 D) K = 4 I) K = 16 E) K = 12 J) K = 6 Minél kisebb a hosszúságegység, annál nagyobb a mérıszám. 6. a) K = 104 mm = 10 cm 4 mm f) K = 98 mm = 9 cm 8 mm b) K = 102 mm = 10 cm 2 mm g) K = 96 mm = 9 cm 6 mm

50 c) K = 90 mm = 9 cm 0 mm h) K = 83 mm = 8 cm 3 mm d) K = 95 mm = 9 cm 5 mm i) K = 130 mm = 13 cm 0 mm e) K = 104 mm = 10 cm 4 mm j) K = 136 mm = 13 cm 6 mm m hosszú a kert kerítése m hosszú a kert kerítése m hosszú a kert kerítése m hosszú kerítéssel lehet körbekeríteni a kertet. 11. a) 6 m és 4 m hosszúak a kert oldalai a valóságban. b) 1 m széles a kert kapuja a valóságban. c) 19 m hosszú kerítéssel van körbekerítve a kert. 12. a) b) 190 darab csempével lehet körberakni a medence szélét.

51 Terület 13. a) 9 db f) 12 db b) 6 db g) 15 db c) 10 db h) 20 db d) 7 db i) 4 db e) 7 db j) 23 db tükrösek: a); b); e); f); g); h); i) 14. a) 9 db f) 44 db b) 18 db g) 36 db c) 21 db h) 47 db

52 d) 8 db i) 83 db e) 45 db j) 8 db 15. l) f) k) d) j) a) c) h) b) g) e) i) a) T = 15 g) T = 36 b) T = 30 h) T = 24 c) T = 19 i) T = 49 d) T = 12 j) T = 14 e) T = 42 k) T = 10 f) T = 6 l) T = i) e) b) g) h) a) c) d) j) k) f) l) a) T = 20 g) T = 32 b) T = 35 h) T = 27 c) T = 19 i) T = 49 d) T = 14 j) T = 14 e) T = 42 k) T = 10 f) T = 5 l) T = a) A) T = 6 F) T = 18 B) T = 12 G) T = 2 C) T = 12 H) T = 6 D) T = 36 I) T = 1 E) T = 18 J) T = 12 b) A) T = 3 F) T = 9 B) T = 6 G) T = 1

53 C) T = 6 H) T = 3 D) T = 18 I) T = 1/2 E) T = 9 J) T = 6 c) A) T = 2 F) T = 6 B) T = 4 G) T = 2/3 C) T = 4 H) T = 2 D) T = 12 I) T = 1/3 E) T = 6 J) T = 4 Minél kisebb a területegység, annál nagyobb a mérıszám. 18.

54 19. a) b) 64 db c) 64 db 20. a) b) 100 db c) 100 db 21. a) 351 parkettát raktak le összesen a szobában. b) A szoba alapja téglalap alakú. c) 260 cm és 540 cm hosszúak a szoba falai. 22. a) 30 sorba rakhatók a gyeptéglák. b) 30 gyeptégla fér egy sorba. c) 900 gyeptéglával fedhetı le az egész kert.

55 VIII. Mértékegységek Hosszúságmérés 1. a) 18 dm < 40 dm < 41 dm < 42 dm < 47 dm b) 20 cm < 25 cm < 3 dm < 350 mm < 400 mm c) 1 m < 20 dm < 3 m < 35 dm < 400 cm d) 15 cm < 1500 mm < 16 dm < 200 cm < 15 m e) 1200 cm < 260 dm < 1 km < 1300 m < 1800 m 2. a) 76 mm > 75 mm > 73 mm > 72 mm > 28 mm b) 74 km > 74 m > 74 dm > 74 cm > 74 mm c) 310 cm > 1500 mm > 420 mm > 40 cm > 3 dm d) cm > 1200 dm > 34 m > 130 dm > 12 m e) dm > 2500 m > 2 km > 1 km > cm 3. a) km b) m c) cm d) m e) mm 4. a) 87 cm 1 m f) 7450 mm 7 m b) 350 cm 4 m g) 12 km m c) 46 dm 5 m h) 589 cm 6 m d) 132 dm 13 m i) 71 dm 7 m e) 1900 mm 2 m j) 4600 mm 5 m

56 5. a) 87 cm 9 dm f) 4 m 40 dm b) 162 cm 16 dm g) 113 mm 1 dm c) 235 mm 2 dm h) 138 cm 14 dm d) 288 mm 3 dm i) 4974 cm 497 dm e) 1350 cm 135 dm j) 6498 mm 65 dm 6. a) 12 dm = 120 cm f) 320 mm = 32 cm b) 4 m = 400 cm g) 41 m = 4100 cm c) 1220 mm = 122 cm h) 1 km = cm d) 3 km = cm i) 1347 dm = cm e) 342 dm = 3420 cm j) mm = 1726 cm 7. a) 210 cm = 21 dm f) 700 mm = 7 dm b) 3800 mm = 38 dm g) 91 m = 910 dm c) 7 m = 70 dm h) 10 km = dm d) 2 km = dm i) 4630 cm = 463 dm e) 60 cm = 6 dm j) mm = 111 dm 8. a) 12 cm = 120 mm f) 34 dm = 3400 mm b) 26 dm = 2600 mm g) 822 cm = 8220 mm c) 2 m = 2000 mm h) 68 m = mm d) 1 km = mm i) 530 cm = 5300 mm e) 270 cm = 2700 mm j) 101 dm = mm

57 9. a) 200 cm = 2 m f) m = 73 km b) 3000 m = 3 km g) 650 dm = 65 m c) 50 dm = 5 m h) cm = 8 km d) dm = 6 km i) 9000 mm = 9 m e) 1800 cm = 18 m j) m = 24 km Tömegmérés 10. a) 10 dkg < 15 dkg < 16 dkg < 18 dkg < 106 dkg b) 2000 mg < 2 dkg < 26 g < 30 g < 2500 g c) 1200 mg < 120 g < 120 dkg < 12 kg < 1 t d) g < 3000 dkg < 35 kg < 100 kg < 2 t e) mg < 13 g < 14 g < mg < 12dkg 11. a) 49 kg > 48 kg > 47 kg > 46 kg > 28 kg b) 3 t > 2 t > 1600 kg > 1200 kg > 1 t c) 21 dkg > 200 g > 19 dkg > 19 g > 2000 mg d) 200 dkg > 1600 g > 150 dkg > 1300 g > 1 kg e) 3000 g > 2 kg > 15 g > 1 dkg = mg 12. a) kg b) t c) dkg d) g e) kg

58 13. a) 87 g 9 dkg f) 12 g 1 dkg b) mg 32 dkg g) 846 g 85 dkg c) 169 g 17 dkg h) 23 kg 2300 dkg d) 34 kg 3400 dkg i) 4 kg 400 dkg e) 27 g 3 dkg j) 1521 g 152 dkg 14. a) 87 dkg 1 kg f) 8557 g 9 kg b) 261 g 0 kg g) g 14 kg c) 164 dkg 2 kg h) 465 dkg 5 kg d) 1008 dkg 10 kg i) 2790 g 3 kg e) 4015 g 4 kg j) 7 t 7000 kg 15. a) 1 g = 1000 mg f) 43 g = mg b) 5 g = 5000 mg g) 210 g = mg c) 2 dkg = mg h) 12 dkg = mg d) 31 g = mg i) fél g = 500 mg e) 12 dkg = mg j) 1 kg = mg 16. a) 12 dkg = 120 g f) 2 t = g b) mg = 21 g g) 91 dkg = 910 g c) 9 kg = 9000 g h) 5 dkg = 50 g d) 24 kg = g i) mg = 12 g e) 312 dkg = 3120 g j) 84 kg = g

59 17. a) 130 g = 13 dkg f) 19 kg = 1900 dkg b) 3 kg = 300 dkg g) 130 kg = dkg c) 5 t = dkg h) 50 t = dkg d) 340 g = 34 dkg i) 2500 g = 250 dkg e) 8160 g = 816 dkg j) fél kg = 50 dkg 18. a) 400 dkg = 4 kg f) dkg = 8 t b) 2000 kg = 2 t g) 4000 g = 4 kg c) 1300 dkg = 13 kg h) 3000 kg = 3 t d) kg = 15 t i) 3200 dkg = 32 kg e) g = 70 kg j) kg = 64 t Őrtartalommérés 19. a) 88 dl < 90 dl < 91 dl < 93 dl < 95 dl b) 26 ml < 26 cl < 26 dl < 26 l < 26 hl c) 25 ml < 500 ml < 1 l < 12 dl < 130 cl d) 500 dl < 5300 cl < 3 hl < 4 hl < 4500 l e) 2500 ml < 1500 cl < 25 l < 340 dl < 2 hl 20. a) 42 cl > 40 cl > 39 cl > 38 cl > 37 cl b) 17 hl > 17 l > 17 dl > 17 cl > 17 ml c) 2 dl > 15 cl > 1 dl > 1 cl > 9 ml d) 3 hl > 3200 cl > 31 l > 300 dl > 45 ml e) 2 hl > 160 l > 1560 dl > 1500 dl > 150 cl

60 21. a) l b) ml c) dl d) l e) hl 22. a) 87 cl 9 dl f) 3408 cl 341 dl b) 342 cl 34 dl g) 684 cl 68 dl c) 1650 ml 17 dl h) 7064 ml 71 dl d) 3720 ml 37 dl i) 238 cl 24 dl e) 14 l 140 dl j) ml 132 dl 23. a) 87 dl 9 l f) 4060 cl 41 l b) 130 cl 1 l g) 7990 ml 8 l c) 3400 ml 3 l h) 532 cl 5 l d) 7 hl 700 l i) 884 dl 88 l e) 341 dl 34 l j) 2656 cl 27 l 24. a) 12 cl = 120 ml f) 16 l = ml b) 43 dl = 4300 ml g) 2 hl = ml c) 7 l = 7000 ml h) 348 cl = 3480 ml d) 62 cl = 620 ml i) 820 dl = ml e) 91 dl = 9100 ml j) 50 l = ml

61 25. a) 12 dl = 120 cl f) 15 l = 1500 cl b) 24 l = 2400 cl g) 2 hl = cl c) 840 ml = 84 cl h) 754 dl = 7540 cl d) 162 dl = 1620 cl i) 9 l = 900 cl e) 3700 ml = 370 cl j) ml = 1670 cl 26. a) 21 l = 210 dl f) 3970 cl = 397 dl b) 310 cl = 31 dl g) 73 l = 730 dl c) 5 hl = 5000 dl h) 12 hl = dl d) 700 ml = 7 dl i) 840 cl = 84 dl e) 2900 ml = 29 dl j) 6400 ml = 64 dl 27. a) 120 dl = 12 l f) 4800 l = 48 hl b) 300 l = 3 hl g) 24 hl = 2400 l c) 8000 cl = 80 l h) dl = 10 hl d) 5000 dl = 5 hl i) 8500 cl = 85 l e) ml = 10 l j) 3700 l = 37 hl Hımérsékletmérés 28. a) 6 C b) 10 C c) 23 C d) 15 C e) 0 C

62 29. a) 3 C; 4 C; 5 C; 6 C b) 1 C; 0 C; 1 C c) 2 C; 1 C; 0 C; 1 C; 2 C; 3 C; 4 C d) 4 C; 5 C; 6 C; 7 C; 8 C e) 3 C; 2 C; 1 C 30. a) 2 C < 1 C < 0 C < 2 C < 3 C b) 18 C < 16 C < 15 C < 16 C < 18 C c) 9 C < 8 C < 6 C < 6 C < 8 C 31. a) 12 C > 7 C > 0 C > 5 C > 7 C b) 24 C > 11 C > 8 C > 10 C > 11 C c) 4 C > 3 C > 4 C > 6 C > 8 C C volt délben a hımérséklet C volt délben a hımérséklet C volt éjjel a hımérséklet C volt délben a hımérséklet.

63 C volt éjjel a hımérséklet C volt délben a hımérséklet.

64 IX. Valószínőségi játékok 1. a) 4-et f) 0-t b) 5-öt g) 0-t c) 6-ot h) 0-t d) 4-et i) 1-et e) 4-et j) 1-et 2. a) H b) I c) H d) I e) I f) H 3. a) 1. kártya kártya kártya összeg szorzat b) 1. NB 6. L 2. B 7. B 3. L 8. NB 4. NB 9. L 5. NB 10. NB c) kicsi: 1., 4.; 8.; 10. nagy: 1., 5.

65 4. a) 1. igen 4. igen 2. nem 5. igen 3. igen 6. nem b) 24; 26; 27; 42; 46; 47; 62; 64; 67; 72; 74; 76 c) A lányok. d) Nem, mert sokkal több páros szám keletkezhet, mint páratlan. 5. B NB L a) Ha egy szám osztható 4-gyel, akkor osztható 2-vel is. X b) Ha egy fa magasabb, mint 2 méter, akkor magasabb 3 méternél is. X c) Két páratlan szám szorzata páros. X d) Ha egy szám osztható 3-mal, akkor osztható 6-tal is. X e) Ha valaki alacsonyabb 165 cm-nél, akkor alacsonyabb 170 cm-nél is. X f) Ha Eszti gyorsabb, mint Era és Móni is gyorsabb, mint Era, akkor Eszti gyorsabb, mint Móni. X g) Két pozitív egyjegyő szám összege egyjegyő. X h) Ha András nehezebb, mint Tomi és Tomi nehezebb, mint Dávid, akkor András nehezebb, mint Dávid. X 6. a) I b) I c) H d) I e) H f) I

66 7. a) 7-et f) 0-t b) 6-ot g) 0-t c) 8-at h) 0-t d) 5-öt i) 1-et e) 4-et j) 1-et

Nyitott mondatok tanítása

Nyitott mondatok tanítása Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

JAVÍTÓKULCSOK I. Természetes számok

JAVÍTÓKULCSOK I. Természetes számok JAVÍTÓKULCSOK I. Természetes számok Bevezetı feladatok 1. a) b) c) d) e) 2. a) A = 5; B = 45; C = 55; D = 30; E = 20 b) A = 120; B = 160; C = 220; D = 235; E = 285 c) A = 1000; B = 1300; C = 1900; D =

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

MÛVELETEK TIZEDES TÖRTEKKEL

MÛVELETEK TIZEDES TÖRTEKKEL MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013 Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 5 Mozaik Kiadó Szeged, 2013 A TERMÉSZETES SZÁMOK 13. A szorzat változásai Az iskolai könyvtáros 10

Részletesebben

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra TANMENETJAVASLAT Bevezető A harmadik osztály tananyagát a kerettantervhez igazodva heti négy matematikaórára dolgoztuk ki. A tanmenetjavaslat 3. osztályban 120 tervezett órát tartalmaz. A fennmaradó időben

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 5. ÉVFOLYAM MEGOLDÁSOK 1. a) I; b) H; c) I; d) I; e) I.. a) I; b) I; c) H; d) I; e) H. Természetes számok. 5555 < 7788< 7878< 7887< 8787< 8877< 8888. 4.

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

IV. Matematika Konferencia Műszaki Kiadó

IV. Matematika Konferencia Műszaki Kiadó "Tervek - Táblák - Játékok" IV. Matematika Konferencia 2013. január 23. Szerepbővülés Cirkuszi mutatvány? Cirkuszi mutatvány? Tehetségfejlesztő szakember Pedagógus a digitális korban Pedagógus a digitális

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

Javítókulcs a második osztályos szöveges számolóhoz

Javítókulcs a második osztályos szöveges számolóhoz Javítókulcs a második osztályos szöveges számolóhoz 1. Ismétlés 1 strucc, 2 szurikáta, 3 papagáj, 4 bagoly, 5 pelikán, 6 kenguru, 7 láma, 8 majom, 9 flamingó, 10 teve a) 2+5, 7 2, 7 5, 5+2 b) 6+7, 13 6,

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A tájékozódó felmérő feladatsorok értékelése A tájékozódó felmérések segítségével a tanulók

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Mérések szabványos egységekkel

Mérések szabványos egységekkel MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.

Részletesebben

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24

AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24 AJÁNLÓ A számítógéppel támogatott oktatás megszünteti a tantárgyak közti éles határokat, integrálni képes szinte valamennyi taneszközt, így az információk több érzékszervünkön jutnak el hozzánk, a képességfejlesztés

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 3 TANMENET javaslat a szorobánnal számoló 3. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Kapcsolatok, összehasonlítások

Kapcsolatok, összehasonlítások Kapcsolatok, összehasonlítások 1. Milyen kapcsolat van a képen látható családtagok között? a) Beszéljétek meg, mit jelenthetnek a nyilak! b) Fejezd be a megkezdett mondatokat! Árpi testvére. Béla Csilla.

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam eszközök diákok és csoportok részére 2. félév A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKA A. feladatlapok 4. évfolyam. 1. félév

MATEMATIKA A. feladatlapok 4. évfolyam. 1. félév MATEMATIKA A feladatlapok 4. évfolyam 1. félév A kiadvány KHF/2568-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv

Részletesebben

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen?

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 2. Péter vett 3 dm gatyagumit, de nem volt elég, ezért vissza ment a boltba és vett még 21 cm-t. Hány cm-t

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

A KITŰZÖTT FELADATOK MEGOLDÁSAI

A KITŰZÖTT FELADATOK MEGOLDÁSAI Sokszínű matematika 7. évfolyam A KITŰZÖTT FELADATOK MEGOLDÁSAI munkaanyag A * az egész dokumentumban a szorzás jelét helyettesíti! .o. /. : 0, b) : 0, c) : 0, d) 7 7 : 7,87 7 7 e) 0 0 : 8, 8 f) : 8, 8

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály

Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály Megoldások I. Osztályozás, rendezés, kombinatorika 1. osztály 4. Lackó kezében egy gesztenye van. 5. Kettő. 1 + 1 = 2. 6. Öt. 3 + 2 = 5. 7. Igaz állítás: A), D), E). 2. osztály 1. 6 lehetőség van. Ha ismétel,

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 2. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tanmenetet három lehetséges

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát.

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát. A számok kerekítése (Keress példákat pontos és közelítő értékek megadására!) Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát Közelítően, becsléssel adtuk

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag

Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag Mérés; kerület, terület, felszín, térfogat 5.6 Mentsd meg a királylányt! Készségfejlesztő társasjáték Mérés; kerület, terület, felszín, térfogat 6. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

HELYI TANTÁRGYI RENDSZER. MATEMATIKA Évfolyam: 1-4.

HELYI TANTÁRGYI RENDSZER. MATEMATIKA Évfolyam: 1-4. Tantárgy: (helyi) Évfolyam: 1-4. Óraszámok Tantárgy Óraszám évfolyamonként 1. 2. 3. 4. nor. né. nor. né. nor. né. nor. né. Matematika 5 4 5 4 5 4 4 4 Éves óraszám 180 144 180 144 180 144 144 144 Témakörök

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK Egész számok.. a) Igaz; b) igaz; c) hamis; d) igaz; e) igaz; f) hamis.. A felsorolt számok közül a legkisebb szám: 0, a legkisebb

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9 A kiadó a kiadói jogot fenntartja. Felelõs

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a

Részletesebben

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/2568-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

SZÁMTANI ÉS MÉRTANI SOROZATOK

SZÁMTANI ÉS MÉRTANI SOROZATOK SZÁMTANI ÉS MÉRTANI SOROZATOK Számtani sorozatok 1. Egy vetélkedın 15 000 Ft jutalmat osztottak szét. Az elsı helyezett 3000 Ft-ot kapott, a továbbiak sorra 200 Ft-tal kevesebbet, mint az elıttük lévı.

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti Tankönyvkiadó) Tananyagbeosztás: Éves óraszám: 148 óra Heti óraszám:

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Intenzív matek 2. Feladatok a 100-as számkörben

Intenzív matek 2. Feladatok a 100-as számkörben x x Intenzív matek. Feladatok a 00-as számkörben Útmutató a füzethez Ez a füzet nagyon sokféle feladatot tartalmaz, amelyek segítségével a tanulók a 00-as számkörön belül gyakorolhatják és fejleszthetik

Részletesebben

TANANYAGBEOSZTÁS, KÖVETELMÉNYEK

TANANYAGBEOSZTÁS, KÖVETELMÉNYEK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tanmenetet három lehetséges óraszámhoz igazítva állítottuk össze. I. A Kerettanterv által előírt minimális óraszám heti 4 óra; évi 148 óra: A tanmenetben ez az órabeosztás

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY A NEMZETI ALAPTANTERVHEZ ILLESZKEDŐ TANKÖNYV, TANESZKÖZ ÉS NEMZETI KÖZOKTATÁSI PORTÁL FEJLESZTÉSE TÁMOP-3.1.2-B/13-2013-0001 MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? 5-6-7. OSZTÁLY KEDVES ÖTÖDIKES!

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tananyagbeosztást 3.

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két szám összege 20. Az egyik összeadandó 18. Írjátok le a másik összeadandót! 2. Gyuri este leírta az összes számot 1-től 25-ig. Reggel a számokat össze-vissza leírva találta, volt olyan

Részletesebben

Hetedikesek levelező matematikaversenye IV. forduló

Hetedikesek levelező matematikaversenye IV. forduló Hetedikesek levelező matematikaversenye IV. forduló 1. Tudjuk, hogy A = 3 + és B =. Számítsd ki a következő értékeket: a) A + B b) A B c) d) A B Számítsuk ki A és B értékét, végezzük el a műveleteket:

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam eszközök tánítók részére 1. félév 1. modul 1. melléklet 3. évfolyam tanító/1. DARABSZÁM tíz ház 2-3 kutya 4 regény 1. modul 1. melléklet 3. évfolyam

Részletesebben

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. sokszínû. munkafüzet

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. sokszínû. munkafüzet sordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné sokszínû munkafüzet 5 Kilencedik, változatlan kiadás Mozaik Kiadó Szeged, 2013 GEOMETRII LPISMERETEK 2. GEOMETRII

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3 KATEGÓRIA P3. Tudjuk, hogy az L betű az 5-ös számot rejti, az E betű a 2-es számot, az S betű pedig a 20-as számot. Írjátok le azt a betűt, amely az L+E+S által elrejtett számot jelöli: A: 25 B: 32 C:

Részletesebben

Matematika 5. Gondolkodni jó! feladatainak megoldása

Matematika 5. Gondolkodni jó! feladatainak megoldása Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Zankó Istvánné tanár Matematika 5. Gondolkodni jó! feladatainak megoldása általános iskola 5. osztály

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben

SOROZATOK. A sorozat tagjai: az első tag a 1, a második tag a 2, a harmadik tag a 3,...

SOROZATOK. A sorozat tagjai: az első tag a 1, a második tag a 2, a harmadik tag a 3,... SOROZATOK Definíció: A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete számhalmaz. Jelölése: (a n ) A sorozat tagjai: az első tag a 1, a második

Részletesebben

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:

Részletesebben

MATEMATIKA 6. Megoldások

MATEMATIKA 6. Megoldások MATEMATIKA 6. Megoldások Oktatáskutató és Fejlesztő Intézet A kiadvány megfelel az 51/2012. (XII. 21.) EMMI rendelet: 2. sz. melléklet: Kerettanterv az általános iskolák 5 8. évfolyama számára 2.2.03.

Részletesebben

Matematika javítókulcs

Matematika javítókulcs 2003 ORSZÁGOS KOMPETENCIAMÉRÉS Matematika javítókulcs 6. évfolyam Kiss Árpád Országos Közoktatási Szolgáltató Intézmény - Értékelési Központ ÁLTALÁNOS TUDNIVALÓK A 2003-as tavaszi felmérés célja a tanulók

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Sorozatok begyakorló feladatok

Sorozatok begyakorló feladatok Sorozatok begyakorló feladatok I. Sorozatok elemeinek meghatározása 1. Írjuk fel a következő sorozatok első öt elemét és ábrázoljuk az elemeket n függvényében! a n = 4n 5 b n = 5 n 2 c n = 0,5 n 2 d n

Részletesebben

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben. Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott

Részletesebben

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege

3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat

Részletesebben

Kompetenciaalapú mérés 2008/2009. M A T E M A T I K A 9. é v f o l y a m Javítókulcs A változat

Kompetenciaalapú mérés 2008/2009. M A T E M A T I K A 9. é v f o l y a m Javítókulcs A változat Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Kompetenciaalapú mérés 008/009. M A T E M A T I K A 9. é v f o l y a m Javítókulcs A változat Minden

Részletesebben

Kognitív képességek fejlesztése Szöveges feladatok megoldása

Kognitív képességek fejlesztése Szöveges feladatok megoldása Kognitív képességek fejlesztése Szöveges feladatok megoldása Összeadással, kivonással megoldható feladatok A szöveges feladatokkal történı ismerkedés folyamatában a kognitív képességek terén problémát

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben