PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
|
|
- Dániel Orosz
- 7 évvel ezelőtt
- Látták:
Átírás
1 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: = 3. A villamosban 21 utas ült. A legközelebbi megállóban 12 utas szállt le, 5 utas pedig felszállt. A következő megállóban 9 utas szállt fel, le pedig hárman. Hány utas utazott a végállomásra? 4. Hány szám található a 129 és a 147 számok között? 5. Nagyapának a padláson 230 cm, 405 cm, 317 cm és 189 cm hosszú deszkái vannak. Legtöbb hány két méter hosszú deszkát tud belőlük levágni? 6. A mókus mindennap 3 mogyorót vitt az odújába. Hány mogyoró van az odújában, ha 5 napig gyűjtögetett a télre? 7. Melyik az a legnagyobb páratlan számjegy, amelyet a 74 6 számba helyettesíthetsz a csillag helyére? 8. A sítúrára 13 gyerek ment, kétszer annyi férfi, mint gyerek és 8-cal kevesebb nő, mint gyerek. Hány személy szállt fel arra az autóbuszra, amelyik a sítúrára vitte őket? 9. Milyen számmal kell a -t helyettesíteni, hogy érvényes legyen: = 47? 10. Legtöbb hányszor tudod a 107-ből kivonni a nyolcat? 11. Máté anyukája 80 Sk-ért abroszt vett és még három törülközőt. A törülköző 20 Sk-val volt olcsóbb, mint az abrosz. Hány koronát kapott vissza, ha három százkoronással fizetett? 12. Melyik az a legnagyobb szám, amelyet az egyenlőtlenségben az x helyére írhatunk: 5 < 7. x < Fanninak a táskában két kék és két piros füzete van. Legkevesebb hány füzetet kell kihúznia ahhoz, hogy biztosan kihúzzon két egyforma színű füzetet? 14. Hány számjegyet kell leírnunk, ha le akarjuk írni a számokat 1-től 20-ig? 15. Számítsd ki: (34 33). (33 32). (32 31). (31 30) =
2 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév Kategória P 3 ****************************************************************************************************
3 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 4 1. A Pitagorasz verseny eredményes résztvevői számára vásárolt 5 könyv 150 koronával kerül kevesebbe, mint 8 ugyanilyen könyv. Hány koronát fizetnének 9 könyvért? 2. Milyen számot kell a négyzet helyére írni? ( ). 5 = Számítsd ki: = 4. A nagyapa ötször annyi idős, mint az unokája Péter. Péter apukája háromszor olyan idős, mint a fia. Együtt összesen 99 évesek. Hány éves Péter? 5. Számítsd ki az összes olyan természetes szám összegét, amelyet behelyettesíthetünk az x helyére, hogy érvényes legyen: 3. x < Az asztalos a 3 m 8 cm hosszú deszkából négy egyforma hosszúságú kisebb darabot vágott le. Hány centiméter hosszú darabokat vágott le, ha a maradék 28 cm hosszú volt? 7. Írd le azt a számot, amelyik a 231 és a 253 számok között éppen középen van! 8. Alakítsd ki a 6, 8, 7, 9 számjegyekből a lehető legnagyobb páros és legkisebb páratlan négyjegyű számokat, majd számítsd ki a különbségüket! A számjegyek nem ismétlődhetnek. 9. Írd le az eredményt kilogrammokban : 280 kg g + 5t = 10. Amikor Kinga az iskolából hazafelé megy át kell mennie egy hídon. A hídhoz az iskolából két út vezet. A hídtól hazáig három úton lehet eljutni. Hány különböző úton tud hazamenni az iskolából? 11. Hány percet tanulnak a negyedikesek Nemtudomka országban, ha a tanítás náluk 4 napig tart, mindennap 3 tanítási órájuk van és egy tanítási óra 35 percig tart? 12. Írd le azt a számot, amelyben 8 százas van, egyeseinek száma kétszer kevesebb, mint a százasainak a száma, ezreseinek a száma hárommal több, mint az egyeseinek a száma, tízeseinek a száma pedig öttel kevesebb, mint az ezreseinek a száma! 13. Számítsd ki: ( ). (100 99). (99 98). (98 97) = 14. Milyen eredményt kap Misi, ha összeadja az összes egyjegyű páros számot? 15. Anyuka mindkét ikerlányának öt pár zoknit vett. Hány koronát fizetett érte, ha egy pár zokni 20 koronába kerül?
4 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév Kategória P
5 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 5 1. A kisebbítendő 205-tel nagyobb, mint a kivonandó. Írd le a különbségüket! 2. Hány méter a szomszéd négyzet alakú kertjének az oldala, ha a kerülete akkora, mint a mi 18 m és 22 m oldalhosszúságú téglalap alakú kertünknek a kerülete. 3. Zsófi a cukrászdában elköltötte spórolt pénzének az egy negyedét, édesanyjának születésnapi ajándékra elköltötte spórolt pénzének a felét. A vásárlások után 24 koronája maradt. Hány koronája volt eredetileg megspórolva? 4. Melyik szám következik a számsorozatban a 77 után: 99, 92, 86, 81, 77,...? 5. Mennyi az osztó a feladatban: :... = ? 6. Írd le a szorzat eredményét: (42 40). (40 38). (38 36). (36 34). (34 32). (32 30) = 7. Írd le hány nullára végződik a feladat eredménye: = 8. Írd le annak a példának az eredményét, amelyik a legnagyobb: : 5 = : 6 = : 7 = 9. Írd le az összes olyan egész szám összegét, amelyet behelyettesíthetünk az egyenlőtlenségbe: 15 < x < Keresd meg a 26 nak azt az egész számú többszörösét, amelyik legközelebb áll az hez! 11. Hány olyan 9 cm kerületű különböző háromszög létezik, amelyek oldala centiméterekben egész szám? 12. Hány olyan háromjegyű szám van, amelyben éppen két kettes számjegy szerepel? 13. Hány háromszög van az ábrán? 14. Számítsd ki: ( ) 2 + ( ) 2 + ( ) 2 = 15. Írd le az eredményt méterekben: 3 km 50 m + 50 m 300 cm cm =
6 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév. Kategória P
7 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 6 1. Az első összeadandó 100-zal nagyobb, mint a másik összeadandó. Mennyi az első és a második összeadandó különbsége? 2. Melyik szám következik a számsorozatban: 4, 10, 22, 46, 94,...? 3. Melyik számmal kell megszorozni a et, hogy a szorzat legyen? 4. A tankönyv oldalainak megszámozására 57 számjegyet használtunk. Hány oldalas a tankönyv? 5. Írd le a 136 -os szög mellékszögének a nagyságát!. 6. Írd le a szorzat eredményét: (45 40). (40 35). (35 30). (30 25). (25 20). (20 15) = 7. Számítsd ki a 25 és a 12 közötti összes egész szám összegét. 8. Számítsd ki az ábrán látható hatszög területét négyzetcentiméterekben: 9. Hány négyzet van az ábrán? Az adatok centiméterekben vannak. 10. Milyen számjegyre végződik a szorzat: = 11. Számítsd ki: = 12. Hány olyan kétjegyű szám van, amelyben legalább egy nyolcas számjegy szerepel? 13. Melyik az a legkisebb szám, amelyet a 257-hez kell adni ahhoz, hogy az eredmény maradék nélkül osztható legyen 25-tel? 14. A téglalap kerülete 50 cm. Az egyik oldala 3 cm-rel nagyobb, mint a másik. Írd le a rövidebb oldal hosszát! 15. Írd le melyik számot kell az egyenletben az x helyére helyettesíteni, hogy érvényes legyen: 312 : x : 4 = 13
8 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév Kategória P , cm 15. 6
9 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 7 1. Az osztandó ötször nagyobb, mint az osztó. Írd le a hányadost! 2. Melyik számot kell a számsorozatban a helyére írni: 2, 9, 37, 149,? 3. Írd le a 2006 páros osztóinak az összegét!. 4. Melyik számmal kell megszorozni a et, hogy a szorzat legyen? 5. Melyik törzsalakú törttel kell helyettesíteni a -t a feladatban: 3 + = 1, Írd le a szorzat eredményét: ( ). ( ). ( ). ( ). (100 95) = 7. Számítsd ki a 48 öt hatodának a három negyedét! 8. Az egyenlőszárú háromszögben az egyik szög nagysága 106. Mekkora a másik két szög nagyságának az összege? 9. Számítsd ki: = 10. Hány olyan háromjegyű szám van, amelyben legalább két nyolcas számjegy szerepel? 11. Számítsd ki: = 12. Hat egymást követő egész szám összege 3. Számítsd ki a szorzatukat! 13. A számból húzz ki két számjegyet úgy, hogy az így keletkezett szám osztható legyen hattal. Írd le az így keletkezett háromjegyű számot! 14. Klaudia a Pitagorasz versenyen 11 példát oldott meg 33 perc alatt. Hány pontja lett, ha minden példája jó volt? 15. Számítsd ki: 12,3 (2,3 + 10,2) (13,5 10,5) ( 14,5 15,5) =
10 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév Kategória P ,2
11 Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 8 1. Az első tényező ötször nagyobb, mint a második tényező. Írd le az első és a második tényező hányadosát! 2. Melyik szám következik a 122 után a számsorozatban : 1, 2, 5, 14, 41, 122,...? 3. Írd le a 2006 legnagyobb osztóját! 4. Melyik számmal kell megszorozni a et, hogy a szorzat legyen? 5. Melyik törzsalakú törttel kell helyettesíteni a -t a feladatban: 2 2. = Hány nulla lesz a szorzat eredményében: ( ). ( ). ( ). ( ) =? 7. Írd le, hogy milyen számjegyre végződik a szorzat: 20, , 306 = 8. Számítsd ki: = 9. Egy 30 cm magas hatliteres edényben 4,5 l víz van. Hány deciméter magasságig ér a víz? 10. Hány 30-nál kisebb kétjegyű prímszám van? 11. Hány centiméter hosszú az 50 cm 2 területű egyenlőszárú derékszögű háromszög befogója? 12. Számítsd ki: 3,4 ( 1,4 ( 7,4 10,4 )) = 13. Három és egy negyed kenyér 78 koronába kerül. Hány koronába kerül kettő és fél ilyen kenyér? 14. Írd le az erdményt: - 10,25 : ( 0,2) : : ( 5) : 0,05 : 0,02 = 15. A számegyenesen az 5 és a 15 egymástól 2 dm távolságra vannak. Hány centiméter távolságra lesznek egymástól a 5 és a 7 számok?
12 Az iskolai forduló feladatainak megoldásai 2006/2007-es tanév Kategória P , ,
PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 33. évfolyam 2011/2012-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Két szám összege 20. Az egyik összeadandó 18. Írjátok le a másik összeadandót! 2. Gyuri este leírta az összes számot 1-től 25-ig. Reggel a számokat össze-vissza leírva találta, volt olyan
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 39. évfolyam, 2017/2018-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le azt a betűt, amelyik az összeadás eredményét jelöli: 2 + 4 + 6 + 8 + 10 + 11 + 3 + 5 + 7 + 9 = A: 43 B: 45 C: 50 D: 65 2. Írjátok le azt a számot, amelyet az X helyére kell írni,
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 32. évfolyam 2010/2011-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A harmadikosok bábszínházba készültek. A színházban csak négy sorban vannak székek. Az első sorban 17, a másodikban 15, a harmadikban 16 és az utolsó sorban 20 szék van. Hány gyerek mehetett
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A mesebeli Barnabás bogárnak 28 lába van. Írjátok le, hogy összesen hány lába van Barnabás hat testvérének! 2. Írjátok le az összeadás eredményét: 5 + 15 + 25 + 35 = 3. A 2 és a 3 számok
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév
Kategória P 6 1. Zsombornak a szekrényben csak fekete, barna és kék pár zoknija van. Ingjei csak fehérek és lilák, nadrágjai csak kékek és barnák. Hányféleképpen felöltözve tud Zsombor iskolába menni,
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában
Részletesebben1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!
RészletesebbenCurie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenBÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
Részletesebben4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
Részletesebben1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 40. évfolyam, 2018/2019-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A 38 és a 22 összegét kisebbítsétek 10-zel. Írjátok le a kisebbítés után kapott számot! 2. A 24 -ba kerülő könyv 8 -val lett olcsóbb. A 26 -ba kerülő leporelló 9 -val lett olcsóbb. Írjátok
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenCurie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 33. évfolyam, 2011/2012-es tanév
KATEGÓRIA P3 1. Három szám összege 80. Ha az első összeadandó 18 és a második 37, akkor mekkora a harmadik összeadandó? 2. Gergő minden reggel almákat rakott egy kosárba. Az első nap egyet rakott bele,
RészletesebbenSzámlálási feladatok
Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 39. évfolyam, 2017/2018-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A tanító néni figyelmeztette Verát, hogy hiba van a példa eredményében: 63 + 58 = 94. Írjátok le a jó eredményt, amit Verának le kellett volna írni! 2. Írjátok le a feladat eredményét:
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenFELADATOK ÉS MEGOLDÁSOK
3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,
RészletesebbenGyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály
3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? Gyöngyi gyöngyszemeket fűz egy zsinegre. Először 1 pirosat, utána 2 sárgát, aztán 3 zöldet, majd újra 1 piros, 2 sárga és
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK
Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Részletesebben1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére
Részletesebben91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg
Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 36. évfolyam, 2014/2015-ös tanév. Kategória P 6
Kategória P 6 1. Ági kiszámolta az összes 43-nál nagyobb, de egyúttal 47-nél kisebb páros természetes szám szorzatát. Írjátok le, hogy milyen eredményt kapna Ági, ha kiszámolná a szorzat számjegyeinek
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 38. évfolyam, 2016/2017-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Határozzátok meg a sorozat következő három tagját és írjátok le az összegüket: 1, 29, 2, 28, 3, 27, 4,... 2. Írjátok le, hogy melyik számot kell a helyére írni, hogy érvényes legyen az
Részletesebben2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
RészletesebbenA TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Részletesebben2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
RészletesebbenNyitott mondatok tanítása
Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam
RészletesebbenBÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Részletesebben2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P 3
KATEGÓRIA P 3 1. Egészítsétek ki a táblázatot: Írjátok le a beírt számok összegét! A 25 8 58 B 16 5 27 A B 3 2. A harmadikosok filmvetítésre mentek. Kettes sorba rendeződtek. Ági észre vette, hogy a barátnőjével
RészletesebbenVI. Vályi Gyula Emlékverseny november
VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 32. évfolyam, 2010/2011-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A tanító néni megkérte a harmadikosokat, hogy segítsenek neki kiszámítani, hány szék kell a szülők számára tartott előadásra. Az előadásra két osztály diákjainak a szülei jönnek. A III.A
RészletesebbenIII. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
RészletesebbenSzámokkal kapcsolatos feladatok.
Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17
RészletesebbenGyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
RészletesebbenMegyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 35. évfolyam, 2013/2014-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le, melyik alakzat nem tartozik a többi közé: négyzet, háromszög, egyenes, kör, téglalap 2. Számítsátok ki: 15 + 17= 24 + 59 = 50 + 20 = Az eredményeket adjátok össze és ezt az
RészletesebbenGyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3
KATEGÓRIA P3. Tudjuk, hogy az L betű az 5-ös számot rejti, az E betű a 2-es számot, az S betű pedig a 20-as számot. Írjátok le azt a betűt, amely az L+E+S által elrejtett számot jelöli: A: 25 B: 32 C:
RészletesebbenSzabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály
5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
RészletesebbenPYTAGORIÁDA A járási forduló feladatai 40. évfolyam, 2018/2019-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Marcika ugyanolyan matematikakönyvet akart venni saját magának és három barátjának is. Megállapította, hogy két ilyen könyv ára 18. Legalább hány eurója kell hogy legyen Marcikának a könyvek
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
RészletesebbenA Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly
A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2
RészletesebbenX. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?
1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles
RészletesebbenFELADATOK ÉS MEGOLDÁSOK
3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó
Részletesebben48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
RészletesebbenMATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenMatematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
RészletesebbenReformátus Iskolák XX. Országos Matematikaversenye osztály
1. Pisti beledobott egy kezdetben üres - kosárba valahány piros és kék labdát, amelyeknek legalább 90%-a piros. Jenő találomra kivett 50 labdát, közöttük 49 piros volt. Julcsi megnézte a kosárban maradt
Részletesebben1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
RészletesebbenSzorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros
RészletesebbenI. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
RészletesebbenA fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
Részletesebben;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
RészletesebbenA III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
RészletesebbenMinden feladat teljes megoldása 7 pont
Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,
Részletesebben1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5
WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1
RészletesebbenMegoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára
Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára
RészletesebbenVIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?
VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.
Részletesebben44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
RészletesebbenIV. Vályi Gyula Emlékverseny november 7-9.
IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3
RészletesebbenFOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
RészletesebbenMatematika levelezős verseny általános iskolásoknak II. forduló megoldásai
Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"
Részletesebbentörtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
RészletesebbenCurie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.
Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:
RészletesebbenELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,
RészletesebbenSorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
RészletesebbenFényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)
Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit
RészletesebbenArany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
RészletesebbenMatematika. 1. évfolyam. I. félév
Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!
RészletesebbenF 2000/2001. Iskolai (első) forduló november
F 2000/2001. Iskolai (első) forduló 2000. november 7. osztály 1. Legkevesebb hány gyermeke van a Kovács családnak, ha mindegyik gyereknek van legalább egy fiú és egy leány testvére? 2. Hány olyan téglalap
Részletesebben46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége
RészletesebbenXI. PANGEA Matematika Verseny I. forduló 9. évfolyam
1. Tekintsük a következő két halmazt: F = {11-nél nem nagyobb prímszámok} és G = {egyjegyű páratlan pozitív egészek}. Az alábbi halmazok közül melyiknek van a legkevesebb eleme? A) F B) G C) F G D) F G
RészletesebbenGyakorló feladatsor matematika javítóvizsgára évfolyam.docx
1) Öt barát, András, Bea, Cili, Dani, Endre versenyt fut egymással. Hányféle beérkezési sorrend lehetséges, ha nincs holtverseny? 2) Hat barát, András, Bea, Cili, Dani, Endre, Fruzsina versenyt úsznak
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Részletesebben0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA
0645. MODUL SZÁMELMÉLET Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA 0645. Számelmélet Gyakorlás, mérés Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A
Részletesebben2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
RészletesebbenFeladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben
Részletesebben5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200
2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 21 és 5 7 = 15
Megoldások 1. Írj fel 4 számot törtalakban a 3 7 és 5 7 között! Bővítsük a nevezőket a megfelelő mértékig: 3 7 = 9 21 és 5 7 = 15 21. Ezek alapján a megoldás: 10 21, 11 21, 12 21, 13 21. 2. Írd fel törtalakban
RészletesebbenX. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)
Részletesebben