MATEMATIKAI KOMPETENCIATERÜLET A

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKAI KOMPETENCIATERÜLET A"

Átírás

1 MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév

2 A kiadvány KHF/ /2008. engedélyszámon időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A kiadvány a Nemzeti Fejlesztési terv Humánerőforrás-fejlesztési Operatív Program központi program (Pedagógusok és oktatási szakértők felkészítése a kompetencia alapú képzés és oktatás feladataira) keretében készült, a sulinova oktatási programcsomag részeként létrejött tanulói információhordozó. A kiadvány sikeres használatához szükséges a teljes oktatási programcsomag ismerete és használata. A teljes programcsomag elérhető: címen. Matematika szakmai vezető: Pálfalvi Józsefné Szakmai tanácsadó: Csahóczi Erzsébet, Szeredi Éva Alkotószerkesztő: Pusztai Julianna, Vépy-Benyhe Judit Lektor : Makara Ágnes Felelős szerkesztő: Teszár Edit H-AMAT0604 Szerzők: Birloni Szilvia, Benczédi-Laczka Krisztina, Malmos Katalin, Pintér Klára, Zsinkó Erzsébet Educatio Kht Tömeg: 190 gramm Terjedelem: 3,9 (A/5 ív) A tankönyvvé nyilvánítási eljárásban közreműködő szakértők: Tantárgy-pedagógiai szakértő: Györfi Lászlóné Tudományos szakmai szakértő: Vecseiné dr. Munkácsy Katalin Technológiai szakértő: Karácsony Orsolya

3 tartalomjegyzék modul 1. melléklet Memóriakártya csoport modul 1. melléklet diákoknak modul 1. melléklet diákoknak modul 2. melléklet diákoknak modul 3. melléklet csoportonként modul 5. melléklet csoportonként modul 6/B melléklet csoportonként modul 1. melléklet csoportonként modul 1. melléklet diákoknak modul 2. melléklet csoportonként modul 1. melléklet diákoknak modul 2. melléklet csoportonként modul 1. melléklet csoportonként modul 2. melléklet Társasjáték csoportonként modul 1. melléklet csoportonként modul 1. melléklet Játékpénzek diákoknak modul 3. melléklet csoportonként modul 2. melléklet Dominó csoportonként modul 1. melléklet Bingó-játék diákoknak

4 0611. modul 1. melléklet Memóriakártya csoportonként Matematika A 6. évfolyam

5 0622. modul 1. melléklet diákoknak Matematika A 6. évfolyam

6 0622. modul 1. melléklet diákoknak Matematika A 6. évfolyam 4

7 0622. modul 2. melléklet diákoknak Matematika A 6. évfolyam ( 6) ( 5) ( 3) ( 2) ( 1) ( 4) 12 ( 12) 24 ( 24) > =

8 0622. modul 3/A melléklet csoportonként Matematika A 6. évfolyam ( 9) 9 + ( 17) 20 7

9 0622. modul 3/B melléklet csoportonként Matematika A 6. évfolyam Ha a kisebbítendőt és a kivonandót ugyanazzal a számmal növeljük, a különbség nem változik. Ha a kisebbítendőt és a kivonandót ugyanazzal a számmal csökkentjük, a különbség nem változik. Ha a kisebbítendőt növeljük, és a kivonandót nem változtatjuk, a különbség nő. Ha a kisebbítendőt csökkentjük és a kivonandót nem változtatjuk, a különbség csökken. Ha a kivonandót növeljük, és a kisebbítendőt nem változtatjuk, a különbség csökken. Ha a kivonandót csökkentjük és a kisebbítendőt nem változtatjuk, a különbség nő. Egy szám elvétele egyenlő az ellentettjének a hozzáadásával. Egy szám hozzáadása egyenlő az ellentettjének az elvételével.

10 0622. modul 5. melléklet csoportonként Matematika A 6. évfolyam 8 Spartacus-féle rabszolgafelkelés (Kr.e ) Nagy Sándor (Kr.e ) Magyar honfoglalás ( ) Mohamed ( ) Hannibál (Kr.e ) Julius Caesar (Kr.e. 0 44) Marathoni csata (Kr.e. 490) Attila hun király (Kr.e ) I. István (975 38) Püthagorász (Kr.e )

11 0622. modul 6/B melléklet csoportonként Matematika A 6. évfolyam 9 0 0

12 0623. modul 1. melléklet csoportonként Matematika A 6. évfolyam ( 3) 4 ( 3) 3 2 ( 3) 4 ( 2) ( 2) 4 ( 5) 2 2 ( 5)

13 0623. modul 1. melléklet csoportonként Matematika A 6. évfolyam 11 ( 8) / 4 ( 12) / 3 ( 12) : (-3) 4 / ( 2) 6 : ( 2) ( ) : ( 2) : 5 ( 6) :

14 0624. modul 1. melléklet diákoknak Matematika A 6. évfolyam 12

15 0624. modul 2. melléklet csoportonként Matematika A 6. évfolyam

16 0625. modul 1. melléklet diákoknak Matematika A 6. évfolyam 14

17 0625. modul 2. melléklet csoportonként Matematika A 6. évfolyam

18 0625. modul 2. melléklet csoportonként Matematika A 6. évfolyam 16 A szorzat pozitív A szorzat negatív A hányados pozitív A hányados negatív Az összeg pozitív Az összeg negatív A két szám előjele azonos A két szám előjele különböző A hányados páros A hányados páratlan A hányados kétjegyű A hányados egyjegyű

19 0643. modul 1. melléklet csoportonként Matematika A 6. évfolyam 17 Számok színképe Találjátok ki a színezés szabályát! 12 = 45 = 36 = 75 = 98 = 72 = 50 = 20 = 28 = 35 =

20 0645. modul 2. melléklet Társasjáték csoportonként Matematika A 6. évfolyam 18

21 0645. modul 2. melléklet Szerencsekártyák csoportonként Matematika A 6. évfolyam 19 Két prímszám összege mindig páros. (Hamis, mert pl. 2+3=5.) Van két prímszám, melyek összege 7. (Igaz, mert ahhoz, hogy az összeg páratlan legyen, az egyik prím a 2 kell legyen, és az 5 prím.) Prímszámok összege nem lehet prímszám. (Hamis, pl. 2+3=5.) A 12-nek van páratlan többszöröse. (Hamis, mert a 12 páros, így minden többszöröse is páros.) Ha egy prímszámot megszorzom önmagával, a szorzatnak mindig pontosan három osztója van gondolj a 9-re. (Igaz: 1; a prímszám és annak négyzete.) Van olyan szám, amelyben a számjegyek szorzata 165. (Hamis, mert 165= és a 11 nem számjegy.) Prímszámok szorzata nem lehet prímszám (Igaz a definíció miatt.) A 12-nek van páratlan osztója. (Igaz, pl. a 3.) Öt páros szám szorzata páratlan. (Hamis, egy páros tényező már párossá teszi a szorzatot.) Van olyan pozitív egész szám, amelynek van nála nagyobb osztója. (Hamis, a 0-nak minden természetes szám osztója, így rá ez igaz lenne, de a 0 nem pozitív.) Ha egy természetes szám utolsó számjegye 4 vagy 8, akkor osztható 4-gyel. (Hamis, pl. 14, 18.) Egy 5-tel osztható és egy 6-tal osztható szám különbsége lehet-e 2? (Igen, pl =2.) Öt páratlan szám összege páratlan. (Igaz, páronként páros az összeg, egy kimarad, ezért páratlan lesz az összeg.) Minden szám osztója önmagának. (Igaz.) Egy 5-tel osztható és egy 4-gyel osztható szám különbsége lehet-e 2? (Igen, pl =2.) Ha egy szám nem osztható 5-tel, akkor nem osztható -zel sem. (Igaz, mert ha -zel osztható lenne, akkor mivel az 5 osztója a -nek, szükségképpen 5-tel is osztható lenne.)

22 0645. modul 2. melléklet Szerencsekártyák csoportonként Matematika A 6. évfolyam 20 Ha egy szám osztható 3-mal és 5-tel, akkor osztható 15-tel is. (Igaz, mert a prímtényezős felbontásában a 3 és az 5 is szerepel, így 15-tel is osztható.) Három egymást követő természetes szám között biztosan van 3-mal osztható is. (Igaz: a maradékokat vizsgálva, egymás után 0; 1; 2 jön vagy 1; 2; 0 vagy 2; 0; 1.) A 16 osztóinak száma páros vagy páratlan? (Páratlan, osztópáronként: 1 16; 2 8; 4, aminek a párja önmaga, az osztók száma 5.) Bontsd fel prímtényezők szorzatára az 56-ot! (56= ) A 18 osztója a 3-nak. (Hamis, fordítva : a 3 osztója a 18-nak, és a 18 többszöröse a 3-nak.) Három egymást követő természetes szám szorzata osztható 3-mal (Igaz, mert biztos van köztük 3-mal osztható szám.) A 32 osztóinak száma páros vagy páratlan? (Páros, osztópáronként: 1 32; 2-16; 4 8.) Melyik az a kétjegyű szám, amelynek prímtényezős felbontásában 4 tényező szerepel, osztható 6-tal és 5-tel is, de 9-cel nem? (2 3 5 lehet, a hiányzó prímtényező 2 vagy 3 mert 0-nál kisebb, de 3 nem lehet, mert akkor 9-cel osztható lenne.) Melyik az a 3-mal osztható kétjegyű szám, amelynek prímtényezős felbontásában a legtöbb tényező szerepel? ( =96) Hány olyan egész centiméter oldalhosszúságú téglalap van, amelynek a területe 41 cm 2? (1, mert a 41 prím, csak 1 41 lehet a szorzat alakja.) Hány olyan egész centiméter élhosszúságú téglatest van, amelynek a térfogata 28cm 3? (1 1 28=1 2 14=1 4 7=2 2 7, azaz 4 lehetőség van.) Legtöbb hány tényezője lehet egy kétjegyű szám prímtényezős felbontásának? (6, mert a legkisebb tényezőket véve: =6 4 vagy =96.) Hány olyan egész centiméter oldalhosszúságú téglalap van, amelynek a területe 28 cm 2? (3, mert 28=1 28=2 14=4 7.) Mennyi a legnagyobb közös osztója a 42-nek és a 32-nek? (2)

23 0645. modul 2. melléklet Sprintkártyák csoportonként Matematika A 6. évfolyam 21 SPRINT 1973 SPRINT 4562 SPRINT 7542 SPRINT 4872 SPRINT 5628 SPRINT 9018 SPRINT 3534 SPRINT 8633 SPRINT 2775

24 0651. modul 1. melléklet csoportonként Matematika A 6. évfolyam 22 S T A R T c é l

25 0652. modul 1. melléklet Játékpénzek diákoknak Matematika A 6. évfolyam 23

26 0652. modul 1. melléklet Játékpénzek diákoknak Matematika A 6. évfolyam 24

27 0652. modul 3. melléklet csoportonként Matematika A 6. évfolyam 25 0,4 0,5 0,6 0,8 0,25 0,75 0,35 1,

28 0652. modul 3. melléklet csoportonként Matematika A 6. évfolyam :5 1:2 3:5 4:5 1:4 3:4 7:20 5:4

29 0653. modul 2. melléklet Dominó csoportonként Matematika A 6. évfolyam

30 0653. modul 3. melléklet Dominó csoportonként Matematika A 6. évfolyam : : : : : 8

31 0655. modul 1. melléklet Bingó-játék diákoknak Matematika A 6. évfolyam 29 BINGÓ-játék = = = = = 12 5 : 2 7 = 7 9 : = = ,2 + ( 0,4) = ,7 + 2,7 = : 0,2 = : 3,2 = ,5 : 0,5 = = , ,01 = = 220, , , ,

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 8. évfolyam eszközök diákok és csoportok részére 2. félév A kiadvány KHF/4365-15/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam eszközök diákok és csoportok részére. félév A kiadvány KHF/-/009. engedélyszámon 009.0.. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 8. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI eszközök 2 félév A kiadvány KHF/4003-17/2008. engedélyszámon 2008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 7. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 2. félév A kiadvány KHF/4631-13/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 5. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4633-13/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA

0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA 0645. MODUL SZÁMELMÉLET Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA 0645. Számelmélet Gyakorlás, mérés Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 2. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4001-18/2008. engedélyszámon 2008.08.18. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam eszközök diákok és csoportok részére 2. félév A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 1. évfolyam TANULÓI eszközök 2. félév A kiadvány KHF/3986-15/2008. engedélyszámon 2008.08.22. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam

RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam SZÖVEGÉRTÉS-SZÖVEGALKOTÁS RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam TANULÓI MUNKAFÜZET Készítette: Molnár Krisztina 3 Az angyali üdvözlet Három festmény A KIADVÁNY KHF/4531-13/2008 ENGEDÉLYSZÁMON 2008. 12.

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

TÁMOP / pályázat fenntartása a 2012/2013-as tanévben. Képes Géza Általános Iskola Mátészalka Szokolay Örs u. 2-4.

TÁMOP / pályázat fenntartása a 2012/2013-as tanévben. Képes Géza Általános Iskola Mátészalka Szokolay Örs u. 2-4. TÁMOP 3.1.4.-08/2-2008-0149 pályázat fenntartása a 2012/2013-as tanévben Képes Géza Általános Iskola Mátészalka Szokolay Örs u. 2-4. Bevont tanulócsoportok alsó tagozat 2009/2010 1.a 2.a 3.a terület Szövegértés-

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

MATEMATIKA A. feladatlapok. 1. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 1. évfolyam. 2. félév MATEMATIKA A feladatlapok. évfolyam. félév A kiadvány KHF/3987-4/008. engedélyszámon 008. 08.. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A kiadvány

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/2568-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 5. évfolyam eszközök tanárok részére 1. félév A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 21 és 5 7 = 15

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 21 és 5 7 = 15 Megoldások 1. Írj fel 4 számot törtalakban a 3 7 és 5 7 között! Bővítsük a nevezőket a megfelelő mértékig: 3 7 = 9 21 és 5 7 = 15 21. Ezek alapján a megoldás: 10 21, 11 21, 12 21, 13 21. 2. Írd fel törtalakban

Részletesebben

MATEMATIKA A. feladatlapok. 1. évfolyam. 1. félév

MATEMATIKA A. feladatlapok. 1. évfolyam. 1. félév MATEMATIKA A feladatlapok 1. évfolyam 1. félév A kiadvány KHF/3995-17/2008. engedélyszámon 2008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv

Részletesebben

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. MODUL SZÁMELMÉLET Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. Számelmélet Törzsszám (prímszám), összetett szám, prímtényezős felbontás Tanári útmutató

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

Szövegértés szövegalkotás. Projektmappa

Szövegértés szövegalkotás. Projektmappa Szövegértés szövegalkotás Projektmappa 7 A kiadvány KHF/4271-15/2008 engedélyszámon 2008. 10. 29. időponttól tankönyvi engedélyt kapott. Educatio Kht. kompetenciafejlesztő oktatási program kerettanterv.

Részletesebben

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Matematika 7. osztály

Matematika 7. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számelmélet. Oszthatóság

Számelmélet. Oszthatóság Számelmélet Oszthatóság Egy szám mindazok az egész számok, amelyek az adott számban maradék nélkül megvannak. Pl: 12 osztói: 12=1x12=(-1)x(-12)=2x6=(-2)x(-6)=3x4=(-3)x(- 4) Azt is mondhatjuk, hogy 12 az

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky

Részletesebben

A 2009/2010. tanévi közoktatási tankönyvjegyzék

A 2009/2010. tanévi közoktatási tankönyvjegyzék CA-0909 Matematika munkatankönyv a szakiskolák számára I. Dr. Koller Lászlóné Műszaki Könyvkiadó Kft. Budapest - 1993 13691-3/2004 841,-Ft 170 g 2004.07.14-2009.07.31 Szakiskola MK-225-4033-7 Matematika

Részletesebben

TERMÉSZETES SZÁMOK OSZTHATÓSÁGA

TERMÉSZETES SZÁMOK OSZTHATÓSÁGA TERMÉSZETES SZÁMOK OSZTHATÓSÁGA A MATEMATIKA A TITKOK SZOBÁJÁBAN Természetes számokat fogsz azonosítani különböző kontextusokban: természetes számokat fogsz azonosítani egy diagramban, egy grafikonban

Részletesebben

IN ZIRKUS Themenbearbeitung Lehr- und Lernmaterialien Teil 2

IN ZIRKUS Themenbearbeitung Lehr- und Lernmaterialien Teil 2 IN ZIRKUS Themenbearbeitung Lehr- und Lernmaterialien Teil 2 Zielgruppe Schüler von 9 bis 10 Jahren Autorinnen Kuszman Nóra, Némethné Gálvölgyi Mária, Sárvári Tünde A kiadvány KHF/334-5/2009 engedélyszámon

Részletesebben

Számokkal kapcsolatos feladatok.

Számokkal kapcsolatos feladatok. Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17

Részletesebben

1. melléklet: A tanárokkal készített interjúk főbb kérdései

1. melléklet: A tanárokkal készített interjúk főbb kérdései 12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet Számelmélet DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. DEFINÍCIÓ: (Reciprok) Egy 0

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

2. Melyik kifejezés értéke a legnagyobb távolság?

2. Melyik kifejezés értéke a legnagyobb távolság? 1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7.

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. TANKÖNYVISMERTETŐ TÓTFALUSI MIKLÓS Csahóczi

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7

Részletesebben

300 válogatott matematikafeladat 7 8. osztályosoknak

300 válogatott matematikafeladat 7 8. osztályosoknak VILLÁMKÉRDÉSEK 300 válogatott matematikafeladat 7 8. osztályosoknak 1. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold ki a szorzatukat, ha x = 18. 2. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A

SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A I. FELADATGYŰJTEMÉNY 1 2. ÉVFOLYAM Fonyódi Gábor Szabó Éva A kiadvány KHF/5015-5/2008 engedélyszámon 2008. 09. 29. időponttól tankönyvi engedélyt kapott. Educatio Kht. kompetenciafejlesztő

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév MATEMATIKA A feladatlapok. évfolyam. félév A kiadvány KHF/3993-18/008. engedélyszámon 008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A

Részletesebben

Kapcsolódó kiadványok: AP-050803; AP-050804

Kapcsolódó kiadványok: AP-050803; AP-050804 AP-050803 Matematika tankönyv 5. évfolyam I. kötet Csahóczi Erzsébet Csatár Katalin Kovács Csongorné Apáczai Kiadó és Könyvterjesztő Morvai Éva Széplaki Györgyné Szeredi Éva Kft. Celldömölk - 2000 KHF/224/2008

Részletesebben

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le Analitika című művében, Kr.e. IV. században. LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

III.7. PRÍM PÉTER. A feladatsor jellemzői

III.7. PRÍM PÉTER. A feladatsor jellemzői III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős

Részletesebben

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK 71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.

Részletesebben

ISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12

ISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12 2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1

Részletesebben

KÉSZÍTSÜNK ÁBRÁT évfolyam

KÉSZÍTSÜNK ÁBRÁT évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

VI. Vályi Gyula Emlékverseny november

VI. Vályi Gyula Emlékverseny november VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok elnevezéseit! 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak

Részletesebben

VII.A. Oszthatóság, maradékos osztás Megoldások

VII.A. Oszthatóság, maradékos osztás Megoldások VIIA Oszthatóság, maradékos osztás Megoldások 11 Igen, mert a 4x = 8 egyenlet megoldható a természetes számok halmazában: x = 2 12 Nem, mert a 4x = 10 egyenlet nem oldható meg a természetes számok halmazában

Részletesebben

illetve a n 3 illetve a 2n 5

illetve a n 3 illetve a 2n 5 BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben