MATEMATIKAI KOMPETENCIATERÜLET A

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKAI KOMPETENCIATERÜLET A"

Átírás

1 MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév

2 A kiadvány KHF/ /2008. engedélyszámon időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A kiadvány a Nemzeti Fejlesztési terv Humánerőforrás-fejlesztési Operatív Program központi program (Pedagógusok és oktatási szakértők felkészítése a kompetencia alapú képzés és oktatás feladataira) keretében készült, a sulinova oktatási programcsomag részeként létrejött tanulói információhordozó. A kiadvány sikeres használatához szükséges a teljes oktatási programcsomag ismerete és használata. A teljes programcsomag elérhető: címen. Matematika szakmai vezető: Pálfalvi Józsefné Szakmai tanácsadó: Csahóczi Erzsébet, Szeredi Éva Alkotószerkesztő: Pusztai Julianna, Vépy-Benyhe Judit Lektor : Makara Ágnes Felelős szerkesztő: Teszár Edit H-AMAT0604 Szerzők: Birloni Szilvia, Benczédi-Laczka Krisztina, Malmos Katalin, Pintér Klára, Zsinkó Erzsébet Educatio Kht Tömeg: 190 gramm Terjedelem: 3,9 (A/5 ív) A tankönyvvé nyilvánítási eljárásban közreműködő szakértők: Tantárgy-pedagógiai szakértő: Györfi Lászlóné Tudományos szakmai szakértő: Vecseiné dr. Munkácsy Katalin Technológiai szakértő: Karácsony Orsolya

3 tartalomjegyzék modul 1. melléklet Memóriakártya csoport modul 1. melléklet diákoknak modul 1. melléklet diákoknak modul 2. melléklet diákoknak modul 3. melléklet csoportonként modul 5. melléklet csoportonként modul 6/B melléklet csoportonként modul 1. melléklet csoportonként modul 1. melléklet diákoknak modul 2. melléklet csoportonként modul 1. melléklet diákoknak modul 2. melléklet csoportonként modul 1. melléklet csoportonként modul 2. melléklet Társasjáték csoportonként modul 1. melléklet csoportonként modul 1. melléklet Játékpénzek diákoknak modul 3. melléklet csoportonként modul 2. melléklet Dominó csoportonként modul 1. melléklet Bingó-játék diákoknak

4 0611. modul 1. melléklet Memóriakártya csoportonként Matematika A 6. évfolyam

5 0622. modul 1. melléklet diákoknak Matematika A 6. évfolyam

6 0622. modul 1. melléklet diákoknak Matematika A 6. évfolyam 4

7 0622. modul 2. melléklet diákoknak Matematika A 6. évfolyam ( 6) ( 5) ( 3) ( 2) ( 1) ( 4) 12 ( 12) 24 ( 24) > =

8 0622. modul 3/A melléklet csoportonként Matematika A 6. évfolyam ( 9) 9 + ( 17) 20 7

9 0622. modul 3/B melléklet csoportonként Matematika A 6. évfolyam Ha a kisebbítendőt és a kivonandót ugyanazzal a számmal növeljük, a különbség nem változik. Ha a kisebbítendőt és a kivonandót ugyanazzal a számmal csökkentjük, a különbség nem változik. Ha a kisebbítendőt növeljük, és a kivonandót nem változtatjuk, a különbség nő. Ha a kisebbítendőt csökkentjük és a kivonandót nem változtatjuk, a különbség csökken. Ha a kivonandót növeljük, és a kisebbítendőt nem változtatjuk, a különbség csökken. Ha a kivonandót csökkentjük és a kisebbítendőt nem változtatjuk, a különbség nő. Egy szám elvétele egyenlő az ellentettjének a hozzáadásával. Egy szám hozzáadása egyenlő az ellentettjének az elvételével.

10 0622. modul 5. melléklet csoportonként Matematika A 6. évfolyam 8 Spartacus-féle rabszolgafelkelés (Kr.e ) Nagy Sándor (Kr.e ) Magyar honfoglalás ( ) Mohamed ( ) Hannibál (Kr.e ) Julius Caesar (Kr.e. 0 44) Marathoni csata (Kr.e. 490) Attila hun király (Kr.e ) I. István (975 38) Püthagorász (Kr.e )

11 0622. modul 6/B melléklet csoportonként Matematika A 6. évfolyam 9 0 0

12 0623. modul 1. melléklet csoportonként Matematika A 6. évfolyam ( 3) 4 ( 3) 3 2 ( 3) 4 ( 2) ( 2) 4 ( 5) 2 2 ( 5)

13 0623. modul 1. melléklet csoportonként Matematika A 6. évfolyam 11 ( 8) / 4 ( 12) / 3 ( 12) : (-3) 4 / ( 2) 6 : ( 2) ( ) : ( 2) : 5 ( 6) :

14 0624. modul 1. melléklet diákoknak Matematika A 6. évfolyam 12

15 0624. modul 2. melléklet csoportonként Matematika A 6. évfolyam

16 0625. modul 1. melléklet diákoknak Matematika A 6. évfolyam 14

17 0625. modul 2. melléklet csoportonként Matematika A 6. évfolyam

18 0625. modul 2. melléklet csoportonként Matematika A 6. évfolyam 16 A szorzat pozitív A szorzat negatív A hányados pozitív A hányados negatív Az összeg pozitív Az összeg negatív A két szám előjele azonos A két szám előjele különböző A hányados páros A hányados páratlan A hányados kétjegyű A hányados egyjegyű

19 0643. modul 1. melléklet csoportonként Matematika A 6. évfolyam 17 Számok színképe Találjátok ki a színezés szabályát! 12 = 45 = 36 = 75 = 98 = 72 = 50 = 20 = 28 = 35 =

20 0645. modul 2. melléklet Társasjáték csoportonként Matematika A 6. évfolyam 18

21 0645. modul 2. melléklet Szerencsekártyák csoportonként Matematika A 6. évfolyam 19 Két prímszám összege mindig páros. (Hamis, mert pl. 2+3=5.) Van két prímszám, melyek összege 7. (Igaz, mert ahhoz, hogy az összeg páratlan legyen, az egyik prím a 2 kell legyen, és az 5 prím.) Prímszámok összege nem lehet prímszám. (Hamis, pl. 2+3=5.) A 12-nek van páratlan többszöröse. (Hamis, mert a 12 páros, így minden többszöröse is páros.) Ha egy prímszámot megszorzom önmagával, a szorzatnak mindig pontosan három osztója van gondolj a 9-re. (Igaz: 1; a prímszám és annak négyzete.) Van olyan szám, amelyben a számjegyek szorzata 165. (Hamis, mert 165= és a 11 nem számjegy.) Prímszámok szorzata nem lehet prímszám (Igaz a definíció miatt.) A 12-nek van páratlan osztója. (Igaz, pl. a 3.) Öt páros szám szorzata páratlan. (Hamis, egy páros tényező már párossá teszi a szorzatot.) Van olyan pozitív egész szám, amelynek van nála nagyobb osztója. (Hamis, a 0-nak minden természetes szám osztója, így rá ez igaz lenne, de a 0 nem pozitív.) Ha egy természetes szám utolsó számjegye 4 vagy 8, akkor osztható 4-gyel. (Hamis, pl. 14, 18.) Egy 5-tel osztható és egy 6-tal osztható szám különbsége lehet-e 2? (Igen, pl =2.) Öt páratlan szám összege páratlan. (Igaz, páronként páros az összeg, egy kimarad, ezért páratlan lesz az összeg.) Minden szám osztója önmagának. (Igaz.) Egy 5-tel osztható és egy 4-gyel osztható szám különbsége lehet-e 2? (Igen, pl =2.) Ha egy szám nem osztható 5-tel, akkor nem osztható -zel sem. (Igaz, mert ha -zel osztható lenne, akkor mivel az 5 osztója a -nek, szükségképpen 5-tel is osztható lenne.)

22 0645. modul 2. melléklet Szerencsekártyák csoportonként Matematika A 6. évfolyam 20 Ha egy szám osztható 3-mal és 5-tel, akkor osztható 15-tel is. (Igaz, mert a prímtényezős felbontásában a 3 és az 5 is szerepel, így 15-tel is osztható.) Három egymást követő természetes szám között biztosan van 3-mal osztható is. (Igaz: a maradékokat vizsgálva, egymás után 0; 1; 2 jön vagy 1; 2; 0 vagy 2; 0; 1.) A 16 osztóinak száma páros vagy páratlan? (Páratlan, osztópáronként: 1 16; 2 8; 4, aminek a párja önmaga, az osztók száma 5.) Bontsd fel prímtényezők szorzatára az 56-ot! (56= ) A 18 osztója a 3-nak. (Hamis, fordítva : a 3 osztója a 18-nak, és a 18 többszöröse a 3-nak.) Három egymást követő természetes szám szorzata osztható 3-mal (Igaz, mert biztos van köztük 3-mal osztható szám.) A 32 osztóinak száma páros vagy páratlan? (Páros, osztópáronként: 1 32; 2-16; 4 8.) Melyik az a kétjegyű szám, amelynek prímtényezős felbontásában 4 tényező szerepel, osztható 6-tal és 5-tel is, de 9-cel nem? (2 3 5 lehet, a hiányzó prímtényező 2 vagy 3 mert 0-nál kisebb, de 3 nem lehet, mert akkor 9-cel osztható lenne.) Melyik az a 3-mal osztható kétjegyű szám, amelynek prímtényezős felbontásában a legtöbb tényező szerepel? ( =96) Hány olyan egész centiméter oldalhosszúságú téglalap van, amelynek a területe 41 cm 2? (1, mert a 41 prím, csak 1 41 lehet a szorzat alakja.) Hány olyan egész centiméter élhosszúságú téglatest van, amelynek a térfogata 28cm 3? (1 1 28=1 2 14=1 4 7=2 2 7, azaz 4 lehetőség van.) Legtöbb hány tényezője lehet egy kétjegyű szám prímtényezős felbontásának? (6, mert a legkisebb tényezőket véve: =6 4 vagy =96.) Hány olyan egész centiméter oldalhosszúságú téglalap van, amelynek a területe 28 cm 2? (3, mert 28=1 28=2 14=4 7.) Mennyi a legnagyobb közös osztója a 42-nek és a 32-nek? (2)

23 0645. modul 2. melléklet Sprintkártyák csoportonként Matematika A 6. évfolyam 21 SPRINT 1973 SPRINT 4562 SPRINT 7542 SPRINT 4872 SPRINT 5628 SPRINT 9018 SPRINT 3534 SPRINT 8633 SPRINT 2775

24 0651. modul 1. melléklet csoportonként Matematika A 6. évfolyam 22 S T A R T c é l

25 0652. modul 1. melléklet Játékpénzek diákoknak Matematika A 6. évfolyam 23

26 0652. modul 1. melléklet Játékpénzek diákoknak Matematika A 6. évfolyam 24

27 0652. modul 3. melléklet csoportonként Matematika A 6. évfolyam 25 0,4 0,5 0,6 0,8 0,25 0,75 0,35 1,

28 0652. modul 3. melléklet csoportonként Matematika A 6. évfolyam :5 1:2 3:5 4:5 1:4 3:4 7:20 5:4

29 0653. modul 2. melléklet Dominó csoportonként Matematika A 6. évfolyam

30 0653. modul 3. melléklet Dominó csoportonként Matematika A 6. évfolyam : : : : : 8

31 0655. modul 1. melléklet Bingó-játék diákoknak Matematika A 6. évfolyam 29 BINGÓ-játék = = = = = 12 5 : 2 7 = 7 9 : = = ,2 + ( 0,4) = ,7 + 2,7 = : 0,2 = : 3,2 = ,5 : 0,5 = = , ,01 = = 220, , , ,

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 5. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4633-13/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 2. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4001-18/2008. engedélyszámon 2008.08.18. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 1. évfolyam TANULÓI eszközök 2. félév A kiadvány KHF/3986-15/2008. engedélyszámon 2008.08.22. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam

RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam SZÖVEGÉRTÉS-SZÖVEGALKOTÁS RAJZ ÉS VIZUÁLIS KULTÚRA 6. évfolyam TANULÓI MUNKAFÜZET Készítette: Molnár Krisztina 3 Az angyali üdvözlet Három festmény A KIADVÁNY KHF/4531-13/2008 ENGEDÉLYSZÁMON 2008. 12.

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/2568-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

A 2009/2010. tanévi közoktatási tankönyvjegyzék

A 2009/2010. tanévi közoktatási tankönyvjegyzék CA-0909 Matematika munkatankönyv a szakiskolák számára I. Dr. Koller Lászlóné Műszaki Könyvkiadó Kft. Budapest - 1993 13691-3/2004 841,-Ft 170 g 2004.07.14-2009.07.31 Szakiskola MK-225-4033-7 Matematika

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

300 válogatott matematikafeladat 7 8. osztályosoknak

300 válogatott matematikafeladat 7 8. osztályosoknak VILLÁMKÉRDÉSEK 300 válogatott matematikafeladat 7 8. osztályosoknak 1. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold ki a szorzatukat, ha x = 18. 2. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold

Részletesebben

Kapcsolódó kiadványok: AP-050803; AP-050804

Kapcsolódó kiadványok: AP-050803; AP-050804 AP-050803 Matematika tankönyv 5. évfolyam I. kötet Csahóczi Erzsébet Csatár Katalin Kovács Csongorné Apáczai Kiadó és Könyvterjesztő Morvai Éva Széplaki Györgyné Szeredi Éva Kft. Celldömölk - 2000 KHF/224/2008

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A

SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A SZÖVEGÉRTÉS-SZÖVEGALKOTÁS A I. FELADATGYŰJTEMÉNY 1 2. ÉVFOLYAM Fonyódi Gábor Szabó Éva A kiadvány KHF/5015-5/2008 engedélyszámon 2008. 09. 29. időponttól tankönyvi engedélyt kapott. Educatio Kht. kompetenciafejlesztő

Részletesebben

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 2. évfolyam. 2. félév MATEMATIKA A feladatlapok. évfolyam. félév A kiadvány KHF/3993-18/008. engedélyszámon 008.08.18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

RAJZ ÉS VIZUÁLIS KULTÚRA 5. évfolyam

RAJZ ÉS VIZUÁLIS KULTÚRA 5. évfolyam SZÖVEGÉRTÉS-SZÖVEGALKOTÁS RAJZ ÉS VIZUÁLIS KULTÚRA 5. évfolyam TANULÓI MUNKAFÜZET Készítette: Ternákné Gábori Gabriella Molnár Krisztina 3 Az ókori Egyiptom építészete 8 Az ókori görög szobrászatról A

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Lengyel Lászlóné, Nádudvar Név:........ Iskola:.. Beküldési

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA A. feladatlapok 4. évfolyam. 1. félév

MATEMATIKA A. feladatlapok 4. évfolyam. 1. félév MATEMATIKA A feladatlapok 4. évfolyam 1. félév A kiadvány KHF/2568-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1 TESZTEK. feladatsor. Mivel egyenlő 3 + 2 5? (A) 2 5 (B) 3 8 (C) 2 (D) 5 (E) 2. Mivel egyenlő 4 5 + 5 4? (A) 9 0 (B) 39 20 (C) 2 (D) 4 20 (E) 2 0 3. Mennyi az 3 + 2 5 összeg értéke? (A) 32 5 (B) 9 8 (C)

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

Ember a természetben műveltségterület

Ember a természetben műveltségterület SZÖVEGÉRTÉS-SZÖVEGALKOTÁS Ember a természetben műveltségterület Matematika 5. évfolyam TANULÓI MUNKAFÜZET Készítette: Földiné Koczor Tünde Gyimesi Krisztina 3 Bűvös számok 11 Állati matematika 21 Szövegbe

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

MATEMATIKA A. feladatlapok. 3. évfolyam. 2. félév

MATEMATIKA A. feladatlapok. 3. évfolyam. 2. félév MATEMATIKA A feladatlapok 3. évfolyam 2. félév A kiadvány KHF/3989-16/2008. engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Óravázlat Matematika. 1. osztály

Óravázlat Matematika. 1. osztály Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség

Részletesebben

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám 71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET

0622. MODUL EGÉSZ SZÁMOK. Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. MODUL EGÉSZ SZÁMOK Szorzás és osztás egész számokkal. Egész számok összeadása és kivonása KÉSZÍTETTE: ZSINKÓ ERZSÉBET 0622. Egész számok Szorzás és osztás egész számokkal Tanári útmutató 2 MODULLEÍRÁS

Részletesebben

Matematika versenyfeladatok 2. rész

Matematika versenyfeladatok 2. rész Matematika versenyfeladatok 2. rész 1. A 7 törpe házikójában valaki eltört egy tányért. Hófehérkének így számoltak be a történtekről: Tudor: Nem Szundi volt. Én voltam. Morgó: Nem én voltam. Nem Hapci

Részletesebben

TANÁRI KÉZIKÖNYV a MATEMATIKA

TANÁRI KÉZIKÖNYV a MATEMATIKA El sz Csahóczi Erzsébet Csatár Katalin Kovács Csongorné Morvai Éva Széplaki Györgyné Szeredi Éva TANÁRI KÉZIKÖNYV a MATEMATIKA 7. évfolyam II. kötetéhez TEX 014. június. 0:43 (1. lap/1. old.) Matematika

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843.

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843. SZÁMRENDSZEREK 1933. A megadott sorrendet követve írtuk át a számokat: a) 2-es számrendszerben: 11; 1001; 1100; 10001; 10111; 100110; 1011011. b) 3-as számrendszerben: 21;110;1011; 1020; 10100; 10102;

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam TANULÓK KÖNYVE 1. FÉLÉV A kiadvány KHF/4361-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET B

MATEMATIKAI KOMPETENCIATERÜLET B MATEMATIKAI KOMPETENCIATERÜLET B Földünk és környezetünk 10. évfolyam TANULÓI MUNKAFÜZET Készítette: Kiss Gábor A kiadvány KHF/4585-12/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK Egész számok.. a) Igaz; b) igaz; c) hamis; d) igaz; e) igaz; f) hamis.. A felsorolt számok közül a legkisebb szám: 0, a legkisebb

Részletesebben

AP-010801 Az én matematikám 1. o. Kuruczné Borbély Márta Apáczai Kiadó és Könyvterjesztő Kft. Celldömölk - 1992 14928-33/2006 950,-Ft 420 g

AP-010801 Az én matematikám 1. o. Kuruczné Borbély Márta Apáczai Kiadó és Könyvterjesztő Kft. Celldömölk - 1992 14928-33/2006 950,-Ft 420 g AP-010801 Az én matematikám Kuruczné Borbély Márta Apáczai Kiadó és Könyvterjesztő Kft. Celldömölk - 1992 14928-33/2006 950,-Ft 420 g 2007.04.13-2009.08.31 OM kerettanterv-28/2000. (IX. 21.) AP-010802;

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

A KÖRZETI FORDULÓ ÍRÁSBELI FELADATAI. Az összedolgozás képessége az egyik legnagyobb érték az életben.

A KÖRZETI FORDULÓ ÍRÁSBELI FELADATAI. Az összedolgozás képessége az egyik legnagyobb érték az életben. A KÖRZETI FORDULÓ ÍRÁSBELI FELADATAI Az összedolgozás képessége az egyik legnagyobb érték az életben. 5. osztály 1. 2. Egy egyliteres edényben 6 dl tej van. Öntsünk hozzá még 6 dl tejet. Mennyi tej lesz

Részletesebben

A Maxim Könyvkiadó 2014/2015. tanévre ajánlott tankönyvei

A Maxim Könyvkiadó 2014/2015. tanévre ajánlott tankönyvei A Maxim Könyvkiadó re ajánlott tankönyvei Kiadónknak kiemelt célja, hogy a szaktanárok és diákok megelégedésére szolgáló 9. es köteteink folytatásai is lehetőséget kínáljanak az új tantervhez illeszkedő,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

kémia ember a természetben műveltségterület Tanulói Bmunkafüzet Készítette Péter Orsolya Albert Attila

kémia ember a természetben műveltségterület Tanulói Bmunkafüzet Készítette Péter Orsolya Albert Attila Tanulói Bmunkafüzet S z ö v e g é r t é s s z ö v e g a l k o t á s Készítette Péter Orsolya Albert Attila kémia ember a természetben műveltségterület 3 A klór reakciói 8 A kén olvadása és forrása 10 A

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 6. osztályosoknak 1. Ha egy tégla 2 kg meg egy fél tégla, akkor hány kg két tégla? 2. Elköltöttem a pénzem felét, maradt 100 Ft-om. Mennyi pénzem volt eredetileg?

Részletesebben

TÁMOP 3. 1. 4. /08/ 2 2009 0050 Kompetencia alapú oktatás, egyenlő hozzáférés innovatív intézményekben című pályázaton.

TÁMOP 3. 1. 4. /08/ 2 2009 0050 Kompetencia alapú oktatás, egyenlő hozzáférés innovatív intézményekben című pályázaton. Intézményünk, a Bárczi Gusztáv Általános Iskola, Készségfejlesztő Speciális Szakiskola, Kollégium és Pedagógiai Szakszolgálat (Nyíregyháza, Szarvas u. 10-12.) nyert a TÁMOP 3. 1. 4. /08/ 2 2009 0050 Kompetencia

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

Skatulya-elv. Sava Grozdev

Skatulya-elv. Sava Grozdev Skatulya-elv Sava Grozdev Egy alapvető szabály, azaz elv azt állítja, hogy: ha m testet szétosztunk n csoportba és m > n, akkor legalább két test azonos csoportba fog kerülni. Ezt az elvet különböző országokban

Részletesebben

2. témakör: Számhalmazok

2. témakör: Számhalmazok 2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

Sokszínû matematika 6. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 6. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Összeállította: CSATORDAI ZSUZSANNA általános iskolai tanár Tartalom. Oszthatóság.... Hogyan oldjunk meg feladatokat?... 0. A racionális számok I....

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 10. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/4365-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

Szabó Ferenc, Györgyiné Felföldi Éva, Sebőkné 42 Bencsik Elvira Kovács Andrea, Forgóné Balogh Erika, Mészárosné 42 Lajos Ildikó 14 Varga Andrea

Szabó Ferenc, Györgyiné Felföldi Éva, Sebőkné 42 Bencsik Elvira Kovács Andrea, Forgóné Balogh Erika, Mészárosné 42 Lajos Ildikó 14 Varga Andrea tanácsadás intézményi folyamat szaktanácsadó IKT fejlesztési folyamat szaktanácsadó Kompetenciaterületi mentorszaktanácsadó Szent László Általános Iskola Óraszám Pedagógusok 90 60 98 szövegértés-szövegalkotás

Részletesebben

Sorozatok - kidolgozott típuspéldák

Sorozatok - kidolgozott típuspéldák 1. oldal, összesen: 8 oldal Sorozatok - kidolgozott típuspéldák Elmélet: Számtani sorozat: a 1 a sorozat első tagja, d a különbsége a sorozat bármelyik tagját kifejezhetjük a 1 és d segítségével: a n =

Részletesebben