Összegek összege, Bűvös négyzet, Bűvös háromszög és egyebek
|
|
- Mária Török
- 5 évvel ezelőtt
- Látták:
Átírás
1 Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u : /fax: WEB: boronkay@vac.hu Levelező Matematika Szakkör 2017/ feladatsor évfolyam Összegek összege, Bűvös négyzet, Bűvös háromszög és egyebek Sok feladatban számokat kell egy geometriai alakzat kijelölt részeiben elhelyezni, melyek így aztán bizonyos számtani szempont alapján bűvösnek neveztettek el. Bűvös négyzetet úgy készíthetünk, hogy egy négyzetet az oldalaival párhuzamos egyenesekkel ugyanannyi sorra és oszlopra osztunk fel. Ezt a négyzetet úgy töltjük ki megadott számokkal, hogy minden sorban, oszlopban és az átlók mentén is ugyanannyi legyen a számok összege. A következő feladatok is bizonyos számok adott helyekre történő szétosztásának módozatait taglalják remélhetően érthető és kellően érdeklődést felkeltő módon. Mindenkinek jó szórakozást a szórakoztató elmecsiszoláshoz! Mintapéldák 1.) Az 1-től 12-ig terjedő számokat írjuk be az ábrán látható kis körökbe úgy. hogy a külső körön levő számok összege kétszerese legyen a belső körön levő számok összegének, és a belső körre csak páros számok kerüljenek! Mivel 1-től 12-ig a számok összege 78 és 78:3 = 26, belső körön levő számok összege 26. Egy lehetséges megoldás, ha a belső körre írjuk a 12, 8, 4 és 2 számot, a többit a külsőre. a 2.) Egy gyorsvonat egyik fülkéjében 7-en utaztak. Két gyerek a hosszú úton azzal szórakozott, hogy a fülkében mindenkit megkérdezett, hány embert ismer (régebbről) a velük egy fülkében utazók közül. Sorra ezeket a válaszokat kapták: 1, 3, 4, 5, 2, 4, 2 (az ismeretség kölcsönös). Rövid gondolkodás után rájöttek, hogy nem mindenki mondott igazat. Hogyan?
2 Adjuk össze a válaszul kapott számokat: az összeg páratlan. Azonban ennek az összegnek párosnak kell lennie, hiszen ez az ismeretségek számának kétszerese. Emiatt a felsorolt számok között van hibás válasz. 3.) Készítsünk bűvös háromszöget! Írjuk a három csúcsához az 1, 2, 3 számokat! A 4, 5, 6, 7, 8, 9 számokat írjuk úgy a háromszög oldalaira, hogy a csúcsokat is beleszámítva, minden oldalon 17 legyen a számok összege. 1-től 9-ig a számok összege 45. A 3 17 = 51-ből úgy lesz 45, hogy a csúcsokon levő számok összegét, 6-ot, elvesszük, hiszen ezek kétszer szerepelnek. Az egyik oldalon 12, a másikon 13, a harmadikon 14 kell, hogy legyen a ráírt két szám összege. 12 = = = 7 + 5, 13 = = = 7 + 6, 14 = = Ezekből két megoldás adódik: 4.) Egy 4 4-es táblázatba lehet-e számokat írni úgy, hogy mindegyik sorban a számok összege pozitív, s mindegyik oszlopban a számok összege negatív legyen? Ha a táblázatban levő számok összegét úgy számoljuk, hogy a soronkénti összegeket adjuk össze, akkor ez pozitív lesz. Ha az oszloponkénti összegeket adjuk össze, negatív lesz. Tehát nem lehet a táblázatot a kívánt módon kitölteni. Gyakorló feladatok 1.) A táblázat üres mezőibe írj be számokat úgy, hogy bármely oszlopban vagy sorban 3 szomszédos szám összege 123 legyen! 2.) Készíts az 1, 2, 3, 4, 5, 6, 7, 8, 9 számok felhasználásával bűvös háromszöget úgy, hogy minden oldalon 20 legyen a számok összege! 3.) Helyezz el 1-től 9-ig a számokat egy 3 3-as táblázatban úgy, hogy az első sorban a számok összege 6, a másodikban 16, a harmadikban 23, az első oszlopban 14, a másodikban 12, a harmadikban pedig 19 legyen!
3 4.) Lehet-e egész számokat írni a körökbe úgy, hogy az öt vonal mindegyikén a négy szám összege páratlan legyen? Kitűzött feladatok 1.) Hány különböző bűvös négyzet készíthető az 1, 2, 3, 4, 5, 6, 7, 8, 9 számokból? Írj föl ezekből 4-et! 2.) Felírhatjuk-e egy kocka éleire 1-től 12-ig az egész számokat úgy, hogy az egy-egy csúcsba befutó három élen levő szám összege ugyanannyi legyen? 3.) Egy kör alakú asztalnál 17-en ülnek. Mindenki gondol egy egész számra, majd mindenki felírja egy cédulára két szomszédja számának az összegét. Bizonyítsuk be, hogy nem állhat minden cédulán 2017! 4.) Az alábbi táblázatot egészítsd ki 1-től 16-ig terjedő számokkal, hogy bűvös négyzetet kapj! Beküldési határidő: Postai cím: Észak-Pest Megyei Matematikai Tehetségfejlesztő Központ 2600 Vác, Németh L. u. 4-6.
4 Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u : /fax: WEB: boronkay@vac.hu Levelező Matematika Szakkör 2017/ feladatsor évfolyam Összeszámlálási problémák Az összeszámlálási problémák vizsgálatával a matematikának egyik ága, a kombinatorika foglalkozik. A kombinatorikai feladatok nagyon szerteágazóak, éppen ezért nehéz őket típusfeladatok szerint rendezni. Ennek ellenére körvonalazhatunk bizonyos speciális kombinatorikai feladatokat, illetve megoldási módszereket. Sorba rendezési problémák: Ezek esetében azt vizsgáljuk, hogy bizonyos számokat, betűket, tárgyakat vagy egyéb objektumokat hányféleképpen helyezhetünk egymás után. Természetesen létezhetnek olyan esetek is, amikor a tárgyak között vannak egyformák, vagy a sorba rendezés során ki van kötve, hogy bizonyos tárgyak nem állhatnak egymás mellett. Kiválasztási problémák: Ebben az esetben azt vizsgáljuk, hogy egy bizonyos halmaz elemeiből hányféleképpen választhatunk ki bizonyos részhalmazokat. A feladatokban létezhetnek olyan kikötések is, hogy például egy vagy több kitüntetett elemnek feltétlenül szerepelnie kell a kiválasztott részhalmazban. A kombinatorikai feladatok megoldási módszerei nagyon változatosak, egy bizonyos feladatra több megoldási módszer is létezik, amint az alábbiakban is kiderül. Mintapéldák 1.) András, Béla, Csaba, Dorka, Enikő és Fanni moziba mennek. Hányféleképpen ülhetnek le egymás mellett, ha: a) az ültetés sorrendjére vonatkozóan nincs semmiféle kikötés (bárki leülhet bárki mellé); b) Csaba és Dorka feltétlenül egymás mellett akarnak ülni; c) két fiú nem ülhet egymás mellett; d) András és Béla nem ülhet egymás mellett. Megoldás: a) Ebben az esetben 6 személy sorba rendezéséről van szó. Az összes eset felsorolása is egy megoldása a feladatnak, viszont ebben az esetben kissé nehézkes lenne. Ezért a következő gondolatmenet a célravezetőbb. Az első székre 6 személy közül választhatunk, a másodikra viszont már csak 5 személy közül (mivel az első székre már valakit leültettünk), a harmadik székre már csak 4 személy közül, és így tovább, míg az utolsó székre már csak egy személy kerülhet. Tehát a 6 személyt féleképpen ültethetjük le.
5 b) Mivel Csaba és Dorka egymás mellett akarnak ülni, ezért kezdetben helyezzük el őket úgy, hogy Csaba a Dorka jobb oldalára kerüljön. Ilyen módon 5 elem sorba rendezéséről van szó, amennyiben a Csaba-Dorka párost egy elemnek tekintjük. Ez pedig, az előző feladat mintájára, módon lehetséges. Viszont az említett két személy egymás mellé ültetését úgy is meg lehet oldani, hogy Csaba a Dorka bal oldalára kerüljön, ez pedig újabb lehetőséget rejt magában. Tehát összesen olyan lehetőség van, hogy Csaba és Dorka egymás mellett üljenek. c) Az, hogy két fiú ne üljön egymás mellé, többféle módon is elképzelhető. Ilyenkor az esetek szétválasztásáról beszélünk. Egy lehetséges eset a következő: F L F L F L (ahol az F betű fiút, az L betű pedig lányt jelent), így pedig az ültetéseket módon valósíthatjuk meg. Az összes ültetési módozatot a következő táblázatban foglaljuk össze: F L F L F L lehetőség L F L F L F lehetőség F L F L L F lehetőség F L L F L F lehetőség Tehát a fenti táblázat is mutatja, hogy összesen lehetőség van. d) Ebben az esetben egy lehetséges megoldás volna, hogy megkeresünk minden olyan esetet, ahol Andrást és Bélát nem egymás melletti székekre ültetjük, majd a többi személyt az üresen maradt székekre helyezzük el. Beláthatjuk, hogy ezeknek a módozatoknak a felsorolása (esetleg az előző feladat mintájára ezeknek táblázatba foglalása) és a lehetőségek összeszámlálása viszonylag időigényes. Éppen ezért egy más gondolatmenetet választunk. Az a) alpontban kiszámítottuk, hogy az összes ültetési lehetőség 720 (ebben természetesen benne vannak azok az esetek is, amikor András és Béla egymás mellett ülnek). Azok a lehetőségek viszont, amikor András és Béla egymás mellett ülnek, tiltva vannak. Ezeknek a tiltott lehetőségeknek a száma viszont 240 (ez következik a feladat b) alpontjának mintájára). Tehát az összes lehetőségből (720) kivonva a tiltott lehetőségek számát (240), következik, hogy olyan ültetési lehetőség van, ahol András és Béla nem ülnek egymás mellett. 2.) A 0, 1, 2, 3, 4, 5 számjegyekkel háromjegyű számokat képezünk, úgy, hogy minden számjegyet legfeljebb egyszer használunk fel. Hány olyan természetes számot írhatunk fel, amely: a) 300-nál kisebb; b) hárommal osztható; c) néggyel osztható; d) számjegyeinek összege legfeljebb 10.
6 Megoldás: a) A 300-nál kisebb háromjegyű számok képzésénél a százasok helyére két számjegy (1 és 2) közül egyet választhatunk. A tízesek helyére a megmaradt 5 számjegy, míg az egyesek helyére a továbbiakban megmaradt 4 számjegy közül választhatunk. Tehát összesen számot képezhetünk. b) Hárommal osztható számok esetében a számjegyek összege hárommal osztható, ezért első lépésben azokat a számhármasokat választjuk ki, amelyek összege osztható hárommal. Második lépésben megvizsgáljuk, hogy az így kiválasztott számhármasokból hányféleképpen alkothatunk háromjegyű számokat. Megfigyeléseinket táblázatba foglaljuk: Megfelelő számhármasok Lehetőségek száma 0; 1; 2 4 0; 1; 5 4 0; 2; 4 4 0; 4; 5 4 1; 2; ; 3; ; 3; ; 4; Tehát összesen háromjegyű, hárommal osztható számot képezhetünk a fenti számjegyekből. c) A néggyel osztható számok esetében az utolsó két számjegyből alkotott szám osztható 4-gyel. Ezért kiválasztjuk ezeket a kétjegyű számvégződéseket: 04; 12; 20; 24; 32; 40; 52. A 04; 20; 40 végződésű számok esetében a százasok helyére a fennmaradó 4-4 számjegy közül bármelyik kerülhet, ezért ez összesen különböző számot jelent. A 12; 24; 32; 52 végződésű számok esetében a százasok helyére csak 3-3 számjegy kerülhet (mivel a 0 nem állhat a százasok helyén), ezért ez számot jelent. Tehát összesen darab néggyel osztható háromjegyű számot képezhetünk az említett számjegyekből. d) Könnyen belátható, hogy csak a 3, 4, 5, illetve 2, 4, 5 számjegyekből alkotott háromjegyű számok nem felelnek meg a feltételnek. Ezért könnyebben célt érünk, ha először megvizsgáljuk, hogy összesen hány számot alkothatunk a feladatban szereplő számjegyekből, ezeknek a száma Ebből elvesszük azokat a számokat, amelyek nem felelnek meg a feltételnek, ezek száma (ugyanis a 3, 4, 5, illetve 2, 4, 5 számjegyekből 6-6 háromjegyű szám képezhető). Tehát összesen olyan háromjegyű szám képezhető, amelyekben a számjegyek összege legfeljebb 10.
7 3.) Hány olyan négyjegyű természetes szám van, amelyben a számjegyek szorzata 1008? Megoldás: Ki kell választanunk az összes olyan négy számjegyből álló halmazt, amelyekre 4 2 érvényes, hogy az elemek szorzata Ehhez kezdetben tekintsük az prímtényezős felbontást. Mivel a feladatban szereplő négyjegyű természetes szám számjegyeinek szorzata 1008, ezért a prímtényezős felbontás segítségével meg kell találnunk azt a négy számjegyet, amelyek szorzata Több eset lehetséges, amint az alábbi táblázatban összefoglalhatjuk: Számjegyek Sorba rendezési lehetőségek száma 2 ; 2 3 8; 3 2 9; ; 3 6; ; ; ; 3 2 9; ; 3; 2 3 8; Tehát összesen ilyen szám van. Megjegyzésünk, hogy a második sorban a lehetőségek számának a kiszámításakor azért osztottunk 2-vel, mert a két darab 6-os számjegy kétszer szerepel ugyanabban a számban (felcserélt sorrendben) ezért ez a lehetőségek számát felére csökkenti (mivel a két 6-os egymás közötti felcserélése nem eredményez más számot). Ugyanilyen megfontolással a harmadik sorban a két 4-es számjegy jelenléte miatt osztottunk 2-vel. 4.) Béla leírta 1-től 1000-ig a természetes számokat, majd kihúzta azokat, amelyekben volt 0 és 1 számjegy. a) Hány szám maradt meg? b) Melyik szám áll a megmaradt számok között a 100. helyen? Megoldás: a) Ha kivesszük a 0 és 1 számjegyeket tartalmazó számokat, akkor csak a többi 8 számjegy felhasználásával képezhető számok maradnak. Tehát az egyjegyűek közül összesen 8 szám maradt. A megmaradt kétjegyűek száma , míg a háromjegyűeké Ezért összesen szám maradt. b) Mivel az egyjegyűek és kétjegyűek száma összesen , ezért a 100. szám biztosan háromjegyű, mégpedig a adik háromjegyű szám. Tehát vizsgáljuk meg (növekvő sorrendben) a kihúzás után maradt háromjegyű számokat: között: 0 darab között: 8 darab között: 8 darab A fenti gondolatmenetet folytatva adódik, hogy a 28. háromjegyű szám a tartományban található 4. megmaradt szám, ez pedig a 255.
8 Gyakorló feladatok 1.) Pontoskodónak nevezzük azt a természetes számot, amelyben a számjegyek pontosan annyiszor szerepelnek, amennyi a számjegy. Hány legfeljebb hatjegyű pontoskodó szám van? 2.) Hány olyan ötjegyű természetes szám van, amelyben a számjegyek szorzata megegyezik a számjegyek összegével? 3.) Béla leírta az összes olyan ötbetűs (értelmes és értelmetlen) szót, amelyek az A, Á, D, L és N betűkkel alkothatók (minden betű egy szóban csak egyszer szerepelhet), majd ezeket ábécé sorrendbe helyezte. Hány szó található a DALÁN és NÁLAD szavak között? 4.) Egy kocka csúcsaira egymás utáni természetes számokat írunk, és az éleire az élek végeinél levő két csúcsban található számok összegét. Majd minden lapra az illető lapot határoló élekre írt számok összegét írjuk. A lapokon lévő számok összege 312. Milyen természetes számokat írtunk a kocka csúcsaiba? Kitűzött feladatok 1.) Béla három szabályos dobókockával dob. Feljegyzi a dobókockák felső lapján levő pontok számértékét, ha ezek összege 12. Ezekkel a számjegyekkel leírja az összes különböző háromjegyű természetes számot. a) Összesen hány ilyen számot alkothat? b) Az ilyen módon alkotott számokat növekvő sorrendbe helyezi. Melyik szám szerepel a 14. helyen? 2.) Hány olyan háromjegyű természetes szám van, amelyek számjegyei nem nagyobbak, mint 4, és amelyekben van legalább két egyforma számjegy? 3.) Hány olyan ötjegyű páratlan természetes szám van, amelyben a számjegyek összege páratlan? 4.) Két párhuzamos egyenes közül az egyiken öt, a másikon hat különböző pont található. a) Összesen hány különböző egyenest határoz meg ez a 11 pont? (Egy egyenest két pont kiválasztása egyértelműen meghatároz.) b) Hány különböző háromszöget határoznak meg ezek a pontok? (A feladatok megoldásait kérjük, hogy kidolgozva, A/4 méretű papíron küldjék be. A versenyzők azonosítása miatt kérjük, hogy minden dolgozaton szerepeljen a következő 2 adat: NÉV, ÉVFOLYAM.) Beküldési határidő: Postai cím: Észak-Pest Megyei Matematikai Tehetségfejlesztő Központ 2600 Vác, Németh L. u. 4-6.
A TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
RészletesebbenKÉSZÍTSÜNK ÁBRÁT évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Részletesebben7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
RészletesebbenKombinatorika. Permutáció
Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám
RészletesebbenÖSSZESZÁMLÁLÁSI FELADATOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.1.feladatsor
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy
RészletesebbenKombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)
Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző
Részletesebben2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
200 Vác, Németh László u. 4-. : 27-17 - 077 /fax: 27-1 - 09. OSZTÁLY 1.) Hány olyan négyjegyű természetes szám van, melynek jegyei között az 1 és 2 számjegyek közül legalább az egyik szerepel? Négyjegyű
RészletesebbenKombinatorika A A B C A C A C B
. Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu Levelező Matematika Szakkör e-mail: boronkay@vac.hu 2016/2017.2.
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenElemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
RészletesebbenK O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen
RészletesebbenMinden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Részletesebben46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége
RészletesebbenFOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
RészletesebbenDiszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
RészletesebbenMegyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Részletesebben2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
RészletesebbenTERÜLETSZÁMÍTÁS évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör TERÜLETSZÁMÍTÁS
RészletesebbenX. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenIsmétlés nélküli permutáció
Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba
RészletesebbenDiszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Részletesebben45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van
Részletesebben45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Piroska, a nagymamája, a farkas és a vadász egymás mellett ülnek egy padon. Se a nagymama, se Piroska
RészletesebbenSzámlálási feladatok
Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap
RészletesebbenKombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
Részletesebben1. melléklet: A tanárokkal készített interjúk főbb kérdései
12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak
RészletesebbenDefiníció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
RészletesebbenBÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
RészletesebbenGeometriai feladatok
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Geometriai
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
RészletesebbenVarga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály
1. Az erdészet dolgozói pályázaton nyert facsemetékkel ültetnek be egy adott területet. Ha 450-et ültetnének hektáronként, akkor 380 facsemete kimaradna. Ha 640 facsemetével többet nyertek volna, akkor
RészletesebbenPermutáció (ismétlés nélküli)
Permutáció (ismétlés nélküli) Mi az az ismétlés nélküli permutáció?... 1. Három tanuló, András, Gábor és Róbert együtt mennek az iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a
RészletesebbenA III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
RészletesebbenBÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
RészletesebbenTananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.
RészletesebbenA Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly
A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A
RészletesebbenJáték a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
RészletesebbenKockaKobak Országos Matematikaverseny osztály
KockaKobak Országos Matematikaverseny 9-10. osztály 015. november 6. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA www.kockakobak.hu A válaszlapról másold ide az azonosítódat az eredmény
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenKlasszikus valószínűségszámítás
Klasszikus valószínűségi mező 1) Egy építőanyag raktárba vasúton és teherautón szállítanak árut. Legyen az A esemény az, amikor egy napon vasúti szállítás van, B esemény jelentse azt, hogy teherautón van
Részletesebben1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.
1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k
RészletesebbenMűveletek egész számokkal
Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.
Részletesebbenæ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
RészletesebbenArany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók
RészletesebbenFELADATOK ÉS MEGOLDÁSOK
3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó
RészletesebbenMinta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenArany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév Kezdők I II. kategória II. forduló Kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy kört
RészletesebbenARITMETIKAI FELADATOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.
Részletesebben2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
RészletesebbenMATEMATIKA 11. osztály I. KOMBINATORIKA
MATEMATIKA 11. osztály I. KOMBINATORIKA Kombinatorika I s m é t l é s n é l k ü l i p e r m u t á c i ó 1. Öt diák (A, B, C, D, E) elmegy moziba, és egymás mellé kapnak jegyeket. a) Hányféle sorrendben
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Részletesebben8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?
8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike
Részletesebben48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
Részletesebben46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY. Írd be a körökbe a 2, 3, 4 és 5 számokat úgy, hogy a szomszédos számok különbsége -nél nagyobb legyen!
RészletesebbenSzabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály
5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan
RészletesebbenGyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Részletesebben} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
RészletesebbenAGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?
KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel
RészletesebbenXI. PANGEA Matematika Verseny I. forduló 8. évfolyam
1. A következő állítások közül hány igaz? Minden rombusz deltoid. A deltoidnak lehet 2 szimmetriatengelye. Minden rombusz szimmetrikus tengelyesen és középpontosan is. Van olyan paralelogramma, amelynek
RészletesebbenVI. Vályi Gyula Emlékverseny november
VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs
Részletesebben1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
RészletesebbenA fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
RészletesebbenBevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
RészletesebbenNULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
Részletesebben835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
RészletesebbenHarmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
RészletesebbenISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12
2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1
Részletesebben( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,
1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány
RészletesebbenMatematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
Részletesebbensemelyik kivett golyót nem tesszük vissza később az urnába. Hányféle színsorrendben tehetjük ezt meg?
VIII. KOMBINATORIKA VIII.1. Kombinatorikai alapfeladatok 1. Példa. Egy urnában egy piros golyó P, egy fehér golyó F és egy zöld golyó Z van. Egymás után kihúzzuk a három golyót, semelyik kivett golyót
RészletesebbenÍrd le, a megoldások gondolatmenetét, indoklását is!
088 Budapest VIII., Bródy Sándor u. 6. Postacím: 4 Budapest, Pf. 76 Telefon: 7-8900 Fa: 7-890 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 05. április. NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
RészletesebbenNULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
Részletesebben2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
01. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenMATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT
MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenTUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2018. NOVEMBER 24.) 3. osztály
3. osztály Milyen számot írnátok az üres háromszögbe? Miért? Számpiramist kezdtünk építeni valamilyen szabály szerint (lásd az ábrán). Keressétek meg, mi lehet a szabály, és írjátok a betűk helyére a megfelelő
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenXXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
RészletesebbenSZÁMKERESZTREJTVÉNYEK
Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83
RészletesebbenVegyes összeszámlálási feladatok. Gyakorlás
Vegyes összeszámlálási feladatok Gyakorlás Összeszámlálási feladatok Négyjegyű függvénytáblázat 22. oldala 1. FELADAT: Október 6-a Az aradi vértanúk emléknapja nemzeti gyásznap. Hányféle sorrendben hangozhat
RészletesebbenKlasszikus valószínűségi mező megoldás
Klasszikus valószínűségi mező megoldás Ha egy Kísérletnek csak véges sok kimenetele lehet, és az egyes kimeneteleknek, vagyis az elemi eseményeknek azonos a valószínűségük, akkor a kísérelttel kapcsolatos
Részletesebben