24. tétel. Kombinatorika. A grá fok.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "24. tétel. Kombinatorika. A grá fok."

Átírás

1 2009/ Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől. A kombinatorika problémái két fő kérdéskör köré csoportosítható: a) egy halmaz elemeinek különböző sorrendben való elhelyezése; b) egy halmaz elemeiből a különböző módon való kiválasztás. Az első kérdéskör vezet a permutációk, a második a kombinációk, a kettő együtt a variációk fogalmához. Amennyiben az adott elemek között egyenlők is vannak, akkor ismétléses permutációról; ha pedig a kiválasztásnál megengedjük egy elem ismételt szerepeltetését, akkor ismétléses kombinációról, illetve ismétléses variációról beszélünk. Az n! (olvasd: n faktoriális) jelentése. A pozitív egész számok szorzata 1-től n- ig. Az -az n! = n Az 1! értékét 1-nek tekintjük. Célszerű: 0!=1-nek definiálni. Def: n különböző elem egy lehetséges sorrendjét permutációnak nevezzük. a) Té tel(1): n különböző elem összes permutációinak száma: P n = n! Bizonyítás: vegyünk egy n rekeszes dobozt, és vizsgáljuk meg, hányféleképpen lehet az 1, 2, 3 n elemeket elhelyezni a megadott n helyre. Az első rekeszbe az n elem bármelyike választható, így ez a rekesz n-féleképpen tölthető be. Bármelyik elemet is választjuk, a másodikba az (n-1) elem bármelyike tehető, ezért az első két rekesz kitöltésére n (n-1) lehetőségünk van. Hasonlóan látható be, hogy a következő helyek mindegyike 1 gyel kevesebb módon tölthető be, mint az őt megelőző hely. Így az n-edik rekeszbe már csak egyetlen elem marad. pl.: Hányféle sorrendben léphet be az ajtón 5 ember? (Válasz: 5! = 120) Def: n elem egy lehetséges sorrendjét, amikor ezek között vannak egyforma elemek is (pl.: k, l, m egyforma), ismétléses permutációnak nevezzük.,, n! b) Té tel (2): A fenti esetben az összes ismétléses permutációk száma: P k l m n = k! l! m! (k, l, m: az egyforma elemek száma) pl.: Hányféleképpen állítható sorba 4 db piros, 3 db kék és 2 db zöld golyó? (Válasz: 4,3,2 9! P 9 = = 1260 ) 4!3!2! Def: Variációnak nevezzük, amikor n különböző elemből kiválasztunk k< n darabot úgy, hogy az adott kiválasztásnál számít a sorrend. c) Té tel(3): n különböző elem k-ad osztályú (ismétlés nélküli) variációinak a száma: V k n =n n 1 n 2... n k 1 = n! n k! pl.: Egy fagyizóban 12-féle fagyit árulnak. Hányféle 5 gombócos tölcséres fagyi van? (Egyféléből csak egy gombócot veszünk.) (Válasz: V 5 12 = = 12! 7! =95040 )

2 2009/ Huszk@ Jenő Def: Ismétléses variációnak nevezzük, amikor n különböző elemből kiválasztunk k darabot úgy, hogy 1-1 elem többször is szerepelhet (legfeljebb k-szor) és az adott kiválasztásban számít a sorrend. k d)té tel(4): n különböző elem k-ad osztályú ismétléses variációinak a száma: V n (ism.) = n k pl.: Hányféle 5 hosszúságú fej vagy írás sorozat van? (Válasz: 2 5 = 32) pl.: Egy fagyizóban 12-féle fagyit árulnak. Hányféle 5 gombócos tölcséres fagyi van? (Egyféléből többet is vehetünk.) (Válasz: V 5 12 ism. =12 5 = ) Def: Kombinációnak nevezzük, amikor n különböző elemből kiválasztunk k< n darabot úgy, hogy a sorrend nem számít. e)té tel(5): n különböző elem k-ad osztályú (ismétlés nélküli) kombinációinak a száma: n n 1 n 2... n k 1 n! = = k! n k! k! C n k = n k pl: Hányféle lottóötös van (5 a 90-ből)? (Válasz: C 5 90 = 90 5 =90! 85! 5! = ) pl.: Egy fagyizóban 12-féle fagyit árulnak. Hányféle 5 gombócos kelyhes fagyi van? (Egyféléből csak egy gombócot veszünk.) (Válasz: C 5 12 = 12 5 =12! 7! 5! =792 ) Def.: Ismétléses kombinációnak nevezzük, amikor n különböző elemből kiválasztunk k darabot úgy, hogy a sorrend nem számít és 1 elemet többször is (legfeljebb k-szor) kiválaszthatunk f)té tel(6): n különböző elem k-ad osztályú ismétléses kombinációinak a száma: C k n ism. = n k 1 k pl: Egy fagyizóban 12-féle fagyit árulnak. Hányféle 5 gombócos kelyhes fagyi van? (Egyféléből többet is vehetünk.) (Válasz: C 5 12 ism. = 16 5 =16! 11! 5! =4368 ) A binomiális tétel: a b = n n 0 n 1 b... n k an an 1 an k b... n 1 k n n abn 1 bn Pascal-háromszög: A Pascal-háromszög egy kiválasztási táblázat, a segítségével megmondhatjuk, hogy például hányféleképpen lehet n darab elemből k darabot kiválasztani: n-dik sor k-adik eleme n. n 0 n 1 n 2 n k n 1 n n n Té tel(7): n k n k = n Bizonyítás: - bal oldal: n k = n! n k! k!

3 2009/ Huszk@ Jenő -jobb oldal: n k n = n! [ n n k ]! n k! = n! k! n k! Té tel(8): A Pascal háromszög n-edik sorában lévő számok összege 2 n. (Azaz: n 0 n 1... n n =2n ) 1. Bizonyítás: Binomiális tétellel: 2 n = 1 1 n = n 0 n 1... n n 2. Bizonyítás: Mindkét oldalon az n elemű halmaz részhalmazainak száma van feltüntetve. - bal oldal: 0-elemű részhalmazok száma + 1-elemű részhalmazok száma n-elemű részhalmazok száma = összes részhalmaz száma - jobb oldal: részhalmazok száma az ismert tétel szerint (Segédtétel: n elemű halmaz részhalmazainak száma: 2 n. 2. Gráfok A gráf pontokból és vonalakból álló alakzat. Minden vonal két (nem feltétlenül különböző) pontot köt össze. A pontok a gráf pontjai (vagy szögpontjai), a vonalak a gráf élei. Az élek egyenesekre vagy görbe vonalakra is illeszkedhetnek, keresztezhetik is egymást. Azt fontos tudni, hogy melyik pont, melyik ponttal van összekötve.a gráfokat jól lehet alkalmazni ismeretségi viszonyoknál, elektromos hálózatoknál, közlekedési útvonalak tervezésénél. Négy pont esetében például a következő kapcsolatok kifejezésére: szögpont egyenesre illeszkedő él görbe vonalra illeszkedő él Ha egy gráfnak n pontja van (n pozitív egész szám), és mindegyik pontból pontosan egy él vezet a többi ponthoz, akkor ezt n pont ú teljes gráfnak nevezzük. Egy négy pontú teljes gráf például a következő: teljes gráf, mindegyik pontjából

4 2009/ Huszk@ Jenő n-1 él vezet (itt 3 él, mivel n=4) Egy gráfban előfordulhat olyan él is, amelynek mindkét végpontja ugyanaz a pont. Az ilyen él neve huroké l. Két csúcs között több élt is húzhatunk. Ezek a többszörös é lek. Az alábbi gráfon két hurokél, és két többszörös él található: többszörös él hurokél Egy gráfot egyszerűnek nevezü nk, ha nincs benne sem hurokél, sem többszörös él. A középiskolai tanulmányok során csak egyszerű gráfokkal foglalkozunk. Egy gráf összefügg ő, ha bármely pontjából bármely másik pontjába az élek mentén el lehet jutni. Az első gráf összefüggő, a második nem összefüggő: összefüggő nem összefüggő

5 2009/ Huszk@ Jenő A gráf egy P pontjához (szögpontjához) illeszkedő élvégek számát a P pont fokszámának nevezzük. Az alábbi gráfban a fokszámok összege:12 (zárójelben mindegyik pont fokszáma) Egy gráf összes pontja fokszámának az összege megegyezik élei számának a kétszeresével. Ez következik abból, hogy a fokszámok összege az élek végpontjainak (minden élnek két végpontja van, ezért minden él kétszer szerepel az összeszámlálásban) összege. A fokszámok összegére vonatkozó megállapításból következik, hogy minden gráf fokszámának az összege páros szám, továbbá a páratlan fokszámú szögpontok száma páros szám. Az előzőek szemléltetése, bemutatása: a fokszámok összege páros szám a páratlan fokszámú szögpontok száma:4

6 2009/ Huszk@ Jenő Egy gráf komplementerén olyan gráfot értünk, amelyik az eredetivel együtt egy teljes gráfot alkot. Ebből következik, hogy a komplementer gráf komplementere az eredeti gráf. Az n szögpontú teljes gráf komplementere az n szögpontú él-nélküli gráf. A komplementer jelölése: G, illetve G = G a komplementer gráf éleit szaggatott vonalak jelölik él-nélküli hatpontú gráf Egy G' gráf a G gráfnak részgrá fja, ha a G' minden szögpontja, szögpontja a G gráfnak is, és G' minden éle, éle G gráfnak is. A G és a G' gráfokat izomorfoknak nevezzük (szokás azonosnak is nevezni), ha a G és a G' szögpontjainak halmaza között létezik olyan kölcsönösen egyértelmű leképezés, hogy a két G beli pont akkor és csak akkor van összekötve a G-ben, ha a nekik megfelelő pontok össze vannak kötve a G'-ben.

7 2009/ Huszk@ Jenő Ha egy gráf teljes, akkor annak részgráfja, vagy a részgrá f komplementere mindig összefügg ő. a részgráfja nem összefüggő izolált pont komplementere összefüggő Ha egy gráf úgynevezett zárt Euler vonal, akkor a bejárhatósá g (megrajzolható egy vonallal úgy, hogy a ceruzát nem emeljük fel) szükséges feltétele, hogy minden pont fokszáma páros legyen, vagy két páratlan fokszámú pontja legyen. páratlan fokszámú pontok száma: 2 Nem járható be Az EC élet eltávolítva bejárható: a kiindulási pontba érkezünk

8 2009/ Huszk@ Jenő Ha a gráfban a kezd ő és a végpont különböző, akkor a bejárhatóság szükséges feltétele, hogy a kezdő és a végpont páratlan fokszámú legyen, az összes többi páros fokszámú.(nyitott Euler vonal) nem járható be bejárható Az olyan összefüggő gráfokat, amelyekben nincs kör (zárt poligon, amelyben a végpontokon kívül minden pont és él csak egyszer szerepel), fá nak nevezzük. Egy fában bármely két pontot pontosan egy út (vonal) köt össze. Egy n szögpont ú fának pontosan n-1 éle van. ez a kör hiányzik A szögpontok száma: 8; az élek száma: 7.

9 2009/ Huszk@ Jenő Alkalmazások a) szerencsejátékok (rulett, kártyajátékok, póker, stb), nyereményjátékok (totó, lottó, stb.) esetén használható a kombinatorika, illetve a valószínűségszámítás (Ezt részletesen kifejtve, példát mutatva nem kell további alkalmazást említeni! Pl.: ha kitöltenénk az összes lehetséges módon ötöslottó-szelvényeket, az egy darab telitalálat mellett hány négyes, hármas, kettes találatunk lenne?) = 425; = 35700; = b) kódmegfejtéskor is használják a kombinatorikát; az összes variáció segítségével található meg a helyes kombináció számítástudomány c)a kombinatorika igen fontos lehet egy sakkozó számára, hogy felmérje az összes kombinációs lehetőséget és így ezek közül kiválasztva mindig a legjobb lépést lépje meg d) sportversenyek, sportrendezvények megszervezése esetén is hasznunkra válhat a kombinatorika (pl: bajnokság, csapatok kialakításakor) e) hat város között úgy akarnak utakat tervezni, hogy bármely városból bármely városba el lehessen jutni, és a városok között a lehető legkevesebb számú közvetlen utat keljen megépíteni. Átfogalmazva: városok a pontok, a városok közötti utak az élek. (Összesen 5 élre van szükség) Történet: A gráfelmélet a matematika viszonylag új ága. Keletkezését általában Euler egy 1736-ban megjelent dolgozatától számítják, amelyben a königsbergi hidak problémájával foglalkozik.(königsberg városa egy folyó két partján és a folyó két szigetén fekszik. A négy városrészt 7 híd köti össze. Kérdés, hogy lehet-e olyan sétát tenni, a városban, amelynek során minden hídon pontosan egyszer kelünk át?(nem, mert a gráf nem minden pontjának fokszáma páros, illetve a páratlan fokszámú csúcsok száma nem kettő)

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. 9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Kombinatorika - kidolgozott típuspéldák

Kombinatorika - kidolgozott típuspéldák Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

1. Gráfelmélet alapfogalmai

1. Gráfelmélet alapfogalmai 1. Gráfelmélet alapfogalmai Definíció: A gráf pontok és az őket összekötő élek együttese. Megjegyzés: A gráf pontjait szögpontoknak, illetve csúcsoknak is nevezzük. Ha a gráf élei irányítottak, irányított

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton. lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük. Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai

Részletesebben

Gráfelmélet Megoldások

Gráfelmélet Megoldások Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.? Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű

Részletesebben

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)

Kombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció) Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es? 8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Szerencsejátékok. Elméleti háttér

Szerencsejátékok. Elméleti háttér Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Ramsey-féle problémák

Ramsey-féle problémák FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen

Részletesebben

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből. 1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi

Részletesebben

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával: Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem

Részletesebben

Matematika tanmenet 11. évfolyam (középszintű csoport)

Matematika tanmenet 11. évfolyam (középszintű csoport) Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:

Részletesebben

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Permutáció (ismétlés nélküli)

Permutáció (ismétlés nélküli) Permutáció (ismétlés nélküli) Mi az az ismétlés nélküli permutáció?... 1. Három tanuló, András, Gábor és Róbert együtt mennek az iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a

Részletesebben

Fazakas Tünde: Ramsey tételéről

Fazakas Tünde: Ramsey tételéről Fazakas Tünde Ramsey tételéről: a tétel előkészítése és alkalmazása (Készült a H533_003 továbbképzés záródolgozataként, Schultz János, Mike János és Ábrahám Gábor előadásához) Budapest, 2013. május 18.

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Egy negyedikes felvételi feladattól az egyetemi matematikáig

Egy negyedikes felvételi feladattól az egyetemi matematikáig Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása

FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása 4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános

Részletesebben

Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer

Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Ismétlés nélküli kombináció

Ismétlés nélküli kombináció Ismétlés nélküli kombináció Hányféleképpen lehet n különböz elembl kiválasztani k elemet úgy, hogy a sorrend nem számít, és minden elemet csak egyszer választhatunk? 0. Egy 1 fs csoportban hányféleképpen

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető. Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The

Részletesebben

Elemi feladatsorok; 2G

Elemi feladatsorok; 2G Elemi feladatsorok; 2G 1. Hányféle végeredménye lehet egy olyan futóversenynek, melyen 90-en vesznek részt és az első öt helyezést rögzítik? 2. Hányféle lottóhúzás lehetséges a 90-ből 5-öt lottón? 3. Ha

Részletesebben

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombinatorika Variáció, permutáció, kombináció. Binomiális tétel, szita formula.. Kombinatorikai alapfeladatok A kombinatorikai alapfeladatok lényege az, hogy bizonyos elemeket sorba rendezünk, vagy néhányat

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be. IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk

Részletesebben

Klasszikus valószínűségi mező megoldás

Klasszikus valószínűségi mező megoldás Klasszikus valószínűségi mező megoldás Ha egy Kísérletnek csak véges sok kimenetele lehet, és az egyes kimeneteleknek, vagyis az elemi eseményeknek azonos a valószínűségük, akkor a kísérelttel kapcsolatos

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

Kombinatorika gyakorló feladatok

Kombinatorika gyakorló feladatok Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot

Részletesebben

SZÁMÍTÁSTUDOMÁNY ALAPJAI

SZÁMÍTÁSTUDOMÁNY ALAPJAI SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz

Részletesebben

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)

Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben