Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom"

Átírás

1 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (30) takach Számonkérés Írásbeli vizsga januárban Feladatok Elméleti kérdések Bizonyítások 1. konzultáció Gráfelmélet Alapfogalmak Euler-vonal Hamilton-kör Legrövidebb út Minimális feszítőfa Algoritmusok! Hozzárendelési feladat Folyamprobléma Irodalom F. S. Hillier és G. J. Lieberman. Bevezetés az operációkutatásba.

2 2 LSI Oktatóközpont, Budapest, Szükséges részek: 10. fejezet, azaz , oldal. A többi anyagrészhez: ld. tantárgy honlapja A gráf definíciója 1. DEFINÍCIÓ. Legyen V egy véges halmaz, E pedig V -beli rendezetlen elempárok véges rendszere. Ekkor a G=(V, E) párt gráfnak nevezzük. V elemei a gráf csúcsai, E elemei a gráf élei. Ha e = (v 1, v 2 ) egy él, akkor azt mondjuk, hogy az e él a v 1 és a v 2 csúcsokat köti össze. Egy labdarúgó tornán 6 csapat vesz részt. Ez a gráf azt írja le, hogy mely csapatok mérkőztek meg egymással az első négy fordulóban. V = {A, B, C, D, E, F } E = {(A, B), (A, C), (A, D), (A, F ), (B, C), (B, E), (B, F ), (C, D), (C, E), (D, E), (D, F ), (E, F )} Rendezetlen elempáron azt értjük, hogy nem teszünk különbséget a (v 1, v 2 ) és a (v 2, v 1 ) pár között, a rendszer pedig abban különbözik a halmaztól, hogy egy elem többször is szerepelhet benne. Gráfelméleti alapfogalmak 2. DEFINÍCIÓ. Egy gráf egy csúcsa izolált csúcs, ha nem indul ki belőle él. (W ) Többszörös élről beszélünk, ha két pontot több él köt össze.((y, V ) ) A hurokél önmagába visszatérő él, azaz két végpontja azonos.((x, X)) Az üres gráf csupa izolált pontokból álló gráf, azaz E =. Az egyszerű gráfok nem tartalmaznak sem hurokélet, sem többszörös élet.

3 3 Gráfelméleti alapfogalmak 3. DEFINÍCIÓ. A teljes gráfok olyan egyszerű gráfok, amelyekben bármely két különböző csúcs között vezet él. K n : n csúcsú teljes gráf. Egy G egyszerű gráf komplementere az a Ḡ gráf, amely teljes gráffá egészíti ki; tehát G és Ḡ csúcsai megegyeznek, továbbá két csúcs között pontosan akkor vezet él Ḡ-ben, ha G-ben nem vezet él. A G 1 = (V, E ) gráf a G = (V, E) gráf részgráfja, ha E E; tehát G 1 -et G-ből néhány él elhagyásával kapjuk. A G 1 és G 2 gráfok izomorfak, ha létezik a csúcsok között olyan bijekció, hogy két G 1 -beli csúcs között pontosan akkor vezet él, ha a megfelelő két G 2 -beli csúcs is össze van kötve. Síkgráfok 4. DEFINÍCIÓ. Egy gráf síkgráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. G síkgráf, mert a vele izomorf H a síkba van rajzolva. Ha egy gráf lerajzolható a síkba, akkor lerajzolható úgy is, hogy minden éle egyenes szakasz legyen. (K)

4 4 Síkgráfok K 5 és K 3,3 nem rajzolhatók le a síkba. Az is belátható, hogy ha egy gráf nem rajzolható síkba, akkor K 5 vagy K 3,3 valahol "benne van" a gráfban. Fokszámok 5. DEFINÍCIÓ. Egy csúcs fokszáma a belőle kiinduló élek száma. Megjegyzés. Egy n-pontú teljes gráfban minden csúcs fokszáma n 1, és összesen ( ) n 2 élet tartalmaz. 6. TÉTEL. Egy gráf páratlan fokú csúcsainak száma páros. Bizonyítás. Felhasználjuk az alábbi segédtételt. 7. SEGÉDTÉTEL. Egy gráf csúcsai fokszámainak összege megegyezik az élek számának kétszeresével. Ezek után a tétel bizonyítása a következő: Jelölje a gráf csúcsait A 1,... A n, a megfelelő fokszámokat ρ(a 1 ),..., ρ(a n ). Tegyük fel, hogy ρ(a 1 ),..., ρ(a k ) páratlan számok, ρ(a k+1 ),..., ρ(a n ) párosak. A segédtétel szerint ρ(a 1 ) ρ(a n ) páros, így páros számokat elhagyva ρ(a 1 ) ρ(a k ) is páros lesz. Páratlan számok összege pedig csak akkor lehet páros, ha páros sok van belőlük. Fokszámok 8. TÉTEL. Legyen G egy n-csúcsú egyszerű gráf, n 2. Ekkor van legalább két olyan csúcs, melyek fokszáma megegyezik. Bizonyítás. Minden egyes csúcs fokszáma 0, 1,..., n 1 lehet, vagyis n-féle. Egy 0-fokú csúcs izolált csúcs, egy (n 1)-fokú pedig minden másik csúccsal össze van kötve. Tehát nem lehet a gráfban egyszerre 0-fokú és (n 1)-fokú csúcs is, vagyis csak (n 1) féle lehet a fokszám. Ekkor a skatulya-elv szerint van két azonos fokszámú csúcs.

5 5 Gráfok bejárása 9. DEFINÍCIÓ. Sétán két csúcsot összekötő élsorozatot értünk. Speciális séták: vonal: olyan séta, melyben minden él legfeljebb egyszer szerepel (a csúcsok többször is szerepelhetnek). zárt vonal: olyan vonal, melynek kezdő és végpontja azonos. nyílt vonal: olyan vonal, melynek kezdő és végpontja különböző. út: minden csúcsot legfeljebb egyszer érintő séta. kör: olyan séta, melynek a kezdő és végpontja azonos, a többi csúcsot legfeljebb egyszer érinti. 10. DEFINÍCIÓ. Egy gráf összefüggő, ha bármely két csúcs között vezet út. Königsbergi hidak Eulertől megkérdezték Königsberg lakói, hogy miért nem tudnak átmenni a város hídjain úgy, hogy mindegyiken pontosan egyszer mentek át: Euler-vonal Melyik ábra (gráf) rajzolható le egy vonallal a ceruza felemelése nélkül?

6 6 A kukásautónak egy körzet minden utcáján végig kell mennie, és be kell gyűjteni a szemetet. Meg tudja-e ezt tenni úgy, hogy minden utcán csak egyszer megy végig? Euler-vonal 11. DEFINÍCIÓ. Euler-vonal: olyan vonal (séta), melyben minden él pontosan egyszer szerepel. Szükséges feltétel Euler-vonal létezésére: zárt Euler-vonal esetén minden pontba pont ugyanannyiszor megyünk be mint ki minden pont foka páros. Belátható, hogy ez elegendő is! 12. TÉTEL. Egy összefüggő gráfban pontosan akkor létezik zárt Euler-vonal, ha minden csúcs fokszáma páros. Egy összefüggő gráfban pontosan akkor létezik nyitott Euler-vonal az A csúcsból a B csúcsba, ha csak A és B fokszáma páratlan. Ha egy összefüggő gráfban a páratlan fokszámú csúcsok száma 2k, akkor a gráf k darab diszjunkt vonal egyesítése. Algoritmusok "Algoritmus" zárt Euler-vonal keresésére: Tetszőleges csúcsból kiindulva rajzolom fel a gráfot, ügyelve arra, hogy a le nem rajzolt rész összefüggő maradjon. "Algoritmus" nyílt Euler-vonal keresésére: Ugyanaz, mint a zártra, de a kiindulópont szükségszerűen az egyik páratlan fokú csúcs. Utazó ügynök probléma Egy ügynöknek meg kell látogatnia bizonyos városokat útja során (és végül haza kell térnie). Adott: mely városokból mely másik városokba van járat(közvetlen út) milyen költséggel tud eljutni egyik városból másikba (repülőjegy, autóút ára).

7 7 Cél: az utak összköltségét minimalizálni. Ez a feladat sok alkalmazás során felmerül, és csak bizonyos speciális esetekben ismeretesek jó algoritmusok a megoldására. Ha bármely két város közt, melyek között van összeköttetés, az 1 költségű, és az ügynöknek minden várost meg kell látogatnia, akkor a feladat a Hamilton-kör létezésére vezet. Hamilton-kör 13. DEFINÍCIÓ. A Hamilton-kör olyan kör, amely minden csúcson átmegy (szükségszerűen pontosan egyszer). A Hamilton-kör létezésére nem ismert egyszerű szükséges és elégséges feltétel, s ugyancsak nincs gyors algoritmus sem Hamilton-kör keresésére. Elégséges, de nem szükséges feltétel Hamilton-kör létezésére: 14. TÉTEL. Legyen G n-csúcsú egyszerű összefüggő gráf. Ha minden csúcs fokszáma legalább n/2, akkor a gráfban létezik Hamilton-kör. Hamilton-kör Szükséges, de nem elégséges feltétel Hamilton-kör létezésére: 15. TÉTEL. Ha egy G = (V, E) gráfban van Hamilton-kör, akkor bármely S V ponthalmaz esetén S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak legfeljebb annyi össefüggő komponense van, mint S. Másképpen: Ha egy G = (V, E) gráfban létezik olyan S V ponthalmaz, hogy S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak S -nál több össefüggő komponense van, akkor a gráfban nincs Hamilton-kör. Legrövidebb út keresése Alapfeladat: Adott egy összefüggő gráf, egy kezdő- és egy végső csúcs, valamint az élekhez rendelt távolságok. Keressük a legrövidebb utat a kezdő és a végső csúcs között. Figyelem! Nem a felhasznált élek számát kell minimalizálni, hanem a hosszaik összegét. Átfogalmazások: Az elemekhez rendelt számok jelképezhetnek költségeket illetve időtartamokat is. Ilyenkor a minimális költségű illetve a legkevesebb idő alatt bejárható utat keressük. Algoritmus. A gráf minden élére meghatározzuk a kezdőponttól oda vezető legrövidebb utat. A kezdőponttól mért távolságok szerint növekvő sorrendben vesszük a pontokat. 1. iterációs lépés: Meghatározzuk a kezdőponthoz legközelebbi pontot.

8 8 n. iterációs lépés: Meghatározzuk a kezdőponthoz n. legközelebbi pontot. Bemenet: A legközelebbi n 1 csúcs, beleértve a legrövidebb útvonalakat is. (Ezeket nevezzük megoldott pontoknak (beleértve a kezdeti pontot is), a többit megoldatlan pontnak mondjuk.) Jelöltek: minden megoldott ponthoz a legközelebbi megoldatlan pont (ha van ilyen). Döntés: minden jelöltre kiszámítjuk a jelölő kezdő távolság és a jelölt jelölő távolság összegét, és ezek közül a minimálisat választjuk. A jelölő csúcsot is feljegyezzük. A legrövidebb út: Ha az iterációban elérek a végső pontig, akkor készen vagyok. (Visszafejtés!) n Jelölő Jelölt Távolság Győztes Távolság Összeköttetés 1 O A 2 A 2 OA 2 O C 4 C 4 OC A B = 4 B 4 AB 4 A D = 9 B E = 7 E 7 BE C E = 8 5 A D = 9 B D = 8 D 8 BD E D = 8 D 8 ED 6 D T = 13 T 13 DT E T = 14 Visszafejtés Az összeköttetés oszlop tartalma: OA, OC, AB, BE, BD, ED, DT

9 9 Azaz OABEDT és OABDT a két legrövidebb út. Fák 16. DEFINÍCIÓ. Fának nevezzük az olyan összefüggő gráfokat, amikben nincs kör. A fák szükségszerűen egyszerű gráfok, hiszen a hurokél 1-hosszú kör, a többszörös él 2-hosszú kör. Fák jellemzése 17. TÉTEL. Legyen G egy n-csúcsú gráf. Ekkor a következő állítások ekvivalensek 1. G fa; 2. G összefüggő és n 1 éle van; 3. G összefüggő, de tetszőleges élét elhegyva már nem lesz összefüggő. 4. G-ben nincs kör, de egy tetszőleges új élet hozzávéve már lesz benne kör.

10 10 1. Feszítő fák 18. DEFINÍCIÓ. Legyen G egyszerű, összefüggő gráf. Az F fa a G gráf feszítő fája, ha F olyan részgráfja G-nek, mely a G minden csúcsát és bizonyos éleit tartalmazza. Minimális kifeszítő fa keresése Feladat: Adott egy n csúcsú, egyszerű összefüggő gráf, valamint az élekhez rendelt valós számok, amelyek az élek hosszai. Keressük azt a kifeszítő fát, amelyben az élek összhossza minimális. 1. ALGORITMUS (KRUSKAL-FÉLE MOHÓ ALGORITMUS): Rendezzük hosszuk szerint növekvő sorrendbe az éleket. Válasszunk ki sorban éleket, de olyan élet ne válasszunk ki, melynek kiválasztásával kör keletkezne. Az előző pontot ismételjük n 1-szer. 2. ALGORITMUS: ld. [HL], Ez szintén mohó algoritmus, de végig összefüggő részgráfot alkotnak a kiválasztott élek. Páros gráfok 19. DEFINÍCIÓ. Egy G = (V, E) gráfot páros gráfnak nevezünk, ha van olyan V = B J felbontás, hogy B J =, továbbá minden él egyik végpontja B-ben, a másik J-ben van. Jelölése: G = (B, J; E).

11 11 Vegyük észre, hogy ha B és J nem adott, akkor nem egyszerű feladat eldönteni, hogy a gráf páros-e. Hozzárendelési feladat páros gráfokban 20.DEFINÍCIÓ. A G = (B, J; E) páros gráf éleinek egy M halmaza lefedést (matchinget, független élrendszert, párosítást) alkot, ha nincs két olyan M-beli él, amelyeknek van közös végpontja. Egy csúcs lefedetlen az M élrendszerben, ha nem végpontja egyetlen M-beli élnek sem. Egy lefedés teljes lefedés, ha a gráf minden csúcsát lefedi. (Teljes lefedés csak akkor létezhet, ha B = J teljesül.) Javító útak 21. DEFINÍCIÓ. Adott egy M párosítás egy páros gráfban. Ha egy út felváltva tartalmaz M-hez tartozó és M-hez nem tartozó éleket, akkor alternáló útnak nevezzük. Egy alternáló út javító út (bővítő út), ha mindkét végpontja lefedetlen csúcs.

12 12 Javító útak Vegyük észre, hogy ha U egy bővítő út az M párosításra nézve, akkor az U M eggyel nagyobb elemszámú párosítás, mint M. Tehát az alternáló út M-hez tartozó éleit M-ből elhagyva, az M-hez nem tartozó éleit M-hez hozzávéve eggyel nagyobb elemszámú párosítást nyerünk. 22. TÉTEL. Egy páros gráf M lefedése akkor és csak akkor maximális elemszámú független élrendszer, ha nem létezik bővítő út a gráfban M-re nézve. Matching-algoritmus Adott egy G = (B, J; E) páros gráf, valamint egy M kiindulási párosítás (amely esetleg üres is lehet). M-ből kiindulva keresünk egy maximális elemszámú párosítást G-ben. Ha nincs lefedetlen csúcs B-ben, akkor M maximális párosítás, STOP. Ha van, akkor folytassuk a következő lépéssel. Keressünk egy bővítő utat, Ha találunk bővítő utat, akkor ennek segítségével bővítsük M-et, és folytassuk az első lépéssel. Ha nem találtunk bővítő utat, akkor M maximális elemszámú párosítás. Javító út keresése

13 13 Minden egyes i B csúcsra és (i, j) / M élre cimkézzük meg a (J-beli) j csúcsot i-vel. Minden egyes lefedett j J csúcsra cimkézzük meg a (B-beli) i csúcsot j-vel, ahol (i, j) M. Minden egyes J-beli lefedetlen csúcsra felírható egy alternáló út, amely a csúcsból indul ki, és mindig a cimkének megfelelően folytatódik. Ha egy út 0 cimkéhez ért, akkor az bővítő út. Éllefogások Annak megállapítása, hogy egy párosítás maximális elemszámú-e, történhet az alábbi tétel segítségével is. 23. DEFINÍCIÓ. A G = (V, E) gráf W V pontjai éllefogó ponthalmazt alkotnak, ha minden él legalább egyik végpontja W -beli. 24. TÉTEL. Egy páros gráfban tetszőleges párosítás elemszáma kisebb vagy egyenlő tetszőleges éllefogó ponthalmaz elemszámánál. Következésképpen ha M = W teljesül, akkor M maximális elemszámú párosítás, W pedig minimális elemszámú éllefogás. Hálózatok Alapfeladat: Adott egy gráf, minden élének mindkét irányú kapacitása, valamint két kitüntetett csúcs: a forrás és a nyelő. Keresünk egy maximális értékű megengedett folyamot (áramlást).

14 14 Szemléltetésképpen feltehetjük, hogy a hálózattal egy olajvezetékrendszert ábrázolunk. A kapacitások a vezeték vastagságát jelentik, vagyis azt, hogy egységnyi idő alatt mennyi olaj folyhat át azon a vezetékdarabon. A kérdés az, hogy egy adott hálózaton mennyi olaj folyhat át s-ből t-be. Szoktak beszélni úthálózatokról is, ahol a kapacitás az utak áteresztőképessége, és árukat kell eljuttatni a termelőtől a fogyasztókhoz. De beszlélhetünk számítógéphálózatokról és adatátviteli sávszélességről is. Folyamok 25. DEFINÍCIÓ. Folyamon a hálózat minden egyes éléhez rendelt számot értünk, amely azt mutatja, hogy mekkora az élen átáramló anyag mennyisége. Meg kell adni az áramlás irányát is. (Irányított gráf!) Megengedett folyamnak nevezünk egy olyan folyamot, ahol a forrásból csak kifelé, a nyelőbe csak befelé vezet áramlás, minden egyes egyéb csúcs esetén a kifolyó áramlások összege megegyezik a befolyók összegével, továbbá a egyik élen sem haladja meg az él kapacitását. 26. DEFINÍCIÓ. Egy út kapacitásán a rajta lévő minimális élkapacitást értjük. Algoritmus 1. Keresünk egy forrás nyelő utat pozitív kapacitással (c). Ha nincs ilyen út, akkor a jelenlegi folyam maximális. STOP! 2. Növeljük a folyamot c-vel ezen az úton. 3. Csökkentsük ezen az úton c-vel a kapacitást minden élen. Növeljük az ellenkező irányú úton a kapacitást c-vel minden élen. Folytassuk az 1. lépéssel.

15 15 Vágások Hogyan győződhetünk meg egyszerűen arról, hogy egy folyam maximális, azaz hogy nem tudunk további áramlást indítani s-ből t-be? 27. DEFINÍCIÓ. Egy vágás irányított élek olyan halmaza, amelyek minden forrás nyelő útból tartalmaz egy élet. Egy vágás értéke a hozzá tartozó élek kapacitásainak összege. 28. TÉTEL. Minden megengedett folyam értéke kisebb minden vágás értékénél. Sőt, a maximális folyamok(ok) értéke egyenlő a minimális vágás értékével. A tétel megkönnyíti az algoritmus 1. lépésében a döntést: ha úgy tűnik, hogy nincs már pozitív kapacitású forrás nyelő út, akkor megpróbálok keresni egy 0-értékű vágást. Ha van nulal értékű vágás, akkor biztos hogy nincs pozitív kapacitású forrás nyelő út. Ha úgy tűnik, hogy nincs nulal értékű vágás, akkor valószínűleg van pozitív kapacitású forrás nyelő út...

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.

Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2. Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 22/2. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99)

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton. lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

24. tétel. Kombinatorika. A grá fok.

24. tétel. Kombinatorika. A grá fok. 2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelméleti feladatok programozóknak

Gráfelméleti feladatok programozóknak Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

1. Gráfelmélet alapfogalmai

1. Gráfelmélet alapfogalmai 1. Gráfelmélet alapfogalmai Definíció: A gráf pontok és az őket összekötő élek együttese. Megjegyzés: A gráf pontjait szögpontoknak, illetve csúcsoknak is nevezzük. Ha a gráf élei irányítottak, irányított

Részletesebben

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges

Részletesebben

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott . Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

HÁLÓZAT Maximális folyam, minimális vágás

HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük. Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. onyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. 1. Feladat Mutassuk meg, hogy a n/-hosszú kör probléma NP-nehéz! n/-hosszú kör Input: (V, ) irányítatlan gráf Output: van-e G-ben a csúcsok felén

Részletesebben

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető. Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel) Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Síkbarajzolható gráfok, duális gráf

Síkbarajzolható gráfok, duális gráf Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmuselmélet 11. előadás

Algoritmuselmélet 11. előadás Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal

Részletesebben

Ramsey-féle problémák

Ramsey-féle problémák FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

Gráfelmélet Megoldások

Gráfelmélet Megoldások Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Séta, út, vonal, kör

Séta, út, vonal, kör KOMBINATORIKA GYAKORLAT osztatlan matematika tanár hallgatók számára Séta, út, vonal, kör Gyakorlatvezetõ: Hajnal Péter 2014. 1. Feladat. Legyen G egy gráf. Az a, b pontokra azt mondjuk, hogy a-ból elérhető

Részletesebben

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

KOMBINATORIKUS OPTIMALIZÁLÁS

KOMBINATORIKUS OPTIMALIZÁLÁS OPERÁCIÓKUTATÁS No. 10 Fiala Tibor KOMBINATORIKUS OPTIMALIZÁLÁS A A A A B B B B A A A A A B B B B B A A A A Budapest 2010 Fiala Tibor KOMBINATORIKUS OPTIMALIZÁLÁS OPERÁCIÓKUTATÁS No. 10 A sorozatot szerkeszti:

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet Gráfelmélet DEFINÍCIÓ: (Gráf) Az olyan alakzatot, amely pontokból és bizonyos pontpárokat összekötő vonaldarabokból áll, gráfnak nevezzük. A pontokat a gráf csúcsainak, a vonalakat a gráf éleinek nevezzük.

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben