Gráfelméleti feladatok. c f

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gráfelméleti feladatok. c f"

Átírás

1 Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1

2 irányított gráf, irányított csúcsok, irányított élek irányított séta irányított vonal irányított út (directed walk, drum) (directed trail, drum simplu) (directed path, drum elementar) 2

3 Gráfnak nevezzük a G = (V, E, G) rendezett hármast, ahol V csúcsok (vagy szögpontok esetleg pontok) nem üres halmaza, E élek halmaza, G : E V V. Ha G(e 1 ) = G(e 2 ), akkor e 1 és e 2 párhuzamos vagy többszörös élek. Ha G(e) = {a, a}, akkor az e él hurokél. Ha G(e) = {a, b}, akkor azt mondjuk, hogy az a és b csúcsokat az e él köti össze, a és b szomszédosak, az e él illeszkedik az a és b csúcsokra, az a és b csúcsok az e él végpontjai. 3

4 Az a és b csúcsokra illeszkedő (párhuzamos) élek halmaza: G 1 (a, b) = {e E G(e) = {a, b}}. Legyen x a G gráf egy csúcsa. Jelöljük N G (x)-szel vagy csak N(x)-szel az x-szel szomszédos csúcsok halmazát: vagy N G (x) = {y V (G) e E(G), G(e) = {x, y}} N G (x) = {y V (G) G 1 (x, y).} A G gráfban az x-hez illeszkedő élek (amelyek nem hurokélek) halmaza: I G (x) = {e E(G) y V (G), y x, G(e) = {x, y}} Az x-hez illeszkedő hurokélek halmaza: L G (x) = {e E(G) G(e) = {x, x}} 4

5 Az x csúcs fokszáma vagy foka, amelyet ϕ(x)-szel jelölünk, az x-hez illeszkedő élek száma (a hurokéleket kétszer számolva): ϕ(x) = I G (x) + 2 L G (x). Ha ϕ(x) = 0, akkor x izolált csúcs. Ha ϕ(x) = 1, akkor x levél. Egy többszörös éleket és hurokéleket nem tartalmazó gráfot egyszerű gráfnak nevezzük. Ha G egyszerű gráf, akkor G 1 (a, b) 1 tetszőleges a, b V csúcsokra, és G 1 (a, a) = tetszőleges a V csúcsra, tehát G(e) = {a, b} helyett egyszerűen írhatunk {a, b}-t, amely a megfelelő élt jelenti. Ekkor a gráf is jelölhető egyszerűbben: G = (V, E). 5

6 Egyszerű gráfban az x fokszáma vagy foka, amelynek jele szintén ϕ(x) vagy ϕ G (x), az N G (x) halamz elemszáma: ϕ(x) = N G (x). Példák. V (G 1 ) = {1, 2, 3, 4, 5}, E(G 1 ) = {e 1, e 2, e 3, e 4, e 5, e 6, e 7 }, G(e 1 ) = G(e 2 ) = G(e 3 ) = {1, 4}, G(e 4 ) = {2, 4}, G(e 5 ) = {2, 1}, G(e 6 ) = {2, 3}, G(e 7 ) = {3, 4}. ϕ(1) = 4, ϕ(2) = 3, ϕ(3) = 2, ϕ(4) = 5, ϕ(5) = 0. 6

7 V (G 2 ) = {a, b, c, d, e}, E(G 2 ) = { {a, c}, {a, d}, {b, c}, {b, e}, {b, d}{e, d} } 7

8 Ha egy gráf minden fokszáma azonos, például r, akkor a gráf reguláris vagy r-reguláris. A következő gráf egy (7,14) 4-reguláris gráf. 8

9 Ha egy egyszerű gráfban bármely két csúcsot él köt össze, akkor a gráf teljes gráf. Az n-csúcsú teljes gráf jele: K n. 9

10 A G = (V, E) egyszerű gráf a G = (V, E) egyszerű gráf komplementuma vagy komplementere, ha V = V, E = { {a, b} {a, b} E }. Ha a G egyszerű gráf n-csúcsú, akkor E(G) E(G) = E(K n ). 10

11 A G 1 és G 2 gráfok izomorfak, ha létezik egy bijektív fügvény ψ : V (G 1 ) V (G 2 ), úgy, hogy ha {a, b} E(G 1 ), akkor {ψ(a), ψ(b)} E(G 2 ). Az izomorfizmust tetszőleges gráfokra is értelmezhetjük. Két G 1 és G 2 gráf izomorf, ha létezik egy ψ : V (G 1 ) V (G 2 ) bijektív függvény úgy, hogy G1 1 (a, b) = G 1 2 (ψ(a), ψ(b)) minden a, b V (G 1)-re. 11

12 Példa izomorf gráfokra. A ψ függvény: x a b c ψ(x) x 1 x 5 x 3 x 2 x 6 x 4 Izomorf gráfokban ϕ(x)=ϕ(ψ(x)) minden x V (G 1 )-re. 12

13 Irányított gráfok Irányított gráfnak nevezzük a G = (V, E, G) rendezett hármast, ahol V a csúcsok (vagy szögpontok vagy pontok) halmaza, E az irányított élek halmaza és G : E V V Ha e E és (a, b) G(e), akkor a az e él kezdőpontja, b pedig az e él végpontja. Ha egy élnek a kezdő- és végpontja egybeesik, akkor az az él hurokél. 13

14 Ebben az irányított gráfban az e 1 és e 2 élek párhuzamosak, de e 6 és e 8 nem. Ha egy irányított gráfban nincsenek párhuzamos élek és hurokélek, akkor az egyszerű irányított gráf. 14

15 Legyen G irányított gráf. Ekkor N be G (y) = {x V ( G) G 1 (x, y) } az y-ba befutó élek kezdőpontjainak halmaza N ki G (y) = {z V ( G) G 1 (y, z) } az y-ból kifutó élek véppontjainak halmaza. Egy irányított gráfban az x csúcs be-foka az x-be befutó élek száma (jelölése ϕ be (x)), az x csúcs ki-foka az x-ből kifutó élek száma (jelölése ϕ ki (x)). Ha egyszerű irányított gráfról van szó, akkor: ϕ be (x) = N be (x) ϕ ki (x) = N ki (x). 15

16 Gráfok ábrázolása 1) geometriai ábrázolás 2) szomszédsági (adjacencia) mátrixszal G = (E, V, G), V = {x 1, x 2,..., x n } A = (a ij ) i,j=1,n a szomszédsági mátrix, ahol a ij = { G 1 (x i, x j ) ha i j 2 G 1 (x i, x j ) ha i = j 16

17 ϕ(x i ) = n j=1 a ij, minden i = 1, 2,..., n Az egyszerű gráf szomszédsági mátrixa csak 0 és 1 számokat tartalmaz. Irányított gráf esetében a definíció hasonló. 17

18 3) illeszkedési (incidencia) mátrixszal G = (E, V, G), V = {x 1, x 2,..., x n }, E = {e 1, e 2,..., e m } B = (b ij ) i=1,n,j=1,m, b ij = 1 ha x i illeszjedik e j -hez és e j nem hurokél 2 ha x i illeszjedik e j -hez és e j hurokél 0 ha x i nem e j -hez. 18

19 19

20 4) listával a) Minden csúcsnak felsoroljuk a szomszédjait. x 1 x 2 x 3 x 4 x 2 x 1 x 3 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 4 x 1 x 3 x 3 Használhatunk láncolt listákat is. b) A listákat egymás után írjuk egy-egy -gal elválasztva, a végére két csillagot téve. x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x 3 20

21 c) A -okat elhagyjuk, és még egy listát használunk, amelyikben az egyes listák kezdőindexeit adjuk meg. x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x A második lista elemei az egyes listák kezdőelemeire mutatnak a következőképpen: x 2 x 3 x 4 x 1 x 3 x 3 x 1 x 2 x 2 x 4 x 4 x 1 x 3 x 3 21

22 Legrövídebb utak A szomszédsági mátrix: A = ( a ij ) a ij = i,j=1,n, ahol a ij = d (0) ij, azaz: W(v i, v j ) ha {v i, v j } E(G) (vagy (v i, v j ) E( G)) 0 ha i = j ha {v i, v j } E(G) (vagy (v i, v j ) E( G)) A Floyd Warshall-algoritmus távolsági mátrix meghatározása Floyd, Robert W. ( ) Warshall, Stephen ( ) 22

23 Kezdetben p ij := i ha d ij és i j; más esetekben p ij := 0. FloydWarshall(D 0 ) 1. D := D 0 2. for k := 1 to n do 3. for i := 1 to n do 4. for j := 1 to n do 5. if d ij > d ik + d kj then 6. d ij := d ik + d kj 7. p ij := p kj 8. return D, p 23

24 Egy u x u y utat a következő algoritmussal határozzuk meg: 1. k := n : 2. u k := y 3. while u k x do 4. u k 1 := p xuk 5. k := k 1 A keresett út: u k, u k+1,..., u n. 24

25 Példa. 25

26 A szomszédsági mátrixa és a megfelelő P mátrix kezdeti értéke: D 0 = P 0 = Az algoritmus eredménye a D és P mátrixok: D = P =

27 Részsorozatok n, d 1 d 2, s pozitív egészek, x 1, x 2,..., x n sorozat (elemei Σ-ból). (d 1, d 2 )-részsorozat: x i1, x i2,..., x is, ahol i 1 1, d 1 i j+1 i j d 2, for j = 1, 2,..., s 1, i s n, Határozzuk meg a (d 1, d 2 )-részsorozatokat! 27

28 Például: a, a, b, c, a, d, e (2, 4)-részsorozatok: (a), (a, b), (a, c), (a, b, a), (a, a), (a, c, d), (a, b, d), (a, a, e), (a, b, a, e), (a, c, e), (a, b, e), (a, d), (b), (b, a), (b, d), (b, a, e), (b, e), (c), (c, d), (c, e), (a, e), (d), (e). 28

29 x 1, x 2,..., x n elemei páronként különböznek: (d 1, d 2 )-részsorozatok számának kiszámítása: G = (V, E), ahol V = { x 1, x 2,..., x n }, E = { (x i, x j ) d 1 j i d 2, i = 1, 2,..., n, j = 1, 2,..., n }. (2,4)-részsorozatok gráfja 29

30 A gráf szomszédsági mátrixa: A = ( a ij )i=1,n j=1,n a ij = { 1, if d1 j i d 2, 0, különben, ha i = 1, 2,..., n, j = 1, 2,..., n. A gráfban nincs irányított kör, ezért A k (ahol A k = A k 1 A, A 1 = A) i-edik sorában és j-edik oszlopában lévő elem a k- hosszúságú irányított utak számát jelenti a i és a j között. Ha A 0 az egységmátrix (1 a főátlón, 0 máshol), legyen R = (r ij ): R = A 0 + A + A A k, ahol A k+1 = O (nulla mátrix). A (d 1, d 2 )-részsorozatok száma C(n; d 1, d 2 ) = n n i=1 j=1 r ij. 30

31 Warshall(A, n) 1. W := A 2. for k := 1 to n 3. do for i := 1 to n 4. do for j := 1 to n 5. do w ij := w ij + w ik w kj 6. return W R = A 0 + W. 31

32 A = Warshall-algoritmus alkalmazása után: W = , R = C(6; 2, 4) = 19, az R elemeinek összege , 32

33 Latin négyzet segítségével: a, b, c, d, e, f, g n = 7, d 1 = 2, d 2 = 4 esetében: A = {ac} {ad} {ae} {bd} {be} {bf} {ce} {cf} {cg} {df} {dg} {eg}, 33

34 {ac} {ad} {ace, ae} {adf, acf} {aeg, aceg, adg, acg} {bd} {be} {bdf, bf} {beg, bdg} {ce} {cf} {ceg, cg} {df} {dg} {eg}. Hozzászámítva az egyelemű részsorozatokat is: C(7; 2, 4) =

35 Gazdaságos feszítőfák Súlyozott gráfban egy feszítőfa értéke az éleihez rendelt súlyok összege. Adott súlyozott gráfban keressük a legkisebb értékű feszítőfát, amelyet minimális feszítőfának nevezünk. Kruskal algoritmusa A gráf éleit súlyuk szerint növekvő sorrendbe rendezzük. Az első él a sorból bekerül a leendő gazdaságos favázba (az alábbi algoritmusban a leendő favázba bekerülő éleket megcsillagozzuk). Kezdetben a gráf minden csúcsa egy-egy halmazt képez. Egy él akkor kerül be a favázba, ha végpontjai különböző halmazból valók, és ekkor a két megfelelő halmazt egyesítjük. Az algoritmus akkor ér véget, amikor a gráf minden csúcsa egy halmazban van. 35

36 Az első oszlopban az élek vannak, a másodikban a megfelelő súly értéke, a harmadikban csillag, ha az él bekerült a favázba, a negyedik oszlopban pedig a csúcshalmazok. 36

37 {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} {5,7} 1 * {5,7}, {1}, {2}, {3}, {4}, {6}, [8} {7,8} 2 * {5,7,8}, {1}, {2}, {3}, {4}, {6} {3,8} 3 * {3,5,7,8}, {1}, {2}, {4}, {6} {1,3} 4 * {1,3,5,7,8}, {2}, {4}, {6} {3,4} 4 * {1,3,4,5,7,8}, {2}, {6} {4,8} 4 {2,3} 5 * {1,2,3,4,5,7,8}, {6} {1,5} 6 {2,5} 6 {4,5} 6 {1,6} 8 * {1,2,3,4,5,6,7,8} {3,5} 9 {1,2} 10 {5,6} 12 {5,8} 13 37

38 A csillaggal megjelölt élek a gazdaságos faváz élei. Maga a faváz a következő: 38

39 Az algoritmus leírásához tekintsük az élek E = {e 1, e 2,..., e m } halmazát úgy, hogy W(e i ) W(e i+1 ), minden i = 1, 2,..., m 1 értékre (azaz, az élek súlyuk szerint növekvő sorrendben vannak indexelve). Halmazok helyett egy h = (h 1, h 2,..., h n ) vektort használunk (n a csúcsok száma), amelynek elemei kezdetben egyenlőek az indexükkel, ami arra utal, hogy különböző halmazok elemei. Amikor két halmazt egyesítünk, a megfelelő h i értékeket egyenlővé tesszük (egyik halmaz elemeinek h i értékeit a másik halmaz h i értékeire álĺıtjuk.). 39

40 Kruskal(E) 1. for j=1,2,..., n do 2. h j := j 3. i := 1 4. while h elemei különbözőek do 5. if (e i végpontjai v k, v l ) és (h k h l ) then 6. kíır e i 7. for j:=1, 2,..., n do 8. if h j = h l then 9. h j := h k 10. i:=i+1 40

41 Árvíz után Egy megye helységei (városok, falvak) közötti utakat néhol elmosta az árvíz. A helységek x i, i = 1, 2,..., n, és a köztük épen lévő utakat az A = (a ij ) mátrix jelzi: a ij = 1, ha x i és x j között van épen maradt út, és a ij = 0, ha az út járhatatlan. Kérdés: el lehet-e jutni a megye bármelyik helységéből bármelyik másik helységébe? Megoldás: Gráffal, amelynek szomszédsági mátrixa A. Választunk egy tetszőleges helységet: pl. x 1. U = {x 1 }. U = U N(U) ameddig U nem változik. (N(U) az U szomszédai.) Ha U tartalmazza az összes helységet, akkor a válasz igen, különben nem. 41

42 Euler-vonal keresése Fleury algoritmusa Ellenőrizzük, hogy a gráf Euler-gráf-e (minden fokszám páros) vagy pontosan két páratlan fokú csúcsa van. Elindulunk tetszőleges csúcsból (vagy egy páratlan fokszámúból). Mindig olyan új élt választunk, amely nem híd (kitöröljük). (Hidat csak akkor, ha más nincs.) 42

43 Hamilton-út keresése visszalépéses módszerrel Elégséges feltételek: Rédei-tétel Dirac-tétel Ore-tétel 43

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

graf 2007/11/20 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok

graf 2007/11/20 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok graf 007/11/0 16:16 page 1 #1 BABEŞ-BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR MATEMATIKAI ÉS INFORMATIKAI KAR Kása Zoltán Gráfalgoritmusok 007 graf 007/11/0 16:16 page # Mottó helyett Königsberget vissza kellene

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Dinamikus programozás vagy Oszd meg, és uralkodj!

Dinamikus programozás vagy Oszd meg, és uralkodj! Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

Javító és majdnem javító utak

Javító és majdnem javító utak Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

A gráffogalom fejlődése

A gráffogalom fejlődése A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa erdosne@blg.hu a prezentáció kézirata elérhető: http://people.inf.elte.hu/szlavi/infodidact16/manuscripts/ena.pdf

Részletesebben

Matematikai problémák vizsgálata a Maple programcsomag segítségével

Matematikai problémák vizsgálata a Maple programcsomag segítségével Matematikai problémák vizsgálata a Maple programcsomag segítségével Tengely Szabolcs tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Tengely Szabolcs 2014.04.26 Matematikai problémák és a

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Neumann János Tehetséggondozó Program Gráfalgoritmusok II.

Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Neumann János Tehetséggondozó Program Gráfalgoritmusok II. Horváth Gyula horvath@inf.elte.hu 1. A szélességi bejárás alkalmazásai. Nyilvánvaló, hogy S(0) = {r}. Jelölés: D(p) = δ(r, p) Nyilvánvaló, hogy

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Véges szavak általánosított részszó-bonyolultsága

Véges szavak általánosított részszó-bonyolultsága Véges szavak általánosított részszó-bonyolultsága KÁSA Zoltán Sapientia Erdélyi Magyar Tudományegyetem Kolozsvár Marosvásárhely Csíkszereda Matematika-Informatika Tanszék, Marosvásárhely Budapest, 2010.

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

BASH SCRIPT SHELL JEGYZETEK

BASH SCRIPT SHELL JEGYZETEK BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

32. A Knuth-Morris-Pratt algoritmus

32. A Knuth-Morris-Pratt algoritmus 32. A Knuth-Morris-Pratt algoritmus A nyers erőt használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel (record) tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel elemei mezők. Például tétel: személy elemei: név, lakcím, születési

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Fülöp Ágnes ELTE IK Komputeralgebra Tanszék 2016. december 2. 2015-16 őszi félév Előadás: 1. előadás: 1-37 (szeptember 12.) 2. előadás: 38-65 (szeptember 19.) 3. előadás: 66-103

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6.

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6. Kombinatorika 9 10. évfolyam Szerkesztette: Surányi László Ábrák: Hraskó András 2015. december 6. A kötet létrehozását 2008-tól 2010-ig a Fővárosi Közoktatásfejlesztési Közalapítvány támogatta Technikai

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

1. ZH X A rendelkezésre álló munkaidő 90 perc.

1. ZH X A rendelkezésre álló munkaidő 90 perc. 1. ZH 011. X. 1. 8 1 Kérjük, minden résztvevő nevét, NEPTUN kódját, gyakorlatvezetője nevét és a gyakorlatának időpontját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben