Gráfelmélet jegyzet 2. előadás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gráfelmélet jegyzet 2. előadás"

Átírás

1 Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede

2 . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T! xy út. A körmentességet megmagyarázva (illetve egy G gráfra azt mondjuk, hogy van benne kör): Egy S kör a gráfban (v, e, v, e 2,, e l, v l ), l, ha: (i) Záródó, az az v = v l. (ii) Az élek nem ismétlődnek (iii) Csúcsismétlés csak záródásnál, v, v, v l csúcsok különbözőek A kis köröket az alábbi ábra mutatja: Definíció. : T gráf FA, ha az.-es tételből (i) vagy (ii) vagy (iii) teljesül Definíció.2 : G T, T feszítőfa : (i) V T = V(G) (ii) T fa Megjegyzés: jelölés részgráfot jelent. H R : R megkapható H-ból csúcsok, élek elhagyásával. H R feszítő részgráf akkor, ha R csak élek elhagyásával kapható meg H-ból. Élelhagyás: Például az -es él elhagyása. Tétel.2 : G-nek feszítőfája, ha G összefüggő. Definíció.3 : (T,r) gyökeres fa: (i) T fa (ii) r V(T), ahol r (root) egy speciális csúcs, és a neve gyökér. 2

3 Reprezentáció: L L L 2 r L 3 Ahol L, L, L 2, L 3 szintek vagy generációk. L i = v V T : v távolsága r től = i, ahol két csúcs (v és r) távolsága a legrövidebb. Fák esetén a minimalizálás nem gond: egyetlen vr út van. Megjegyés: francia irodalomban szokás a fordított ábrázolási mód, az az a gyökér van alul. Ha x,y szomszédos csúcsok egy gyökeres fában, akkor szomszédos szintekhez (L i és L i+ ) tartoznak. Amennyiben az xy élre x L i és y L i+ azt mondjuk, hogy x és y csúcs apja és y az x csúcs fia. Definíció.4 : T fa v V levél d(v) =. (T,r) gyökeres fa v V levél nincs fia ( lefok = ). Példák: Nem levél A gyökérnek nincs apja r Levél Nem levél, gráfként szemlélve Levél, ha nem gyökeres gráfként szemléljük Másféle megközelítésből: Definíció.5 : G G i+, ághajtás operáció. Egy G gráf esetén azt mondjuk, hogy a G gráfot egy ághajtás operációval képeztük G-ből, ha V(G ) = V(G) u, és E(G ) = E(G) e, ahol e két végpontja közötti u és egy előző, V(G)-beli pont. 3

4 G r(g) u u Definíció.6 : G ághajtásokkal felépíthető, ha G, G,, G l sorozat: (i) G egypontú, él nélküli gráf, (ii) G l = G, (iii) i=,,2,...,l-, esetén G i+ a G i gráfból egy ághajtással kapható. Tétel.3 : T fa T felépíthető ághajtásokkal Bizonyítás:, a nehezebbik része, a bizonyítás a következő lemmán alapul: Lemma. : Minden F fára, ha V(F) 2 2 levél (elsőfokú pont). Bizonyítás: Leghosszabb l és l út két végpontja. l és l is levél: az útbeli szomszédján kívül nem lehet más szomszédja. Ezek után amíg legalább két csúcsunk van, hagyjunk el egy levelet (ezt megtehetjük). Amikor egy csúcs marad (szükségszerűen éllel) leállunk. Csonkítási eljárásunk megfordítása egy ághajtásos feléptés. Következmény.: (T,r) gyökeres fa, akkor T felépíthető ághajtásokkal r-ből. Alapkérdés Adott G, F E, van-e F-ben kör (élhalmaz)? Definíció.7 : G ( - pont-él-illeszkedési mátrix, G pedig hurok él mentes) 4

5 élek l csúcsok v vie kül Definíció.8 : G irányított gráf (V,E,K,B) e! u : ube és e! v : vke,ahol V-csúcshalmaz, E-élhalmaz, K- ki, B- be. vie vke vagy vbe u Irányítás elfelejtése(formálisan) Irányítatlan gráf G G v e u = v esete Irányítás (általában sokféle lehet) Irányított gráfra is lehet definiálni pont-él-illeszkedési mátrixot: G, ahol G hurokél mentes. élek csúcsok v l vbe vke kül v 2 e v oszlopban db -es, db (-)-es és tobább -ák találhatók, azaz -t -ből úgy kapjuk, hogy minden oszlopból kiválastunk egy -est és előjelét megváltoztatjuk. Tétel.4 : G G, e : e-nek megfelelő oszlopa. F E : (i) F-ben van kör e : e F, lineárisan függőek. (ii) F-ben nincs kör e : e F, lineárisan függetlenek. Bizonyítás: (i). eset: f f 2 f 3 f 4 kör f i irányított élei csatlakoznak f f 2 - k i= f i =, és ebből következik az állítás. 5

6 (i) 2. eset: f f 2 f 3 f 4 Vannak irányítás váltások az előző eset irányításaihoz viszonyítva. Irányítás váltás megfelelő oszlop (- )szerezése, de az utóbbi nem változtat a lineáris függőségen, így vissza vezethető az első esetre. (ii) F-ben nincs kör F élei R részgráörmentes komponensei fák erdő V f i k k k.komponens csúcsai c.komponens csúcsai.komponens élei c.komponens élei ahol, c a komponensek száma A komponensek blokkosítják a f f F oszlopokból összerakott mátrixot. A főátlós blokkokon kívül -ák szerepelnek. Elég ezekben (nem ) blokkokban látni, hogy az oszlopok lineárisan függetlenek, azon feltehető, hogy F feszítő fa élhalmaza: r V, tetszőleges gyökér f f 3 f 2 Például k=3 v v 2 v 3 f i -k indexelése egy ághajtási felépítésben az idő. Továbbá v i csúcsokat is indexeljük. f f 2 v v 2 ±?? ± v k r ± ± ±???????? Ezeket a viszonyokat nem tudjuk r sorát letörölve négyzetes mátrixot kapunk. Ez felső trianguláris mátrix ±-ekkel a főátlón, azaz det ± 6

7 Következmény.2: G G,ahol az utolsó lépésben r csúcs sorának elhagyásával a keletkező (n-)xm dimenziójú mátrix, V = n, E = m, F = n, F E F részmátrixa -nek, amit F-nek megfelelő oszlopok alkotnak. (i) F feszítőfa élhalmaza: det F ±. (ii) F nem feszítőfa élhalmaza: det F =. Tétel.4 : (Cauchy-Binet formula) A, B R kxl det AB T = det A F det B F kxk l ahol az összes olyan F-ekre történik, ahol F k elemű oszlophalmaz(az az a szummába db tag van ) k A B T G mátrix determinánsát a Cauchy-Binet formulával kifejezve és a Következmény.2-t használva kapjuk, a következő tételt: Következmény.3: (Kirchoff-tétel) det T = det A d d n G = G feszítőfáinak száma 7

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy sziget ahol 42 kaméleon lakik. A kaméleonok három színt vehetnek fel piros, kék és zöld. Ha két különböző színű kaméleon találkozik, akkor megijednek és mindkettő átváltoztatja a színét

Részletesebben

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Gubancok. Hajnal Péter. SZTE, Bolyai Intézet

Gubancok. Hajnal Péter. SZTE, Bolyai Intézet Gubancok SZTE, Bolyai Intézet 2010 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút.

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

A DFS algoritmus. Összeállította: Szeszlér Dávid, c BME Számítástudományi és Információelméleti Tanszék, 2015, 2016.

A DFS algoritmus. Összeállította: Szeszlér Dávid, c BME Számítástudományi és Információelméleti Tanszék, 2015, 2016. A DFS algoritmus Korábban már megismerkedtünk a BFS (Szélességi keresés) algoritmussal, amely bejárja egy adott G gráf adott s csúcsából elérhető csúcsokat és eközben több feladatot is hatékonyan megold:

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN

PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN CSIKVÁRI PÉTER Kivonat. Ebben a jegyzetben bebizonyítjuk Bondy és Simonovits következő tételét. Ha egy n csúcsú egyszerű gráf nem tartalmaz C k kört akkor az éleinek száma

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila

Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila Elektromosságtan I. Egyenáramú hálózatok általános számítási módszerei Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Vadas Norbert Élszínezések

Eötvös Loránd Tudományegyetem Természettudományi Kar. Vadas Norbert Élszínezések Eötvös Loránd Tudományegyetem Természettudományi Kar Vadas Norbert Élszínezések alkalmazott matematikus MSc szakdolgozat operációkutatás szakirány Témavezetõ: Bérczi Kristóf Operációkutatási Tanszék Budapest,

Részletesebben

Javító és majdnem javító utak

Javító és majdnem javító utak Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

10. Előadás P[M E ] = H

10. Előadás P[M E ] = H HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Fülöp Ágnes ELTE IK Komputeralgebra Tanszék 2016. december 2. 2015-16 őszi félév Előadás: 1. előadás: 1-37 (szeptember 12.) 2. előadás: 38-65 (szeptember 19.) 3. előadás: 66-103

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás

Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás A jegyzetet készítette: Szabó Tamás 2009. november 9. 1. Alapfogalmak Egy gráf csúcsait vagy éleit bizonyos esetekben szeretnénk különböz osztályokba

Részletesebben

Diszkrét Matematika 2 (C)

Diszkrét Matematika 2 (C) Diszkrét Matematika 2 (C) 2014-15 / őszi félév Jegyzet Az esetleges elírásokért, hibákért felelősséget nem vállalok! Javításokat, javaslatokat a következő címre küldhetsz: blackhawk1990@gmail.com Diszkrét

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.

DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1. DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

1. A kétszer kettes determináns

1. A kétszer kettes determináns 1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló

Részletesebben

Gráfelméleti feladatok

Gráfelméleti feladatok Gráfelméleti feladatok Az informatika elmélete A sorozat kötetei: Rónyai Ivanyos Szabó: Algoritmusok Bach Iván: Formális nyelvek Katona Recski Szabó: A számítástudomány alapjai Buttyán Vajda: Kriptográfia

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Közösségek keresése nagy gráfokban

Közösségek keresése nagy gráfokban Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

SzA X/XI. gyakorlat, november 14/19.

SzA X/XI. gyakorlat, november 14/19. SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú

Részletesebben

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

A parciális törtekre bontás?

A parciális törtekre bontás? Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus

Részletesebben

Grafikus matroidok összege

Grafikus matroidok összege Grafikus matroidok összege diplomamunka Tassy Gergely alkalmazott matematikus, matematika tanárszakos hallgató Témavezetők: Dr. Recski András, egyetemi tanár ELTE TTK Számítógéptudományi Tanszék Dr. Vancsó

Részletesebben

6. előadás. Vektoriális szorzás Vegyesszorzat

6. előadás. Vektoriális szorzás Vegyesszorzat 6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.

Részletesebben

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra

Részletesebben

1. ZH X A rendelkezésre álló munkaidő 90 perc.

1. ZH X A rendelkezésre álló munkaidő 90 perc. 1. ZH 011. X. 1. 8 1 Kérjük, minden résztvevő nevét, NEPTUN kódját, gyakorlatvezetője nevét és a gyakorlatának időpontját a dolgozat minden lapjának jobb felső sarkában olvashatóan és helyesen tüntesse

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Kombinatorika, 9 10. évfolyam

Kombinatorika, 9 10. évfolyam Kombinatorika, 9 10. évfolyam Surányi László Ábrák: Hraskó András 2014. február 28. 2 A kötet létrehozását 2008-tól 2010-ig a Fővárosi Közoktatásfejlesztési Közalapítvány támogatta Tartalomjegyzék Bevezetés

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Hamilton-út, Hamilton-kör-1

Hamilton-út, Hamilton-kör-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Hamilton-út, Hamilton-kör Előadó: Hajnal Péter 2015. 1. A Hamilton-út/kör fogalma Az Euler-vonal olyan vonal volt, amley hossza eléri

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben