5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus."

Átírás

1 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan graph esetén az összes élhez súlyt rendelünk. Ezt w(u,v) vel jelöljük, amely az (u,v) pontokat összekötő él létrehozásának költségét jelenti (w: E ú a súlyfüggvény, vagyis adott élhez valós számot rendelünk mely szám általában nemnegatív). Adott példa: áramköri pontokat azonos potentialra akarunk hozni vezetékek segítségével. Itt az adott él súlya a két pontot összekötő vezeték hosszúsága (ez egyben költség is). Feszítőfa: egy olyan körmentes (fa: körmentes graph) részgraph, amely az eredeti graph összes pontját tartalmazza, az eredeti graph élei közül pedig V 1 darabot ( V jelöli a csúcspontok számát). A feszítőfa az összes pontot összeköti (előző példánál maradva azonos potentialon lesznek). Minimalis (súlyú), más néven optimalis feszítőfa (MFF): a lehetséges feszítőfák közül a legkisebb költségű. Az ábra egy ilyen graphot, illetve minimalis feszítőfáját mutatja. Nem ez az egyetlen megoldás: ha elhagyjuk a (b,c) élet és helyette hozzávesszük az (a,h) élet, akkor ugyanilyen (minimalis) súlyú feszítőfát kapunk. A súly egyébként 37. Cél: egy lehetséges minimalis feszítőfa megtalálása az irányítatlan, összefüggő graphban. Az algorithmusok minden pillanatban az egyik lehetséges minimalis feszítőfa egy részét tartják nyilván egy halmazban (ez az invarians állítás). Az egyes lépések pedig meghatározzák azt az (u,v) élt, amelyet ehhez a halmazhoz hozzávéve még mindig fennáll az előbbi invarians állítás a (most már bővített) halmazra. Biztonságos él: olyan él, amellyel a halmazt bővítve az invarians állítás továbbra is fennáll. Egy lehetséges algorithmust mutat az MFF(G,w). A kiinduló halmaz (A) kezdetben üres. Addig keresünk egy biztonságos élt ehhez a halmazhoz, amíg a halmaz elemei egy feszítőfát nem hoznak létre. Hozzátesszük a biztonságos élet, előbb utóbb pedig elkészül a feszítőfa. Nyilván a kulcslépés a 3. sor: melyik él tekinthető biztonságosnak? Az irányítatlan graph egy vágásának nevezünk egy olyan kettéosztást, amelyben az egyik halmazba a csúcsok egy része, a másikba pedig a maradék csúcs kerül (lásd ábra, S (fekete csúcsok) és V S (fehér csúcsok) halmazok). Nyilvánvaló, hogy a vágás bizonyos éleket keresztez (egyik csúcsa az egyik, másik a másik halmazban van). Azt mondjuk, hogy a vágás kikerüli az A halmazt, ha az A halmaz egyetlen éle sem keresztezi a vágást. Egy él könnyű élnek számít egy vágásban, ha a vágást keresztező élek közül az ő súlya a minimalis (itt a c d él). A biztonságos él felismerését a következő szabály teszi lehetővé: legyen G=(V,E) egy összefüggő, irányítatlan, w: E ú súlyfüggvénnyel súlyozott graph, és az A halmaz tartalmazza G valamelyik lehetséges minimalis feszítőfájának egy részletét. Ha ekkor egy tetszőleges, A t kikerülő vágást hozunk létre, akkor az abban lévő könnyű él biztonságos A ra nézve. Kruskal algorithmusa Az előbb már megadott általános MFF algorithmuson alapul. Minden lépésben keresi az A halmazban lévő erdő két tetszőleges componensét összekötő élek közül a legkisebb súlyút. Ezt hozzáadja az erdőhöz. Az algorithmus létrehoz egy üres halmazt (1), majd az összes csúcspontot önálló, egyelemű faként kezeli (2 3). Az éleket súly szerint növekvő sorba rendezzük (4). A cyclusban ezután minden élre megvizsgáljuk, hogy a végpontjai azonos fához tartoznak e (5 6). Ha igen, az élt eldobjuk, mert hozzáadásával a graphban kör alakulna ki. Ha nem, akkor az élt hozzáadjuk az A halmazhoz, a két vizsgált halmazt pedig egyesítjük (növeljük a fa méretét; 7 8).

2 1 lb: log 2, vagyis kettes alapú logarithmus Az algorithmus futási ideje O(E lb 1 E). Az ábrasor az előzőekben vázolt graphon mutatja az algorithmus futását.

3 Prim algorithmusa Kruskal algorithmusa tehát különálló, kezdetben egy egy csúcspontból álló fákat tartalmazó erdőből indul ki, végül pedig kialakul egy olyan minimalis súlyú feszítőfává, mely az összes csúcsot tartalmazza. Prim algorithmusa viszont egy folyamatosan növekvő fát hoz létre, melyből a végén minimalis súlyú feszítőfa lesz. Ez az alg. nagyon hasonlít Dijsktra alg. ához (lásd később). A fában még nem szereplő csúcsok egy olyan Q prioritásos sorban vannak, mely a csúcsok kulcs[u] értékén alapul. A kulcs[u] érték az u csúcsot valamelyik fabeli csúccsal összekötő minimalis súlyú él súlya amennyiben nincs ilyen él, az érték 4. Az alg. első része (1 4) létrehozza a prioritásos sort (Q), melyben az összes csúcs megtalálható. A csúcsok kulcsa kezdetben végtelen (3), kivéve az r gyökérpontot (4). Az r pontnak nincs szülője (5). A sor azért prioritásos, mert az alacsonyabb kulcs értékkel rendelkező pontok prioritása nagyobb (kezdetben a gyökérponté, mely 0). Ezután egy olyan cyclus indul, amely a Q kiürüléséig tart (6), az egyre bővülő fa elemeit a V Q halmaz tartalmazza. Először (7) meghatározzuk azt a még Q ban lévő u csúcsot, amely a (V Q,Q) vágás egyik könnyű élének végpontja (az első iteratio esetén egyértelmű, hogy u=r). Ezt a csúcsot kivesszük Q ból, tehát már a növekvő fa részévé válik. Ezután (8 11) időszerűsítjük a kulcs és a szülő értékeket minden olyan csúcsnál, mely a kivett csúcs szomszédja és még nem tagja a fának. A sor kiürülése a feszítőfa elkészültét jelenti. Az algorithmus futási ideje O(E lb V), ehhez az kell, hogy a Q sort kupacban tároljuk (lásd 3/1. tétel). Ha a tárolás Fibonacci kupaccal történik, akkor a futási idő O(E+ V lb V) re csökkenthető.

4 Legrövidebb utak graphokban Adott egy élsúlyozott (w: E ú), irányított G=(V,E) graph, melyben egy adott út súlya alatt az utat alkotó élek súlyának összegét értjük. A legrövidebb út súlya alatt a lehetséges összes út súlyai közül a minimalisat kell érteni (amennyiben létezik amennyiben nem, ez az érték 4). Általában nem csupán a legrövidebb út súlya érdekel bennünket, hanem az út által érintett csúcspontok sorozata is. Ezért szükséges tárolni a szülőcsúcsokat is, ezt a már szokásos π[u] adattal tesszük meg. Mivel az éleket súlyozó w: E ú függvény valós számot ad, ezért értelmezzük a negatív súlyú éleket is. Amennyiben a graph negatív súlyú élt nem tartalmaz, a Dijkstra algorithmus; amennyiben negatív súlyú élt is tartalmaz, a Bellman Ford algorithmus ad meg adott kezdőcsúcsból kiinduló, minimalis súlyú utat. Az algorithmusok közös részműveleteket is tartalmaznak, ezeket tárgyaljuk először. Az EGY FORRÁS KEZDŐÉRTÉK eljárás a graph minden egyes csúcsára beállít két értéket. A d[v] érték az ún. legrövidebb út becslés. Ez a felső korlátja az s kezdőcsúcsból a v be vezető legrövidebb út súlyának (nyilvánvaló, hogy kezdetben 4 re állítjuk, kivéve a kezdőcsúcsot, amelynél 0). A π[v] érték tárolja az adott csúcs egy szülőjét (először NIL). Az algoritmusok a fokozatos közelítés módszerét alkalmazzák (KÖZELÍT). Ez tulajdonképpen egy ellenőrzés: összeveti a v csúcshoz eddig legrövidebbnek talált utat (d[v]) az u csúcson keresztül vezető úttal. Ha ez utóbbi rövidebb, akkor módosítja a d[v] és a π[v] értékeket. A közelítő lépés tehát csökkentheti a d[v] értéket és átállíthatja a π[v] mezőt az u csúcsra. Dijkstra algorithmusa Adott kezdőcsúcsból kiinduló, nemnegatív súlyú élekkel rendelkező irányított graphban talál legrövidebb utat. Azoknak a csúcsoknak a halmazát (S) tartja nyilván, melyeknél már meghatározta az s kezdőcsúcsból odavezető legrövidebb út súlyát. Az alg. minden lépésben a legkisebb legrövidebb útbecslésű csúcsot választja ki. Beteszi az S halmazva és minden u ból kivezető éllel egy egy közelítést végez. Q elsőbbségi sor tárolja a V S beli csúcsokat, mely d értékeivel van indexelve. Az algorithmushoz a graphot szomszédsági listával kell megadni. Az első sorok (1 3) a csúcsokat inicialisalják. Az elsőbbség sorban legelöl az s kiinduló csúcs helyezkedik el. A cyclus (4) addig fut, amíg Q ki nem ürül. Kivesszük a legnagyobb prioritású elemet Q ból és betesszük S be. Utána minden olyan csúcsra, amely a kivett elem szomszédja volt, actualisaljuk a d és π értékeket (8). Az ábrán a csúcspontokban lévő szám az adott pillanatban érvényes d értékeket mutatja.

5 Bellman Ford algorithmus Adott kezdőcsúcsból kiinduló, negatív súlyú élekkel (is) rendelkező irányított graphban talál legrövidebb utat. A negatív súlyú élek jelenlétével az az alapvető gond, hogy negatív körökkel is találkozhatunk ezeken többször végighaladhatunk és így érthető, hogy a legrövidebb út súlyát nem tudjuk definialni. Az alg. tehát egy logicai értéket ad vissza: ha létezik negatív kör, hamissal; ellenkező esetben igazzal tér vissza. Az alg. a kezdeti beállítás (1) után a graph élein halad végig, a csúcspontok számánál eggyel kevesebb alkalommal. Egy egy iteratio alkalmával minden lehetséges éllel végzünk egy közelítést (4). Ezután a graph összes élével ellenőrzést végzünk, hogy nincs e negatív kör (6). Végül visszaadjuk a megfelelő logicai értéket (7 8.).

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

GráfRajz fejlesztői dokumentáció

GráfRajz fejlesztői dokumentáció GráfRajz Követelmények: A GráfRajz gráfokat jelenít meg grafikus eszközökkel. A gráfot többféleképpen lehet a programba betölteni. A program a gráfokat egyedi fájl szerkezetben tárolja. A fájlokból betölthetőek

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

3/1. tétel: Linearis adatszerkezetek és műveleteik

3/1. tétel: Linearis adatszerkezetek és műveleteik 3/1. tétel: Linearis adatszerkezetek és műveleteik A gyűjtemények (collections) közé sorolhatók a halmaz (set), a csomag (bag, multiset) és a vector (sequence, list). Gyűjtemények általánosan Értelmezzük

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Legrövidebb útkereső algoritmusok

Legrövidebb útkereső algoritmusok EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Legrövidebb útkereső algoritmusok A diplomamunkát készítette: Podobni Katalin Matematika Bsc Matematikai elemző szakirány Témavezető: Nagy Adrienn PhD

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

ő á ö é é í í ó ű á ő é é ő á á á é á é á é é é é ő é á á é é é é ö ö ú é íí ü é é ú ő ő é ó í é é é é ó í é é é ü ö ö á é ó é ő ó é á í ó é í ü é é á é é í é é ü é é á í ó í é ü ö ö é é ó ó é ó ó é á

Részletesebben

Ü Á É É í Ő É Ő Á Ü Ó í Á É Ü Á É É í ŐÉ Ő Á Ü ü Ó Ó ö ő ö ö ö ő ó Ó ö ű ö ő ó Ó Ó ö ö Ó í ő ü ü ü Ü Á É í ő ő ü ú í ú Ü ű ö ü ö ü ü ú Ü í í ó ó É Ö ü ő ü ö ú Ü ö ö ü ő ő í ő Á Ó Ó í Ó ú ő ó í Ö Ó ö ö

Részletesebben

ó ö ó őé é ü ő É ö ó ő é ű Ü ú é ü é ő ó ó ó é ő ó é é ó ö ó őé é Ü ő ó ő ú ó é ű Ü ú é ü é ó ó ö é ő ó é ó é ó ó ó ö ó ó őé é ü ő ő őé ü é ó ó ő é ű ü ú é ü é ő ó ö ó é ó é é ó ó Ó Á Á Á é é é ő ő é é

Részletesebben

Í Á ÓÉ Ú Á ö ú ö ó ö ü ö ó ö ü ö ó ö ú ú ö ú ó ó ö ó ó ó ö ó ó ű ó ö ó ö ö ú ó ó ú ö Ö ó ö Ö ö ó ó ó ö ö ú ó ö ú ó ó ó ü ó ú ó ö ö ú ó ó Á Á ú ó ü ö Ö ó ö ö ó ö ú Á ö ú ö ö ö ö ö ú ö ú ü ö ú ű ö ö ó ó

Részletesebben

ő ö é Ü ü é Ó é é ú ü ö ű é é é é í Ü Ö ö ö ö ü ö é é Ó é é ő é ű í ű ő ő é é é ő é é é Ü Ü Ö Ö ő Ö é ü ö ü ő é é é ő ő é ü í ő é ő ő é é é é é é é é ő í ö é ö ő é ő é é ő é ü ő é é é é ú ő é é ő ő é é

Részletesebben

Í Í Á Í Á Ü Ö ü Á ü ó Í ó ű ó ü ó ó ó ú ű ó ó ü ű ó ó ű ó ü ü ü ű Í ű ü ü ű ó ű ü ó ű ü ű ű ü ű óé ű ü ó ű ű ü ü ó ú ü ű ó ü ü É ü ó ó ű ó ó ó ú ó ü ó ü ű ü ó ü ú ó Í ó ó ó ó ó ü ü ó ó ú ó ű ü ú ú ó ü

Részletesebben

ö ö É Ú Á í ö í ö ö öé ö í ö ö Ö Ö Ö ó ó ó ö Ö í í í ó ó Ö í Ö ű í ö ő í ő ü Ö ű í í Ö ó í ű Ö ó í í ó ó ö í Ö Ö Ö ű ó ó ő ő ő ő í ó ó í ó ű ó Ö Ö ű í ő ú ó ő Ö Ö ö Ö ü Ő ö ü ó ó í í ö ü ő Ö ü í ú ó ó

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Előadó: Pieler Gergely, MSc hallgató, Nyugat-magyarországi Egyetem Konzulens: Bencsik Gergely, PhD hallgató, Nyugat-magyarországi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

3. gyakorlat Dinamikus programozás

3. gyakorlat Dinamikus programozás 3. gyakorlat Dinamikus programozás 1. Az 1,2,...,n számoknak adott két permutációja, x 1,...,x n és y 1,...,y n. A két sorozat egy közös részsorozata egy 1 i 1 < < i k n, és egy 1 j 1

Részletesebben

Excel 2010 függvények

Excel 2010 függvények Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére

Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére Tamaga István Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére modell Készítsük el egy épít ipari kivitelezés gráfelméleti modelljét! Ekkor a kivitelezést megfeleltetjük egy gráfnak,

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Dokumentáció. 1. Beadandó feladat

Dokumentáció. 1. Beadandó feladat Ballai Brigitta XG3077 gittacska91@gmail.com 2013.11.25. Dokumentáció 1. Beadandó feladat Feladat : A feladat egy kellően bonyolult osztálystruktúra megtervezése és implementálása Java nyelven. Minimális

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

GRÁF GENERÁLÁS ÉS A KRUSKAL ALGORITMUS TANÍTÁSA EXCEL SEGÍTSÉGÉVEL GENERATING GRAPHS AND TEACHING THE KRUSKAL ALGORITHM USING EXCEL

GRÁF GENERÁLÁS ÉS A KRUSKAL ALGORITMUS TANÍTÁSA EXCEL SEGÍTSÉGÉVEL GENERATING GRAPHS AND TEACHING THE KRUSKAL ALGORITHM USING EXCEL GRÁF GENERÁLÁS ÉS A KRUSKAL ALGORITMUS TANÍTÁSA EXCEL SEGÍTSÉGÉVEL GENERATING GRAPHS AND TEACHING THE KRUSKAL ALGORITHM USING EXCEL Kiss László Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Statisztikai függvények

Statisztikai függvények EXCEL FÜGGVÉNYEK 9/1 Statisztikai függvények ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó

Részletesebben

Hálózatok II. A hálózati réteg forgalomirányítása

Hálózatok II. A hálózati réteg forgalomirányítása Hálózatok II. A hálózati réteg forgalomirányítása 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

2. csoport, 8. tétel: Gráfok

2. csoport, 8. tétel: Gráfok Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kézikönyv Sarzs (LOT) kezelés - alapok

Kézikönyv Sarzs (LOT) kezelés - alapok Kézikönyv Sarzs (LOT) kezelés - alapok 1 4 Tartalomjegyzék 2 ÁRUCIKK - ÜRES... 10 3 ÁRUCIKK - MEGJELENÍTÉS [10035 BE_S_ANYAG SARZSOS ALAPANYAG]... 12 4 ÁRUCIKK - VÁLTOZTATÁS [10035 BE_S_ANYAG SARZSOS ALAPANYAG]13

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató

APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató APB mini PLC és SH-300 univerzális kijelző Általános használati útmutató Fizikai összeköttetési lehetőségek: RS232 APB-232 RS485 A APB-EXPMC B SH-300 program beállítások: Kiválasztjuk a megfelelő PLC-t.

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Algoritmuselmélet (BMEVISZA213) feladatgyűjtemény

Algoritmuselmélet (BMEVISZA213) feladatgyűjtemény Algoritmuselmélet (BMEVISZA213) feladatgyűjtemény Drótos Márton 2012. május 30. Tartalomjegyzék 1. Előszó, használati tanácsok 2 2. Nagyságrendek 3 3. Dinamikus programozás 4 4. Szélességi bejárás, legrövidebb

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.

10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben