A gráffogalom fejlődése

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A gráffogalom fejlődése"

Átírás

1 A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa a prezentáció kézirata elérhető:

2 Matematika és informatika kerettanterv Alsó tagozat: Matematika: rajzok Versenyek: Kenguru Matematika Tesztverseny, Zrínyi Ilona Matematikaverseny Felső tagozat: Matematika: modellezés, szemléltetés, rendszerezés kimondás nélkül Informatika: folyamatábrák értelmezése, kapcsolat más tárgyakkal Versenyek: felkészítés, Varga Tamás Verseny modellezés Középiskola: Matematika: gráfos definíciók, emelt szinten néhány egyszerű tétel, használat modellezésre Versenyek: matematikából és informatikából kerettantervet erősen meghaladó szint

3 E-hód 5-6. osztály - nehéz: megadott, irányítás nélküli gráfon megszámolás 7-8. osztály - közepes és nehéz: irányított gráfokon megszámolás, útkeresés, összegzés felső tagozaton a gráf ábrája a feladatleírás része, próbálgatás középiskola - közepes és nehéz: gráffal kapcsolatos fogalmak szemléletesen bevezetve - izomorf, összefüggő, súlyozott, irányított gráf a gráf ábráját esetenként a diáknak kell elkészíteni

4 CSUnplugged.org Tourist Town: Treasure Hunt: meghatározó halmaz nem egyetlen jó megoldás véges állapotú automaták szimulációs feladatok The Poor Cartographer: modellezés The Muddy City: Ice roads: minimális feszítőfák Kruskal algoritmus Steiner-féle fakeresés speciális minimális feszítőfa kereső eljárás

5 Alapismeretek felső tagozat Csúcs, él, irányítás, súlyozás Csúcsmátrix, éllista, csúcslista tömb használata tárolási és hatékonysági megfontolások MESTER Haladó szint, Gráfok, elemi feladatok (Állatkert, Falvak, Ember, Rémhír ) 1. korcsoport, 2. korcsoport megyei forduló

6 Floyd-Warshall algoritmus rekurzió és dinamikus programozás után súlyozatlan gráfban: minden csúcspárról - létezik-e közöttük út súlyozott gráfban: minden csúcspárról - köztük levő minimális út hossza kódolása nagyon egyszerű: 3 egymásba ágyazott ciklus variációk más-más megfogalmazással: maximin, minimax, legbiztonságosabb út, minimin, maximax MESTER Haladó szint, Gráfok, legrövidebb utak (Szállítás, Vám, Túra, Kastély) 2. korcsoport

7 Gráfok bejárása, feszítőfák Szélességi bejárás és szélességi feszítőfa sor Mélységi bejárás és mélységi feszítőfa verem, rekurzió Gráf modell használata nem gráfos feladatokban:robot, labirintus Haladó adatszerkezetek ciklikusan, egyre nehezedő szinten újra-és újra MESTER Haladó szint, Gráfok, szélességi bejárás ; mélységi bejárás; bejárások 2. korcsoport, OKTV

8 Dijkstra algoritmusa mohó eljárások, hatékony rendezési eljárások Dijkstra algoritmusa: két pont között a legrövidebb út meghatározására irányított, súlyozott gráfban Halmaz, kupac, prioritási sor adatszerkezet után újra elővehető Topologikus rendezéses feladatok MESTER Haladó szint, Gráfok, legrövidebb utak 2. korcsoport országos, OKTV

9 Haladó feszítőfák hatékony sorba rendezések, prioritási sor, halmaz, union-find adatszerkezet Prim algoritmus: mindig a következő minimális költségű élet húzza hozzá a már összefüggő komponenshez. Kruskal algoritmus: az éleket hosszúság szerint növekvő sorrendben veszi sorra. Összefüggő komponensek keresése MESTER Haladó szint, Gráfok, feszítőfák OKTV országos

10 További tervek nemzetközi versenyekre készüléskor a válogatóversenyeken az informatikai olimpiákon használt algoritmusok Feltérképezése és tanítási sorrendbe rendezése

11 Irodalom Programozási versenyfeladatok tára ( ), ( ), ( ), NJSzT, Budapest NJSZT Nemes Tihamér Országos Informatikai Tanulmányi Verseny Programozás kategória, archívuma 51/2012. (XII. 21.) számú EMMI rendelet 1., 2. és 3. melléklete Módosítva a 34/2014. (IV. 29.) EMMI rendelet 2., 3., 4. mellékletének megfelelően Matematika és Informatika kerettantervek CSUnplugged_OS_2015_v3.1, Bebras International Contest on Informatics and Computer Fluency ( ) Zsakó, L.: Variations for spanning trees, Annales Mathematicae et Informaticae 33 (2006) pp Szlávi, P., Zsakó, L.: Informatika oktatása TÁMOP A1 és A2 könyvei, ELTE IK, Mester feladatértékelő feladatai: https://mester.inf.elte.hu Horváth, Gy., Horváth, Gy., Zsakó, L.: Variations on a classic task XXIXth DIDMATTECH (2016) pp

12 A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok

Részletesebben

Elemi adatszerkezetek

Elemi adatszerkezetek 2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu

Részletesebben

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Egészségügyi Szervező Alapképzés

Egészségügyi Szervező Alapképzés DEBRECENI EGYETEM EGÉSZSÉGÜGYI FŐISKOLAI KAR Egészségügyi Szervező Alapképzés KÉPZÉSI PROGRAM Egészségügyi ügyvitelszervező szakirány Egészségbiztosítás szakirány Nyíregyháza, 2006. május I. A képzés legfontosabb

Részletesebben

Déri Miksa Tagintézménye MUNKAREND 2013/2014.

Déri Miksa Tagintézménye MUNKAREND 2013/2014. Szegedi Ipari Szakképző és Általános Iskola Déri Miksa Tagintézménye MUNKAREND 2013/20 Az emberi erőforrások minisztere 47/20 (VII. 4.) EMMI rendelete alapján. augusztus 2 26. 27-28-29. 29. Orvosi vizsgálat

Részletesebben

OKTV országos döntő angol nyelv Kováts Tímea 12.b 2. helyezés. fizika Frigyes Tamás 12.b. Kovács Péter. kémia Takács Gergő 12.c Mag Zsuzsa 12.

OKTV országos döntő angol nyelv Kováts Tímea 12.b 2. helyezés. fizika Frigyes Tamás 12.b. Kovács Péter. kémia Takács Gergő 12.c Mag Zsuzsa 12. OKTV országos döntő angol nyelv Kováts Tímea 12.b 2. helyezés OKTV második forduló matematika Barna Mátyás 12.b Frigyes Tamás 12.b fizika Frigyes Tamás 12.b Kovács Péter 12.b kémia Takács Gergő 12.c Mag

Részletesebben

Zrínyi Ilona Matematikaverseny megyei forduló Csermák Dávid 7.b 9. helyezés

Zrínyi Ilona Matematikaverseny megyei forduló Csermák Dávid 7.b 9. helyezés OKTV második forduló matematika Boncz Ádám 11.b biológia Csőkör Katalin 12.b Arany Dániel Matematika verseny döntő Milotai Zoltán 9.c OÁTV német nyelv megyei forduló Pauer László 7.a Czencz Máté 8.a Szöllősi

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

MATEMATIKA MUNKAKÖZÖSSÉG MUNKATERVE 2013-2014 TANÉV

MATEMATIKA MUNKAKÖZÖSSÉG MUNKATERVE 2013-2014 TANÉV MATEMATIKA MUNKAKÖZÖSSÉG MUNKATERVE 2013-2014 TANÉV A Természet nagy könyve csak azok el tt áll nyitva, akik ismerik a nyelvet, amelyen írva van: a matematika nyelvét. Galileo Galilei Zalaszentgrót, 2013.

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy sziget ahol 42 kaméleon lakik. A kaméleonok három színt vehetnek fel piros, kék és zöld. Ha két különböző színű kaméleon találkozik, akkor megijednek és mindkettő átváltoztatja a színét

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Meghirdetett szakkörök 2016/17. tanév. Több évfolyam számára: Csengettyű szakkör (speciális közös zenélés csengők segítségéve)

Meghirdetett szakkörök 2016/17. tanév. Több évfolyam számára: Csengettyű szakkör (speciális közös zenélés csengők segítségéve) Meghirdetett szakkörök 2016/17. tanév Több évfolyam számára: Csengettyű szakkör (speciális közös zenélés csengők segítségéve) 7.-10. évfolyam Tanár: Tar Imréné Időpont: hétfő 8. Kreatív rajz szakkör Tanár:

Részletesebben

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor

Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás.  Szénási Sándor Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt

Részletesebben

MATEMATIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE

MATEMATIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE MATEMATIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE 2015-2016-os tanév A matematika a kulcs és az ajtó a tudományokhoz /Galileo Galilei/ Matematika - Informatika munkaterve 2015/2016-os tanév A matematika

Részletesebben

4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Feladatok kijelentéseinek megértése

4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Feladatok kijelentéseinek megértése A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

JANE HAINING ANGOL NYELVI EMLÉKVERSENY ORSZÁGOS 8.OSZTÁLY. Makkainé Chmara Mariann. Szabó Lili 8.a 2. Név oszt. helyezés korcsoport felkészít tanár

JANE HAINING ANGOL NYELVI EMLÉKVERSENY ORSZÁGOS 8.OSZTÁLY. Makkainé Chmara Mariann. Szabó Lili 8.a 2. Név oszt. helyezés korcsoport felkészít tanár JANE HAINING ANGOL NYELVI EMLÉKVERSENY ORSZÁGOS 8.OSZTÁLY Név oszt. helyezés korcsoport felkészít tanár Szabó Lili 8.a 2. Makkainé Chmara Mariann LANGWEST ORSZÁGOS TANULMÁNYI VERSENY ÍRÁSBELI FORDULÓ -

Részletesebben

Eseménynaptár - Premontrei Rendi Szent Norbert Gimnázium 2013/2014. tanév

Eseménynaptár - Premontrei Rendi Szent Norbert Gimnázium 2013/2014. tanév Szeptember 2013 9 1 vasárnap 14.30 h Veni Sancte 2013 9 5 csütörtök 17.30 h KÉSZ előadás 2013 9 5 csütörtök Érettségi jelentkezés határideje 2013 9 11 szerda 5. és 7. óra Magyar dal napja 2013 9 12 csütörtök

Részletesebben

Informatikaoktatás a Jedlik Oktatási Stúdió tankönyveivel. farkascs@jos.hu

Informatikaoktatás a Jedlik Oktatási Stúdió tankönyveivel. farkascs@jos.hu Informatikaoktatás a Jedlik Oktatási Stúdió tankönyveivel farkascs@jos.hu Miről lesz szó? A JOS tankönyvcsaládjának bemutatása tervezési koncepciók Informatikai ismeretek a középiskolák részére Az informatikatanítás

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

2 0 1 4 2 0 1 5 I I. H é t f ő Óra IR 011 3 IR 012 3

2 0 1 4 2 0 1 5 I I. H é t f ő Óra IR 011 3 IR 012 3 H é t f ő Óra IR 011 3 IR 012 3 GPGPU: Grafikus processzorok felhasználása általános célú számításokra előadás Nagy A., Varga L. H[12 14] Szenzorhálózatok Kincses Z., SARCEVIC P. H[13 15] GPGPU: Grafikus

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

A Körmendi Kölcsey Ferenc Gimnázium 2013/2014. évi munkaterve

A Körmendi Kölcsey Ferenc Gimnázium 2013/2014. évi munkaterve A Körmendi Kölcsey Ferenc Gimnázium 2013/2014. évi munkaterve A 2013/2014. tanév munkarendje 2013. augusztus 23. (P) Nevelőtestületi megbeszélés Munkaközösségi megbeszélések A tantárgyfelosztás egyeztetése

Részletesebben

Legrövidebb útkereső algoritmusok

Legrövidebb útkereső algoritmusok EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Legrövidebb útkereső algoritmusok A diplomamunkát készítette: Podobni Katalin Matematika Bsc Matematikai elemző szakirány Témavezető: Nagy Adrienn PhD

Részletesebben

Informatika tanári mesterszak

Informatika tanári mesterszak Informatika tanári mesterszak Az informatika tanári mesterszak képzési és kimeneti követelményei a szak szerkezetét a következőképp határozzák meg: Iskolai tanítási gyakorlat informatikából (3 5 ): A NAT,

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Matematika alapszak (BSc) 2015-től

Matematika alapszak (BSc) 2015-től Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

A MATEMATIKA FIZIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE A TANÉVRE

A MATEMATIKA FIZIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE A TANÉVRE A MATEMATIKA FIZIKA INFORMATIKA MUNKAKÖZÖSSÉG MUNKATERVE A 2012 2013. TANÉVRE A személyi feltételekben fontos változás, hogy Kissné Szucsich Éva tanárnő nyugdíjba vonulása után az iskola nem alkalmazott

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030

Részletesebben

Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye MUNKAREND 2012/2013. augusztus. szeptember

Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye MUNKAREND 2012/2013. augusztus. szeptember Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye MUNKAREND 2012/20 Az emberi erőforrások minisztere 3/2012. (VI. 8.) EMMI rendelete alapján. augusztus 28-29-30. 30. 31.

Részletesebben

A REÁL munkaközösség tervezete 2016/2017 tanév

A REÁL munkaközösség tervezete 2016/2017 tanév A REÁL munkaközösség tervezete 2016/2017 tanév Készítette: Orbán Noémi Jóváhagyta: Horváthné Páter Beatrix Igazgató Herend, 2016. szeptember 15. A munkaközösség tagjai, a tantárgyakat tanító tanárok, tanítók

Részletesebben

Versenyeredmények 2014/2015. Berzsenyi Dániel Gimnázium

Versenyeredmények 2014/2015. Berzsenyi Dániel Gimnázium Versenyeredmények 2014/2015. Berzsenyi Dániel Gimnázium SPORT Atlétika ügyességi csapatbajnokság-diákolimpia megyei döntő Aranyérmesek: Leány gerelyhajító csapat Bárczi Kata, Gergő Virág, Horváth Zsanett,

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet 7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát

Részletesebben

INFORMATIKA OKTATÁS ISKOLÁNKBAN

INFORMATIKA OKTATÁS ISKOLÁNKBAN INFORMATIKA OKTATÁS ISKOLÁNKBAN Iskolánkban az idegen nyelv emelt szintű oktatása mellett az informatika oktatása is emelt szinten történik. Amit kínálunk: a Helyi Kerettanterv alapján megvalósuló emelt

Részletesebben

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása

Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Előadó: Pieler Gergely, MSc hallgató, Nyugat-magyarországi Egyetem Konzulens: Bencsik Gergely, PhD hallgató, Nyugat-magyarországi

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E 5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus

Részletesebben

MATEMATIKA VERSENYEREDMÉNYEINK

MATEMATIKA VERSENYEREDMÉNYEINK MATEMATIKA VERSENYEREDMÉNYEINK VERSENY NÉV (OSZTÁLY) HELYEZÉS FELKÉSZÍTŐ TANÁR Varga Tamás Országos Varga Dániel 7.A megyei 4.helyezés Balázsfi Enikő 7.A megyei 5.helyezés Wischy Dávid 8.A megyei 2.helyezés

Részletesebben

Informatika tanári mesterszak

Informatika tanári mesterszak Informatika tanári mesterszak Az informatika tanári mesterszak képzési és kimeneti követelményei a szak szerkezetét a következképp határozzák meg: Iskolai tanítási gyakorlat informatikából (3 5 ): A NAT,

Részletesebben

INFORMATIKA 1-4. évfolyam

INFORMATIKA 1-4. évfolyam INFORMATIKA 1-4. évfolyam Célok - A számítógépes munkaszabályainak és a legfontosabb balesetvédelmi előírások megismerése. - A számítógép és perifériáinak kezelési tudnivalóinak megismerése. - Az életkoruknak

Részletesebben

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

INFORMATIKA ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK AZ ÉRETTSÉGI VIZSGA RÉSZLETES TEMATIKÁJA

INFORMATIKA ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK AZ ÉRETTSÉGI VIZSGA RÉSZLETES TEMATIKÁJA A témakörök előtt lévő számok az informatika tantárgy részletes vizsgakövetelménye és a vizsga leírása dokumentumban szereplő témaköröket jelölik. KÖVETELMÉNYEK 1.1. A kommunikáció 1.1.1. A kommunikáció

Részletesebben

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság

Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris

Részletesebben

Javító és majdnem javító utak

Javító és majdnem javító utak Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes

Részletesebben

JUHÁSZ TIBOR TÓTH BERTALAN KOLLEKCIÓK ALKALMAZÁSA A FELADATMEGOLDÁSOKBAN

JUHÁSZ TIBOR TÓTH BERTALAN KOLLEKCIÓK ALKALMAZÁSA A FELADATMEGOLDÁSOKBAN JUHÁSZ TIBOR TÓTH BERTALAN KOLLEKCIÓK ALKALMAZÁSA A FELADATMEGOLDÁSOKBAN Juhász Tibor Tóth Bertalan: Kollekciók alkalmazása a feladatmegoldásokban 2., átdolgozott kiadás 2015 Jelen dokumentumra a Creative

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Szoftverfejlesztő képzés tematika oktatott modulok

Szoftverfejlesztő képzés tematika oktatott modulok Szoftverfejlesztő képzés tematika oktatott modulok 1148-06 - Szoftverfejlesztés Megtervezi és megvalósítja az adatbázisokat Kódolja az adattárolási réteget egy adatbáziskezelő nyelv használatával Programozás

Részletesebben

INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI 1. oldal, összesen: 6 oldal INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: gyakorlati és szóbeli. Emeltszinten: gyakorlati és szóbeli. Az informatika érettségi vizsga

Részletesebben

Programtervező informatikus. Tanári. szakirányok mintatanterve. 2006. szeptemberétől

Programtervező informatikus. Tanári. szakirányok mintatanterve. 2006. szeptemberétől Programtervező informatikus alapszak - - Programtervező informatikus Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak oktató neve Diszkrét matematika PMB1101 2 2 K 5 MI Dr. Kurdics

Részletesebben

Hálózati folyamok. A használt fogalmak definiálása

Hálózati folyamok. A használt fogalmak definiálása Hálózati folyamok Hálózat A használt fogalmak definiálása Ez összesen 4 dologból áll: - Egy irányított G gráf - Ennek egy kitüntetett pontja, amit forrásnak hívunk és s-sel jelölünk - A gráf még egy kitüntetett

Részletesebben

Matematikai problémák vizsgálata a Maple programcsomag segítségével

Matematikai problémák vizsgálata a Maple programcsomag segítségével Matematikai problémák vizsgálata a Maple programcsomag segítségével Tengely Szabolcs tengely@science.unideb.hu http://www.math.unideb.hu/~tengely Tengely Szabolcs 2014.04.26 Matematikai problémák és a

Részletesebben

Publikációs jegyzék. Sitkuné Görömbei Cecília PKK, Tanítóképző Intézet

Publikációs jegyzék. Sitkuné Görömbei Cecília PKK, Tanítóképző Intézet Publikációs jegyzék Sitkuné Görömbei Cecília PKK, Tanítóképző Intézet Referált cikk nemzetközi folyóiratban 1. Sitkuné Görömbei Cecília: Shall we use one more representation? Suggestions about establishing

Részletesebben

Szlávi Péter: Szakmai önéletrajz

Szlávi Péter: Szakmai önéletrajz Szlávi Péter: Szakmai önéletrajz Személyi adatok: Név: Szlávi Péter Születési idő: 1955. augusztus 6. Születési hely: Budapest Lakcím: 1118 Budapest, Gazdagréti tér 1. Telefon: 246 6137 Képzettség: Végzettség:

Részletesebben

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Informatika tanítási módszerek

Informatika tanítási módszerek Informatika tanítási módszerek Programozás tanítási módszerek módszeres, algoritmusorientált; adatorientált; specifikációorientált; feladattípus-orientált; nyelvorientált; utasításorientált; matematikaorientált;

Részletesebben

Versenyeredmények. Matematika

Versenyeredmények. Matematika Versenyeredmények Alsó tagozat 2013/2014 tanév Matematika Bolyai Matematika Csapatverseny 10. Bogdán Dominik, Podhradszky Anna, Riba Bence, Schmidt Ágnes 3.b Sillinger Ferenc Kenguru Nemz. Mat. 15. Horváth

Részletesebben

Informatika tanterv nyelvi előkészítő osztály heti 2 óra

Informatika tanterv nyelvi előkészítő osztály heti 2 óra Informatika tanterv nyelvi előkészítő osztály heti Számítógép feladata és felépítése Az informatikai eszközök használata Operációs rendszer Bemeneti egységek Kijelző egységek Háttértárak Feldolgozás végző

Részletesebben

Oktatási környezetek vizsgálata a programozás tanításához

Oktatási környezetek vizsgálata a programozás tanításához Oktatási környezetek vizsgálata a programozás tanításához Horváth Győző, Menyhárt László Gábor Zamárdi, 2014.11.21. Készült az "Országos koordinációval a pedagógusképzés megújításáért című TÁMOP- Tartalom

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Intelligens Rendszerek Elmélete IRE 4/32/1

Intelligens Rendszerek Elmélete IRE 4/32/1 Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3

Részletesebben

Tájékoztatás az önálló informatika tantárgyról közoktatási intézmények számára

Tájékoztatás az önálló informatika tantárgyról közoktatási intézmények számára Tájékoztatás az önálló informatika tantárgyról közoktatási intézmények számára Az Emberi Erőforrások Minisztériuma meghatározta a Nemzeti Alaptantervhez kapcsolódó kerettanterveket, amelyekben az önálló

Részletesebben

Versenyeredmények 2015/2016. Berzsenyi Dániel Gimnázium

Versenyeredmények 2015/2016. Berzsenyi Dániel Gimnázium Versenyeredmények 2015/2016. Berzsenyi Dániel Gimnázium MAGYAR NYELV ÉS IRODALOM Krúdy Gyula országos prózamondó verseny 1. helyezés Pántics Luca 10.E Felkészítő tanár: Horváthné Csoszó Gyöngyi Nagy Kitti

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

GráfRajz fejlesztői dokumentáció

GráfRajz fejlesztői dokumentáció GráfRajz Követelmények: A GráfRajz gráfokat jelenít meg grafikus eszközökkel. A gráfot többféleképpen lehet a programba betölteni. A program a gráfokat egyedi fájl szerkezetben tárolja. A fájlokból betölthetőek

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

A verseny neve Induló tanulók Szaktanár Eredmény Curie Kémia Emlékverseny. Irinyi János Kémiaverseny. Curie Környezetvédelmi Emlékverseny.

A verseny neve Induló tanulók Szaktanár Eredmény Curie Kémia Emlékverseny. Irinyi János Kémiaverseny. Curie Környezetvédelmi Emlékverseny. A verseny neve Induló tanulók Szaktanár Eredmény Curie Kémia Emlékverseny 3 részes levelezői 9. évfolyam Varga Zoltán Fierpasz Ferenc Csanálosi Anada Isztin Ferenc Irinyi János Kémiaverseny Curie Környezetvédelmi

Részletesebben

HELYI TANTERV felmenő rendszerű - szakgimnáziumi tanterv

HELYI TANTERV felmenő rendszerű - szakgimnáziumi tanterv HELYI TANTERV felmenő rendszerű - szakgimnáziumi tanterv Bevezetve: 2016. szeptember 1-től Budapesti Műszaki Szakképzési Centrum Bolyai János Műszaki Szakgimnáziuma és Kollégiuma 134 Budapest, Váci út

Részletesebben