Javító és majdnem javító utak

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Javító és majdnem javító utak"

Átírás

1 Javító és majdnem javító utak deficites Hall-tétel alapján elméletileg meghatározhatjuk, hogy egy G = (, ; E) páros gráfban mekkora a legnagyobb párosítás mérete. Ehhez azonban első ránézésre az összes X részhalmaz deficitjét meg kéne határozni, ami már = 20 csúcs esetén is részhalmaz vizsgálatát jelentené. Ráadásul még ekkor sem volna konkrétan a kezünkben egy maximális párosítás. Ennél azonban ügyesebben is nekifoghatunk egy egyszerű, de hasznos észrevétel segítségével, amely ráadásul nem csak páros gráfokban használható. Definíció. Legyen G = (V ;E) egy tetszőleges gráf és P E egy párosítás. Egy út javító út P-re nézve, ha két P által fedetlen csúcsot köt össze, és minden második éle P-ben van. Megjegyzés. minden második éle P-ben van helyett azt is mondhattuk volna, hogy az élei felváltva P-n kívüliek, illetve P-beliek. Ugyanis ha minden második éle P-ben van, a köztes élek nem lehetnek P-ben, hiszen P párosítás. Állítás. Legyen G = (V ; E) egy tetszőleges gráf és P E egy párosítás. Ha van javító út P-re nézve, akkor van P-nél nagyobb párosítás. izonyítás. Módosítsuk P-t úgy, hogy a javító út P-beli elemeit kivesszük belőle, a P-n kívüli éleit pedig bevesszük P-be. z így kapott P élhalmaz párosítás lesz, hiszen egyik csúcsnál sem lehet két éle: a javító úton kívül nyilván nem, mert ott P és P megegyezik; a javító út két végpontját P nem fedte le, így nem romolhattak el; a javító út belső pontjaira pedig mind P-nek, mind P -nek egy-egy éle illeszkedik. Mivel a javító út P-n kívüli éllel indul és végződik, P = P Párosítás növelése javító úttal egy páros gráfban C C C 4 D 4 D 4 D 5 E 5 E 5 E 6 F 6 F 6 Egy párosítás páros gráfban, egy javító út (1-C-4-E--) és a javítás eredménye. F Hamarosan látunk módszert arra, hogy hogyan lehet javító utakat keresni, és ezáltal növelni a párosításunk méretét. De vajon így biztosan találunk egy lehető legnagyobb párosítást? Vagy kifulladhat a módszer hamarabb is? következő tétel adja a megnyugtató választ. 1

2 2 Tétel. Legyen G = (V ; E) egy tetszőleges gráf és P E egy párosítás. Ha nincs javító út P-re nézve, akkor P egy legnagyobb párosítás. izonyítás. Legyen P egy tetszőleges párosítás. Jelölje S a P és P élhalmazok (súlyozott) unióját, melyben P P éleit kétszer vesszük be (mint párhuzamos éleket). zt fogjuk belátni, hogy P-nek legalább annyi éle van S-ben, mint P -nek, vagyis P P ; ez igazolja, hogy nincs P-nél nagyobb párosítás. z S élei által alkotott G S = (V ;S) gráfban minden csúcs foka legfeljebb kettő (miért is?), és a kettő fokú csúcsok egyik éle P-beli, a másik P -beli. G S összefüggőségi komponensei tehát párhuzamos élek, körök vagy utak (az esetleges izolált csúcsokat nulla hosszúságú utaknak tekintjük). körökben a P-beli és P -beli élek száma megegyezik, hiszen azok felváltva követik egymást; ugyanez fennáll a párhuzamos élek alkotta komponensekre is. z utakban nem lehet több P -beli él, mint P-beli, hiszen egy ilyen út javító út volna P-re nézve, ami a feltevésünk szerint lehetetlen. Ezzel az állítást beláttuk. P P élei körök utak 1. ábra. P és P élei, Megjegyzés. Minden, amit eddig javító utakról mondtunk, páros és nem páros gráfokra egyaránt igaz. Innentől viszont csak páros gráfokkal foglalkozunk, mert az alább ismertetendő eljárásban kihasználjuk a gráf páros voltát. Nem páros gráfokban is lehet hatékonyan legnagyobb párosítást keresésni, ezt azonban mi nem tárgyaljuk. Javító utak keresése páros gráfokban szélességi kereséssel dott a G = (, ;E) páros gráf, ebben kell keresnünk egy legnagyobb párosítást. Ezt úgy tesszük, hogy mohón keresünk egy P kiindulási párosítást, amit majd addig növelünk, amíg egy legnagyobb párosítást nem kapunk. z alább részletezett eljárást először szemléletesen, kis példákon kézzel alkalmazható módon tárgyaljuk, a fejezet végén vázoljuk, hogy nagyobb példákon hogyan lehet kivitelezni az eljárást számítógép segítségével. Előkészületek: z eljárásnál az elején el kell dönteni, melyik osztály felől indulunk. Most például a párosítást felől fogjuk keresni. z eljárás során fontos, hogy -ből -ba csak párosításon kívüli, -ból -be pedig csak párosításbeli élen léphetünk. Ezt úgy biztosítjuk, hogy megirányítjuk G éleit: a párosítás élei mindig -ból -be mutassanak, a többi -ből -ba. míg nincs párosításunk (P = ), minden él -ből -ba mutat. (Természetesen, ha felől keresnénk párosítást, fordítva irányítottuk volna G éleit.) z eljárás során az aktuális párosítást az élek irányítása jelzi, melyet időnként változtatni fogunk. z aktuális párosítást mindig P-nek fogjuk hívni. Kis példákon persze az irányítás helyett az élek vékony / vastag rajzolásával is jelezhetjük, hogy mely élek vannak a párosításban.

3 Első lépés: mohón keresünk egy párosítást. Sorra vesszük csúcsait, és megvizsgáljuk az éppen aktuális v csúcs szomszédait. Ha van közöttük olyan u csúcs, ami még nem szerepel a párosításban (azaz u-nak nincs szomszédja -ban (az irányítást figyelembe véve!)), belevesszük; magyarán a vu él irányítását megfordítjuk. Ha az utolsó csúcsot is megvizsgáltuk -ben, egy új él bevételével nem bővíthető (de nem feltétlenül egy lehető legnagyobb) párosítást kaptunk (az -ból -be irányított élek ezek). Második lépés: Javító utakat keresünk. z irányítás miatt minden út felváltva lép P-n kívüli és P-beli éleken, így nekünk egy b fedetlen csúcsot egy a fedetlen csúccsal összekötő utat kell keresnünk; az automatikusan javító út lesz. Javító út keresésének lépései: Készítünk egy kétsoros táblázatot. fölső sor az elérési lista, az alsó a honnan lista. (1) Felírjuk az elérési listába fedetlen csúcsait (az összeset). z elérési listában szereplő csúcsokat listázottnak hívjuk; ezeket fogjuk sorban átvizsgálni. lattuk üres a honnan lista. (2) Legyen v az elérési lista első nem átvizsgált eleme. Írjuk az elérési lista végére v eddig nem listázott szomszédait (innentől ezek is listázottak), és mindegyik alá (a honnan listába) írjuk föl v nevét. v csúcsot ezután átvizsgáltnak hívjuk. Ezt a folyamatot nevezzük a v csúcs átvizsgálásának. () Ismételjük az előző lépést addig, míg 1) fedetlen -beli csúcsot veszünk föl az elérési listába, vagy 2) az elérési lista összes csúcsát át nem vizsgáljuk. 1)-es eset: fedetlen -beli csúcsot vettünk az elérési listába. Hívjuk ezt a csúcsot v 1 -nek. honnan lista alapján tudjuk, hogy v 1 -et melyik csúcsból értük el; legyen ez v 2. Persze v 2 szerepel v 1 előtt az elérési listában, a honnan listából látjuk, hogy őt v -ból értük el stb., így a feljegyzések alapján visszaérünk egy -beli fedetlen csúcsba. Ezen csúcsok sorozata egy irányított út, mely két fedetlen csúcsot köt össze, azaz a fenti megjegyzés szerint javító út P-re nézve. javító út éleinek irányítását megfordítva (azaz felcserélve a P-beli és az azon kívüli éleit) kapunk egy P-nél nagyobb párosítást; ezután a fenti eljárással újra kereshetünk javító utat az új, nagyobb párosításra nézve. Mivel a fedetlen csúcsok száma minden lépésben csökken, előbb-utóbb véget ér az eljárás azzal, hogy előáll a 2)-es eset. 2)-es eset: az elérési lista összes elemét átvizsgáltuk, de nem értünk el fedetlen csúcsba. Ekkor az alábbi tétel szerint megtaláltuk a lehető legnagyobb párosítást, ráadásul bizonyítékot is kapunk erre: Tétel. Tegyük föl, hogy a fenti eljárás során előáll a 2)-es eset. Legyen rendre X, illetve Y az elérési listában szereplő -beli, illetve -beli csúcsok halmaza. Ekkor N(X) = Y, és X deficite éppen P, azaz nincs a P-nél nagyobb párosítás. izonyítás. Legyen F X a -beli fedetlen csúcsok halmaza. Ekkor persze P pontosan F csúcs híján fedi -t, azaz P = F. Legyen v X egy tetszőleges csúcs, u pedig a v egy tetszőleges szomszédja G-ben (tehát az eredeti, irányítatlan gráfban). N(X) = Y igazolásához be kell látnunk, hogy u Y. Ha vu P, akkor v nem fedetlen, tehát a honnan listában szerepel alatta egy csúcs. Mivel felé csak P-beli élen léphettünk és v-t csak egy P-beli él fedheti, ez a csúcs az u; emiatt u is szerepel az elérési listában, tehát u Y. Ha vu / P, akkor v

4 4 átvizsgálása során u-t bevettük az elérési listába (vagy már eleve ott volt), tehát ismét u Y. Ezzel azt láttuk be, hogy N(X) Y. Mivel minden Y -beli csúcsot egy X-beli csúcs (nevezetesen a honnan listában alatta szereplő) szomszédjaként vettünk az elérési listába, N(X) = Y. Már csak azt kell megmutatni, hogy X deficite éppen F, vagyis hogy X N(X) = X Y = F. Ehhez azt gondoljuk meg, hogy P egy teljes párosítás Y és X \F között. Először lássuk be, hogy Y minden elemének van P-beli párja X \ F-ben. Legyen u Y. 2)-es eset szerint P lefedi u-t; legyen tehát v az u P-beli szomszédja. Ekkor v az u átvizsgálása során bekerült az elérési listába 1, tehát v X \ F. Másodszor lássuk be, hogy X \ F minden elemének van P-beli párja Y -ban. Ha v X \ F, akkor v-nek persze van P-beli párja, és N(X) = Y miatt az Y -beli. Példa: Lássuk az eljárás megvalósítását az alábbi képen látható gráffal illusztrálva. C D E F G H C D E F G H ábra. Fölül látjuk a gráfot magát; alatta a mohón talált párosítással és az annak megfelelő irányítással. Végezzük el ezen a gráfon és a kiindulási párosításon az eljárás lépéseit! Elérési lista: D E F Honnan: D E 2 lépéseket jelek választják el egymástól. 4. lépésben a 8 nevű csúcsot vizsgáljuk át, ahonnan azonban egy új csúcsot sem érünk el, ezért az elért csúcsok listája nem bővül. Hasonló a helyzet a 8. lépésben. Mivel F fedetlen -beli csúcs, a táblázatból kiolvasható F 2 6 út javító út lesz. Elvégezve a javítást az alábbi párosítást kapjuk: 1 Vagy esetleg már u átvizsgálása előtt is ott volt. Előfordulhat ez?

5 5 C D E F G H ábra. növelt párosítás. Erre újra elvégezve az eljárás lépéseit, a következő táblázat adódik: Elérési lista: 7 8 D E 4 5 Honnan: 7 7 D E z eljárás úgy ér véget, hogy átvizsgáltuk az összes listázott csúcsot, és nem tudunk több csúcsot listázni. Ekkor a Tétel szerint az X = {7; 8; 4; 5} = {4; 5; 7; 8} csúcshalmaz szomszédsága N(X) = Y = {D; E} (ezt ellenőrizhetjük is az eredeti gráfon). z X halmaz deficite tehát kettő, és az aktuális párosításunk kettő híján minden csúcsot fed -ben; összevetve kapjuk, hogy ő egy legnagyobb párosítás. Számítógépes implementálás Kis gráfok esetében még át tudjuk tekinteni a fenti eljáráshoz szükséges információkat a táblázat és a gráf ábrája segítségével. zonban nagy gráfok esetében, melyeknél már a vizuális megjelenítés sem célszerű, természetes a kérdés, hogy számítógéppel hogyan lehet a fenti eljárást kivitelezni, a szükséges adatokat tárolni. gráfokat többféleképpen lehet és szokás kezelni, a legalkalmasabb adattárolási struktúra kiválasztása függ a gráf és a feladat jellegétől is. Mi most csak egy változatot mutatunk be. Gráf tárolása: csúcsokat sorszámozzuk 1-től n-ig (n a gráf csúcsszáma); majd készítünk egy listát, melyben minden sorszámhoz (azaz csúcshoz) egy újabb listát rendelünk, amely az ő szomszédjait tartalmazza (az aktuális irányítást figyelembe véve). Ez a SZOMSZ lista; egy v csúcsra tehát SZOMSZ(v) egy, a v szomszédait tartalmazó lista. Érdemes bevezetni egy FEDETT listát, ami minden csúcsról eltárolja, hogy fedi-e P. Például ha az uv irányított él, u, v, szerepel a gráfban, de nem szerepel a párosításban, akkor ő -ből felé van irányítva, tehát SZOMSZ(v) tartalmazza u-t, de SZOMSZ(u) nem tartalmazza v-t. Ha ezt az élt bevesszük a párosításba, azt úgy adminisztráljuk, hogy a v szomszédai közül kivesszük u-t, és az u szomszédai közé bevesszük v-t, valamint alkalmasan módosítjuk a FEDETT értékeket is. Elérési lista (ELERESI): z eljárás szerinti sorrendben írjuk bele az elért csúcsokat (azok sorszámát). Honnan lista (HONNN): z eljárás szerinti sorrendben írjuk bele a honnan értéket (a megfelelő csúcs sorszámát); az elérési lista elején szereplő, fedetlen -beli csúcsoknál üres értéket (vagy megfelelő jelölőt) használunk. Csúcsok állapotlistája (LLPOT): készítünk egy n elemű tömböt, és minden elem háromféle lehet a csúcsok háromféle állapotának megfelelően, amit most számokkal

6 6 jelölünk: 0: még nem listázott csúcsok; 1: listázott, de még nem átvizsgált csúcsok; 2: átvizsgált csúcsok. Kezdetben minden 1 i n számra LLPOT(i) = 0. csúcsok állapotát az eljárás lépéseinek megfelelően módosítjuk: amikor listába kerül, 1-re, amikor átvizsgáljuk, 2-re. z eljárás során az ELERESI lista soron következő i elémenek szomszédait kell áttekinteni, azaz végig kell mennünk a SZOMSZ(i) elemein. Ezek közül azon j csúcsokat, melyeknél LLPOT(j) = 0, beteszzük az ELERESI lista végére, LLPOT(j)-t 1- re változtatjuk, a HONNN lista megfelelő elemét i-re módosítjuk, majd ha végigvettük SZOMSZ(i) elemeit, LLPOT(i)-t 2-re állítjuk. csúcsok listázásánál a FEDETT lista segítségével ellenőrizzük, hogy P fedi-e az adott csúcsot. fenti példa tárolása és az eljárás első lépése valahogy így néz ki. számítógép persze a betűvel jelölt csúcsokat is sorszámként tárolná (9, 10,..., 16). gráf tárolása (csúcsok és szomszédaik; helytakarékossági okokból a csúcsok alá írjuk azok szomszédait): Csúcs: C D E F G H Szomszédok F G D D E listája: E Állapotlista csúcsai: C D E 2 G H 1. lépés: lépés: lépés: lépés: lépés: lépés: lépés: lépés: lépés:

1. fejezet. Párosítások

1. fejezet. Párosítások 1. fejezet Párosítások Mese. Arthur király udvarában száz lovag és száz udvarhölgy állt a király szolgálatában, amikor Arthur házasságra kívánt lépni Ginevrával. Eme jeles alkalom okán elhatározta, hogy

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

C++ programozási nyelv

C++ programozási nyelv C++ programozási nyelv Gyakorlat - 13. hét Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. december A C++ programozási nyelv Soós Sándor 1/10 Tartalomjegyzék Objektumok

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Aromo Szöveges értékelés normál tantárggyal

Aromo Szöveges értékelés normál tantárggyal Aromo Szöveges értékelés normál tantárggyal Aromo Iskolaadminisztrációs Szoftver Felhasználói kézikönyv -- Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges értékelés normál tantárggyal 1 Bevezetés 3

Részletesebben

Spike Trade napló_1.1 használati útmutató

Spike Trade napló_1.1 használati útmutató 1 Spike Trade napló_1.1 használati útmutató 1 ÁLTALÁNOS ÁTTEKINTŐ A táblázat célja, kereskedéseink naplózása, rögzítése, melyek alapján statisztikát készíthetünk, szűrhetünk vagy a már meglévő rendszerünket

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Aromo Szöveges értékelés kódolt tantárggyal

Aromo Szöveges értékelés kódolt tantárggyal Aromo Szöveges értékelés kódolt tantárggyal AROMO Iskolaadminisztrációs Szoftver - Felhasználói kézikönyv - Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges értékelés kódolt tantárggyal 1 Bevezetés

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

1/50. Teljes indukció 1. Back Close

1/50. Teljes indukció 1. Back Close 1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

GráfRajz fejlesztői dokumentáció

GráfRajz fejlesztői dokumentáció GráfRajz Követelmények: A GráfRajz gráfokat jelenít meg grafikus eszközökkel. A gráfot többféleképpen lehet a programba betölteni. A program a gráfokat egyedi fájl szerkezetben tárolja. A fájlokból betölthetőek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).

1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali). 1.1. Alapfeladatok 1.1.1. Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Hálózati folyamok. A használt fogalmak definiálása

Hálózati folyamok. A használt fogalmak definiálása Hálózati folyamok Hálózat A használt fogalmak definiálása Ez összesen 4 dologból áll: - Egy irányított G gráf - Ennek egy kitüntetett pontja, amit forrásnak hívunk és s-sel jelölünk - A gráf még egy kitüntetett

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Számlaközpont Gazdaságfejlesztő Iroda Kft.

Számlaközpont Gazdaságfejlesztő Iroda Kft. Számlaközpont Gazdaságfejlesztő Iroda Kft. Az elektronikus számlázás terjedésével párhuzamosan egyre többen igénylik, hogy beérkező és kimenő e-számláikat a papíralapú számlákhoz hasonlóan egy helyen,

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Ramsey tétele(i) gráfokra

Ramsey tétele(i) gráfokra Ramsey tétele(i) gráfokra A témakör a szociológusok alábbi észrevételének általánosítása: legalább hat tagú társaságban vagy van háromfős klikk, vagy van háromfős antiklikk. Itt klikk olyan emberek halmazát

Részletesebben

FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása

FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása 4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)} Példa Adott egy n n-es sakktábla. Az (1,1) mezőn áll egy huszár. Határozzuk meg eljuthat -e az (u,v) mezőre, ha igen adjunk meg egy legkevesebb lépésből álló utat! Adjunk algoritmust, ami megoldja a feladatot.

Részletesebben

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 4. gyakorlat PLanG: 2011.10.04. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Fájlok

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

A legfontosabb DOS parancsok

A legfontosabb DOS parancsok A legfontosabb DOS parancsok A DOS parancsok általános formája: KULCSSZÓ paraméterek Az utasítások akár kis-, akár nagybetűkkel is írhatók, a DOS nem tesz köztük különbséget. A kulcsszó és az első paraméter

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak

Részletesebben

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu- . modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Táblázatok kezelése. 1. ábra Táblázat kezelése menüből

Táblázatok kezelése. 1. ábra Táblázat kezelése menüből Táblázat beszúrása, létrehozása A táblázatok készítésének igénye már a korai szövegszerkesztőkben felmerült, de ezekben nem sok lehetőség állt rendelkezésre. A mai szövegszerkesztőket már kiegészítették

Részletesebben

Táblázatos adatok használata

Táblázatos adatok használata Táblázatos adatok használata Tartalomjegyzék 1. Az adatok rendezése...2 2. Keresés a táblázatban...2 3. A megjelenő oszlopok kiválasztása...3 4. Az oszlopok sorrendjének meghatározása...4 5. Az oszlopok

Részletesebben