Diszkrét matematika 1. estis képzés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkrét matematika 1. estis képzés"

Átírás

1 Diszkrét matematika 1. estis képzés tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék tavasz

2 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 2. Címkézett gráfok Legyen G = (ϕ, E, V ) egy gráf, C e és C v halmazok az élcímkék, illetve csúcscímkék halmaza, továbbá c e : E C e és c v : V C v leképezések az élcímkézés, illetve csúcscímkézés. Ekkor a (ϕ, E, V, c e, C e, c v, C v ) hetest címkézett gráfnak nevezzük. Élcímkézett, illetve csúcscímkézett gráfról beszélünk, ha csak élcímkék és élcímkézés, illetve csak csúcscímkék és csúcscímkézés adott. Megjegyzés Címkézett gráf helyett a színezett gráf elnevezés is használatos.

3 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 3. Címkézett gráfok C e = R, illetve C v = R esetén élsúlyozásról és élsúlyozott gráfról, illetve csúcssúlyozásról és csúcssúlyozott gráfról beszélünk, és a jelölésből C e -t, illetve C v -t elhagyjuk. Egy G = (ϕ, E, V, w) élsúlyozott gráfban az E E élhalmaz súlya e E w(e). Algoritmus(Kruskal) Egy élsúlyozott gráf esetén az összes csúcsot tartalmazó üres részgráfból kiindulva minden lépésben vegyük hozzá a minimális súlyú olyan élt, amivel nem keletkezik kör.

4 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 4. Példa

5 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 5. Címkézett gráfok Tétel A Kruskal-algoritmus egy minimális súlyú feszítőerdőt határoz meg. Összefüggő gráf esetén minimális súlyú feszítőfát kapunk. Bizonyítás Később... Egy algoritmust mohó algoritmusnak nevezünk, ha minden lépésben az adódó lehetőségek közül az adott lépésben legkedvezőbbek egyikét választja. Megjegyzés A Kruskal-algoritmus egy mohó algoritmus.

6 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 6. Címkézett gráfok Megjegyzés A mohó algoritmus nem mindig optimális. Példa Keressünk minimális összsúlyú Hamilton-kört a következő gráfban. v 1 2 v v 2 v 2 3

7 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 7. Irányított gráfok A G = (ψ, E, V ) hármast irányított gráfnak nevezzük, ha E, V halmazok, V, V E = és ψ : E V V. E-t az élek halmazának, V -t a csúcsok (pontok) halmazának és ψ-t az illeszkedési leképezésnek nevezzük. A ψ leképezés E minden egyes eleméhez egy V -beli rendezett párt rendel. Elnevezés ψ(e) = (v, v ) esetén azt mondjuk, hogy v kezdőpontja, v pedig végpontja e-nek. Bármely G = (ψ, E, V ) irányított gráfból kapható egy G = (ϕ, E, V ) irányítatlan gráf úgy, hogy ψ(e) = (v, v ) esetén ϕ(e)-t {v, v }-nek definiáljuk. Ekkor azt mondjuk, hogy G a G egy irányítása.

8 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 8. Irányított gráfok Megjegyzés Az irányítatlan gráfokra definiált fogalmakat használni fogjuk irányított gráfok esetén is, mégpedig a megfelelő irányítatlan gráfra értve. Ha e e esetén ψ(e) = ψ(e ), akkor e és e szigorúan párhuzamos élek. Azon élek számát, amiknek a v csúcs kezdőpontja, v kifokának nevezzük, és deg + (v)-vel vagy d + (v)-vel jelöljük. Azon élek számát, amiknek a v csúcs végpontja, v befokának nevezzük, és deg (v)-vel vagy d (v)-vel jelöljük. Ha egy csúcs kifoka 0, akkor nyelőnek, ha a befoka 0, akkor forrásnak nevezzük.

9 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 9. Irányított gráfok Álĺıtás A G = (ψ, E, V ) irányított gráfra d + (v) = d (v) = E. v V v V A G = (ψ, E, V ) és G = (ψ, E, V ) irányított gráfok izomorfak, ha léteznek f : E E és g : V V bijektív leképezések, hogy minden e E-re és v V -re v pontosan akkor kezdőpontja e-nek, ha g(v) kezdőpontja f (e)-nek, és v pontosan akkor végpontja e-nek, ha g(v) végpontja f (e)-nek.

10 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 10. Irányított gráfok A G = (ψ, E, V ) irányított gráfot a G = (ψ, E, V ) irányított gráf irányított részgráfjának nevezzük, ha E E, V V és ψ ψ. Ekkor G-t a G irányított szupergráfjának hívjuk. Ha a G irányított részgráf mindazokat az éleket tartalmazza, melyek kezdőpontjai és végpontjai V -ben vannak, akkor G -t a V által meghatározott feszített irányított (vagy teĺıtett irányított) részgráfnak nevezzük. Ha G = (ψ, E, V ) irányított részgráfja a G = (ψ, E, V ) irányított gráfnak, akkor a G -nek a G-re vonatkozó komplementerén a (ψ E\E, E \ E, V ) gráfot értjük.

11 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 11. Irányított gráfok Ha G = (ψ, E, V ) egy irányított gráf, és E E, akkor a G-ből az E élhalmaz törlésével kapott irányított gráfon a G = (ψ E\E, E \ E, V ) irányított részgráfot értjük. Ha G = (ψ, E, V ) egy irányított gráf, és V V, akkor legyen E az összes olyan élek halmaza, amelyeknek kezdőpontja vagy végpontja valamely V -beli csúcs. A G-ből a V csúcshalmaz törlésével kapott irányított gráfon a G = (ψ E\E, E \ E, V \ V ) irányított részgráfot értjük.

12 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 12. Irányított gráfok A C n irányított ciklus a C n ciklus olyan irányítása, melyben az élek irányítása azonos (minden csúcs befoka és kifoka is 1). A P n irányított ösvény C n+1 -ból valamely él törlésével adódik. Az S n irányított csillag az S n csillag olyan irányítása, melyben a középső csúcs nyelő, az összes többi pedig forrás. Adott csúcshalmaznál az irányított teljes gráfban tetszőleges v és v különböző csúcsokhoz található pontosan egy olyan él, aminek v a kezdőpontja és v a végpontja. K n nem K n irányítása, sőt nem is egyszerű gráf, ha n > 1. Példák K 3 C 4 P 3 S 4

13 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 13. Irányított gráfok Legyen G = (ψ, E, V ) egy irányított gráf. A v 0, e 1, v 1, e 2, v 2,..., v n 1, e n, v n sorozatot irányított sétának nevezzük v 0 -ból v n -be, ha v j V 0 j n, e k E 1 k n, ψ(e m ) = (v m 1, v m ) 1 m n. Ha v 0 = v n, akkor zárt irányított sétáról beszélünk, különben nyílt irányított sétáról. Ha az irányított sétában szereplő élek mind különbözőek, akkor irányított vonalnak nevezzük. Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt irányított vonalról.

14 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 14. Irányított gráfok Ha az irányított sétában szereplő csúcsok mind különbözőek, akkor irányított útnak nevezzük. Egy legalább egy hosszú zárt irányított vonalat irányított körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként az irányított vonal pontjai különböznek. Egy irányított gráfot erősen összefüggőnek nevezünk, ha bármely csúcsából bármely csúcsába vezet irányított út.

15 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt:

16 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be.

17 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be. A ekvivalenciareláció

18 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be. A ekvivalenciareláció (Miért?),

19 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be. A ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V -n.

20 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be. A ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V -n. A csúcsok egy adott ilyen osztálya által meghatározott feszített irányított részgráf az irányított gráf egy erős komponense.

21 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 15. Irányított gráfok A G = (ψ, E, V ) irányított gráf esetén V elemeire vezessük be a relációt: v v pontosan akkor, ha G-ben vezet irányított út v-ből v -be, és v -ből is vezet irányított út v-be. A ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V -n. A csúcsok egy adott ilyen osztálya által meghatározott feszített irányított részgráf az irányított gráf egy erős komponense. Megjegyzés Az irányítatlan gráfokkal ellentétben nem feltétlenül tartozik az irányított gráf minden éle valamely erős komponenshez. Megjegyzés Nyilván egy irányított gráf akkor és csak akkor erősen összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen erős komponense van.

22 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 16. Irányított gráfok Az irányított fa olyan irányított gráf, amely fa, és van egy csúcsa, amelynek befoka 0, továbbá az összes többi csúcs befoka 1. Azt a csúcsot, amelynek befoka 0 gyökérnek nevezzük. Az olyan csúcs, aminek a kifoka 0 a levél. Álĺıtás A gyökérből bármely adott csúcsba vezető egyetlen út egyben irányított út is. Bizonyítás Az út hossza szerinti TI: ha az út hossza n = 1, akkor azért lesz irányított út, mert a gyökér befoka 0. Tfh. n = k-ra teljesül az álĺıtás. Vegyünk egy olyan v csúcsot, amibe vezető út hossza k + 1. Az útból elhagyva v-t és a rá illeszkedő e élt egy k hosszú utat kapunk, amiről az indukciós feltevés értelmében tudjuk, hogy ir. út. v nem lehet e kezdőpontja, mert akkor az e-re illeszkedő másik csúcs befoka legalább 2 lenne.

23 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 17. Irányított gráfok A gyökérből egy adott csúcsba vezető út hosszát a csúcs szintjének hívjuk. A csúcsok szintjeinek maximumát az irányított fa magasságának nevezzük. ψ(e) = (v, v ) esetén azt mondjuk, hogy v a v gyereke, illetve v a v szülője. Ha két csúcsnak ugyanaz a szülője, akkor testvéreknek hívjuk őket. Bármely v csúcsra tekinthetjük azon csúcsok halmazát, amelyekhez vezet irányított út v-ből. Ezen csúcsok által meghatározott feszített irányított részgráfot (amely irányított fa, és v a gyökere) v-ben gyökerező irányított részfának nevezzük.

24 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 18. Irányított gráfok Algoritmus (Dijkstra) A G = (ψ, E, V, w) élsúlyozott irányított gráfról tegyük fel, hogy az élsúlyok pozitívak, s V és T V. (1) Legyen S =, H = {s} és f (s) = 0; minden más v csúcsra legyen f (v) =. (2) Ha T S vagy H =, akkor az algoritmus véget ér. (3) Legyen t H egy olyan csúcs, amelyre f (t) minimális. Tegyük át t-t S-be, és minden e élre, aminek kezdőpontja t, végpontja pedig v V \ S vizsgáljuk meg, hogy teljesül-e f (t) + w(e) < f (v). Ha igen, akkor legyen f (v) := f (t) + w(e), és ha v / H, tegyük át v-t H-ba. Menjünk (2)-re. Tétel A Dijkstra-algoritmus a csúcshalmazon értelmez egy f : V R függvényt, amely t T esetén az adott s csúcsból a t csúcsba vezető irányított séták súlyainak a minimuma (, ha nincs ilyen séta).

25 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 19. Irányított gráfok Példa s v 1 1 v v v 4 s v 1 v v v 4 s v 1 v v v 4 S =, H = {s} S = {s}, H = {v 1, v 3 }

26 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 20. Irányított gráfok Példa s v 1 v v s v 1 v v s v 1 v v S = {s, v 3 } H = {v 1, v 2, v 4 } v 4 7 S = {s, v 3, v 4 } H = {v 1, v 2 } v 4 7 S = {s, v 3, v 4, v 1 } H = {v 2 } v 4

27 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 21. Irányított gráfok Bizonyítás NB.

28 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 22. Prüfer-kód

29 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 23. Síkgráfok Egy G gráfot síkgráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az éleinek a csúcspontokon kívül lennének közös pontjai. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának is nevezzük. Megjegyzés Nem minden gráf ilyen, ellenben minden gráf R 3 -ben lerajzolható. A G gráf egy síkbeli reprezentációja esetén tartománynak nevezzük az élek által határolt síkidomot. Ez nem feltétlenül korlátos, ilyenkor külső tartományról beszélünk, egyébként pedig belső tartományról. Megjegyzés Egy belső tartomány valamely másik reprezentációban lehet külső tartomány is, de a tartományok száma nem függ a reprezentációtól.

30 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 24. Síkgráfok Példa v 1 v 2 e 2 e 1 e 4 e 3 v 3 v 4

31 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 24. Síkgráfok Példa v 1 v 2 v 1 v 4 e 2 e 1 e 2 e 3 e 4 e 1 e 4 v 3 v 4 e 3 v 3 v 2

32 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 24. Síkgráfok Példa v 1 v 2 v 1 v 4 e 2 e 1 e 2 e 3 e 4 e 1 e 4 v 3 v 4 e 3 v 3 v 2 Példa

33 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 25. Síkgráfok Tétel (Euler-formula) Egy G = (ϕ, E, V ) összefüggő síkgráf tetszőleges síkbeli reprezentációját tekintve, melyre t jelöli a tartományok számát, teljesül a következő összefüggés. E + 2 = V + t Bizonyítás (vázlat) Ha a gráfban van kör, annak egy élét törölve az általa elválasztott két tartomány egyesül, így a tartományok és élek száma is (vagyis az egyenlet mindkét oldala) 1-gyel csökken. Az eljárás ismétlésével fát kapunk, aminek 1 tartománya van, így teljesül rá az összefüggés (Miért?).

34 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 26. Síkgráfok Álĺıtás Ha a G = (ϕ, E, V ) egyszerű, összefüggő síkgráfra V 3, akkor Bizonyítás E 3 V 6. V = 3 esetén 2 ilyen gráf van: P 2 és C 3, amelyekre teljesül az álĺıtás. V > 3 esetén legalább 3 éle van a gráfnak (Miért?). Mivel G egyszerű, ezért minden tartományát legalább 3 él határolja, ezért a tartományok határán végigszámolva az éleket az így kapott érték legalább 3t. Mivel minden él legfeljebb két tartományt választ el, ezért 3t 2 E. Az Euler-formulát használva 3( E + 2 V ) 2 E, amiből kapjuk az álĺıtást. Megjegyzés A becslés nem összefüggő síkgráfok esetén is teljesül, hiszen élek hozzávételével összefüggő síkgráfot kaphatunk.

35 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 27. Síkgráfok Álĺıtás Ha G = (ϕ, E, V ) egyszerű síkgráf, akkor δ = min d(v) 5. v V Bizonyítás Feltehető, hogy V 3 (Miért?). Indirekt tfh. δ 6. Ekkor 6 V 2 E (Miért?), továbbá az előző álĺıtást használva 2 E 6 V 12, vagyis 6 V 6 V 12, ami ellentmondás. Megjegyzés Létezik 5-reguláris egyszerű síkgráf.

36 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 28. Síkgráfok Álĺıtás K 3,3 nem síkgráf. Bizonyítás Indirekt tfh. K 3,3 síkgráf, és jelöljük t-vel a síkbeli reprezentációiban a tartományok számát. Ekkor E = 9 és V = 6 miatt az Euler-formula alapján t = 5. Mivel egyszerű, páros gráf, így minden tartomány határa legalább 4 élt tartalmaz (Miért?), és minden él legfeljebb két tartomány határán van, ezért 4t 2 E, amiből adódik, ami ellentmondás. Álĺıtás K 5 nem síkgráf. Bizonyítás Indirekt tfh. K 5 síkgráf. E = 10 és V = 5, így az élszámra vonatkozó becslés alapján = 9, ami ellentmondás.

37 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 29. Síkgráfok A G és G gráfokat topologikusan izomorfnak nevezzük, ha az alábbi lépést, illetve a fordítottját alkalmazva, véges sok lépésben az egyikből a másikkal izomorf gráfot kaphatunk: egy másodfokú csúcsot törlünk, és a szomszédjait összekötjük egy éllel. Példa Tétel (Kuratowski) (NB) Egy egyszerű gráf pontosan akkor síkgráf, ha nincs olyan részgráfja, ami topologikusan izomorf K 5-tel vagy K 3,3-mal.

38 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 30. Gráfok színezése Szeretnénk egy térképet kiszínezni úgy, hogy a szomszédos régiók különböző színűek legyenek. A probléma megközeĺıtése gráfokkal: a régióknak felelnek meg a csúcsok. Két csúcs szomszédos, ha a megfelelő régióknak van közös határvonala. A térképnek megfelelő gráf síkgráf lesz. Tétel (Négyszíntétel) (NB) Minden síkgráf 4 színnel színezhető. Megjegyzés 1976-ban bizonyította Appel és Haken. Ez volt az első nevezetes sejtés, aminek a bizonyításához számítógépet is használtak lehetséges ellenpéldát ellenőriztek, 1200 órán keresztül futott a program.

39 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 31. Gráfok színezése Egy gráf egy csúcsszínezését jólszínezésnek nevezzük, ha a szomszédos csúcsok színe különböző. Egy gráf kromatikus száma az a legkisebb n természetes szám, amelyre jólszínezhető n színnel. Megjegyzés A kromatikus szám pontosan akkor 1, ha nincs éle a gráfnak, és ha 2 a kromatikus szám, akkor a gráf páros. A síkgráfok kromatikus száma legfeljebb 4.

40 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 32. Gráfok mátrixai Ha egy G = (ψ, E, V ) irányított gráf élei e 1, e 2,..., e n, csúcsai pedig v 1, v 2,..., v m, akkor az alábbi illeszkedési mátrix (vagy élmátrix) egyértelműen megadja a gráfot: 1, ha e j -nek v i kezdőpontja; a ij = 1, ha e j nem hurokél, és v i a végpontja; 0, egyébként. A megfelelő irányítatlan gráf élmátrixa az a ij elemekből áll. Példa v 2 e 1 v 3 e 2 e e 3 e 5 4 e v 6 1 v 4 e 9 e10 e e 8 7 v

41 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 33. Gráfok mátrixai A G irányított gráf csúcsmátrixában legyen b ij a v i kezdőpontú és v j végpontú élek száma. A megfelelő { irányítatlan gráf csúcsmátrixának elemeire: a vi -re illeszkedő hurokélek száma, ha i = j; b ij = a v i -re és v j -re is illeszkedő élek száma, egyébként. Példa v e 2 1 v 3 e 2 e e 3 e 5 4 e v 6 1 v e 9 4 e10 e 8 e v 5

42 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 34. Prüfer-kód Legyen adott egy F = (ϕ, E, V, w) csúcscímkézett fa, az egyes csúcsok címkéi 1 és n közötti különböző egész számok, ahol n = V. Töröljük az elsőfokú csúcsok közül a legkisebb sorszámút, és írjuk fel ennek szomszédjának a számát. A kapott fára (Miért fa?) folytassuk az eljárást, amíg már csak egy csúcs marad, mégpedig az n címkéjű (Miért?). A sorozat n 1-edik tagja szükségképpen n, ezért ez elhagyható. A kapott n 2 hosszú sorozat az F fa Prüfer-kódja. Példa 1 2 A Prüfer-kód: (9)

43 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 35. Prüfer-kód Algoritmus (Prüfer-kódból fa készítése) Legyen a Prüfer-kód p 1, p 2,..., p n 2, p n 1 = n. Legyen a kódban nem szereplő legkisebb sorszám s 1. Ha s i -t már meghatároztuk, akkor legyen s i+1 az a legkisebb sorszám, amely különbözik az alábbiaktól: s 1, s 2,..., s i ; p i+1, p i+2,..., p n 2, p n 1 = n. Ilyennek mindig lennie kell, mert n lehetőségből legfeljebb n 1 számút nem engedünk meg. Az n csúcsot tartalmazó üres gráfból kiindulva minden i-re (1 i n 1) megrajzoljuk az s i és p i csúcsokra illeszkedő élt.

44 Gráfelmélet Diszkrét matematika 1. estis képzés tavasz 36. Prüfer-kód ; ; ; ; ; ; ;9 Példa

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Fülöp Ágnes ELTE IK Komputeralgebra Tanszék 2016. december 2. 2015-16 őszi félév Előadás: 1. előadás: 1-37 (szeptember 12.) 2. előadás: 38-65 (szeptember 19.) 3. előadás: 66-103

Részletesebben

Síkbarajzolható gráfok, duális gráf

Síkbarajzolható gráfok, duális gráf Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve

Részletesebben

DISZKRÉT MATEMATIKA 2

DISZKRÉT MATEMATIKA 2 DISZKRÉT MATEMATIKA 2 KÉRDÉSEK Készítette: Molnár Krisztián (MOKOABI.ELTE) Aktualizálva: 2011. június 28. (1.) Mely tétel alapján számolhatjuk ki véges sok egész szám legnagyobb közös osztóját prímfelbontás

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

1. Gráfok alapfogalmai

1. Gráfok alapfogalmai 1. Gráfok alapfogalmai Definiáld az irányítatlan gráf fogalmát! Definiáld az illeszkedik és a végpontja fogalmakat! Definiáld az illeszkedési relációt! Definiáld a véges/végtelen gráf fogalmát! Definiáld

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető. Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

SzA X/XI. gyakorlat, november 14/19.

SzA X/XI. gyakorlat, november 14/19. SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelmélet jegyzet 2. előadás

Gráfelmélet jegyzet 2. előadás Gráfelmélet jegyzet 2. előadás Készítette: Kovács Ede . Fák Tétel. : A következők ekvivalensek a T gráfra: (i) T összefüggő, e E. T e már nem összefüggő (ii) T összefüggő és körmentes. (iii) x, y V T!

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott . Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges

Részletesebben

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736) 1. Gráfmodellek 1.1 Königsbergi hidak (Euler, 1736) Probléma: Königsberg mellett volt egy Pregel nevû folyó, két szigettel. A folyó két partját és a szigeteket hét híd kötötte össze. Bejárhatjuk-e volt

Részletesebben

III. Gráfok. 1. Irányítatlan gráfok:

III. Gráfok. 1. Irányítatlan gráfok: III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás

Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás Gráfok színezése Diszkrét matematika 2009/10 sz, 9. el adás A jegyzetet készítette: Szabó Tamás 2009. november 9. 1. Alapfogalmak Egy gráf csúcsait vagy éleit bizonyos esetekben szeretnénk különböz osztályokba

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula)

Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula) Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula) Kombinatorika 11. előadás SZTE Bolyai Intézet Szeged, 2016. április 26. 11. ea. Síkgráfok 1/9 Definíció. Egy gráf síkgráf, ha lerajzolható úgy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Gráfelméleti feladatok programozóknak

Gráfelméleti feladatok programozóknak Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

Diszkrét Matematika 2 (C)

Diszkrét Matematika 2 (C) Diszkrét Matematika 2 (C) 2014-15 / őszi félév Jegyzet Az esetleges elírásokért, hibákért felelősséget nem vállalok! Javításokat, javaslatokat a következő címre küldhetsz: blackhawk1990@gmail.com Diszkrét

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Adatszerkezetek II. 2. előadás

Adatszerkezetek II. 2. előadás Adatszerkezetek II. 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17

Gráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17 Gráfok 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra bejárása nem

Részletesebben

Ramsey-féle problémák

Ramsey-féle problémák FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.

Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16. Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak KOMBINATORIKA GYAKORLAT osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Gyakorlatvezetõ: Hajnal Péter 2014. 1. Feladat. Az alábbiakban egy-egy egyszerű gráfot definiálunk. Rajzoljuk

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.

definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként. Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben