Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula."

Átírás

1 Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk belőlük, és esetleg utáa redezzük sorba Mide ilye feladatál fel lehet tei a következő kérdéseket Sorba kell-e redezi az összes elemet? Permutáció) Ki kell-e választai közülük valameyit? Variáció vagy kombiáció) Az elemek külöbözőek, vagy azoosak is vaak közöttük? Ismétlés élküli vagy ismétléses) A kiválasztás utá számít a sorred vagy em? Variáció vagy kombiáció) A következőkbe a feti felsorolás zárójelbe lévő fogalmait fogjuk potosa defiiáli 11 Variáció 1 Defiíció Egy elemű halmaz elemeiből képezhető k-tagú ismétlődést megegedő) sorozatot az elem k-adosztályú vagy k-tagú) ismétléses variációjáak evezzük Példa A H = {1,, 3, 7, 8, 10} halmazak az 1, 8, 7, 1, 10 sorozat egy 5-öd osztályú ismétléses variációja 3 Defiíció Egy elemű halmaz elemiből képezhető k-tagú ismétlés élküli sorozatot az elem k-adosztályú vagy k-tagú) ismétlés élküli variációjáak, vagy csak egyszerűe variációjáak evezzük Ilye csak akkor létezik, ha k 4 Példa A H = {1,, 3, 7, 8, 10} halmazak a 3, 10, 7, 1, sorozat egy 5-öd osztályú variációja 5 Megjegyzés A feti defiíciók léyege, hogy elemből kiválasztuk k darabot és utáa sorba redezzük Ismétléses variációál darab külöböző elemből akkor is ki tuduk választai k darabot, ha esetleg k > Nyilvá az ismétlés élküli esetbe ez em tehető meg, mert darab külöböző elemből legfeljebb külöböző darabot választhatuk ki Felmerül a kérdés, hogy háy külöböző variációja és ismétléses variációja va egy elemű halmazak Azaz külöböző elemből kiválasztva k darabot, majd ezeket sorba redezve háy külöböző sorozatot kaphatuk Erre ad választ a következő két tétel 1

2 6 Tétel Legye, k N Ekkor elem k-adosztályú ismétléses variációiak száma k 7 Tétel Legye, k N és k Ekkor elem k-adosztályú variációiak száma 1) ) k + 1) 8 Megjegyzés Az előző tételbe szereplő képletet úgy célszerű megjegyezi, hogy egy egyesével csökkeő k-téyezős szorzatot képzük 9 Példa Háyféleképpe tölthetük ki egy totószelvéyt? A magyar totó 14 meccs végeredméyére lehet fogadi, és midegyik meccs kimeetele háromféle lehet: 1, 0 vagy x) A {0, 1, x} halmaz elemeiből kell képezük egy hosszú sorozatot Nyilvá két meccs eredméye lehet ugyaaz is, ezért a feti, ismétléses variációra voatkozó képletet kell haszáluk = 3 és k = 14 adatokkal Így féleképpe tölthetük ki egy totószelvéyt 10 Példa Egy taácsba 10 ember ül, és ki akarják maguk között sorsoli, hogy ki legye az igazgató és az igazgató helyettese Háyféleképpe végződhet a sorsolás? Ismétlés élküli variációról va szó = 10 és k = paraméterekkel A sorred valóba számít a kisorsoltak között, mert em midegy, ki lesz az igazgató, és ki lesz a helyettese) Tehát a sorsolás 10 9, azaz 90-féleképpe végződhet? 11 Példa Háy külöböző égybetűs szó képezhető a SAJTÓ szó betűiből? Az 5 külöböző betű közül kell kiválasztai 4-et a feladat em modja, hogy em ismétlődhetek), és ezeket kell sorbaredezi, tehát ismétléses variációt kell alkalmazi = 5 és k = 4 paraméterekkel Így 5 4 szó képezhető 1 Példa Egy kerékpárlakato egy 4 számjegyből álló kombiáció yitja és zárja a zárszerkezetet Elfelejtettük ezt a kombiációt Legrosszabb esetbe háy kombiációt kell végigpróbáli? Ismétléses variáció = 10 és k = 4 paraméterekkel, mivel a 10 külöböző számjegyből kell 4-et kiválasztai, és azokból sorozatot képezi A lakat az ismétlődő számjegyeket em tiltja) Így 10 4 kombiáció lehetséges 13 Példa Egy bajokságo 8 csapat idult Háyféle sorred alakulhat ki a dobogó, ha sehol sem lehet holtversey, és mide csapat csak egy darab helyezést érhet el Ismétlés élküli variációt kell alkalmazi, mert a 8 csapatból kell kiválasztai 3-at, őket sorba redezi, mert a dobogó számít a sorred, és az ismétlést a feladat szövege tiltja Összese sorred lehetséges 1 Permutáció 14 Defiíció Adott külöböző elem eseté azokak egy sorba redezését az elem egy ismétlés élküli) permutációjáak evezzük 15 Példa A H = {1,, 3, 7, 8, 10} halmazak a 8, 1,, 7, 10, 3 sorozat egy permutációja

3 16 Megjegyzés Középiskolába általába a permutációkat elkülöítve próbálják taítai a variációktól, pedig észre kell veük, hogy a permutáció egy olya variáció, ahol egy elemű halmazból elemet választuk ki, és ezeket rakjuk sorba Tehát olya, mit az ismétlés élküli variáció k = paraméterekkel A permutációkak is létezik ismétléses változata, azoba eek defiiálásához vissza kell emlékezük a redszer fogalmára A redszer a halmazhoz hasoló fogalom, ayi a külöbség, hogy a redszerbe egy elemet többször is felsorolhatuk Például az 1, 1, 3, 4, 6, 6, 7 egy 7-elemű redszer A redszerek elemeit szádékosa em tesszük kapcsos zárójelbe, mert azt halmazok eseté haszáljuk, és a redszer em halmaz 17 Defiíció Egy elemű redszer elemeiek sorozatba rakását az elem ismétléses permutációjáak evezzük 18 Példa A 3, 3, 4, 4, 4, 5, 5 redszerek a 4, 3, 5, 4, 5, 3, 4 sorozat egy ismétléses permutációja 19 Tétel Legye N 0 Ekkor elem ismétlés élküli permutációiak száma 1) ) 1 =! ejtsd: faktoriális) Megállapodás szerit 0! = 1! = 1 0 Tétel Tekitsük egy elemű redszert, melybe r külöböző elem va, és mide külöböző elemből k 1, k,, k r darab va a redszerbe Tehát = k 1 + k + + k r Ekkor az elem ismétléses permutációiak száma! k 1! k r! A k i számokat az i-edik elem multiplicitásáak evezzük, ez mutatja, hogy az i-edik elemek háy példáya va a redszerbe 1 Példa Háyféleképpe tuduk 6 külöböző köyvet sorba redezi a köyvespolco? A válasz 6! = 70 Példa Háy külöböző 5-betűs szó készíthető az ABLAK szó betűiből, midegyiket felhaszálva? Azaz 5 elemet kell sorba redezi, ám az elemek között vaak egyformák Ekkor ismétléses permutációt haszáluk, a válasz 5!! = = 60 3 Példa Háyféleképpe lehet egy 5 lapos póker-paklit megkeveri? A válasz 5!, ami mellékese egy 68 jegyű szám 4 Példa Háyféle külöböző sorredje va a MATEMATIKA szó betűiek? Azaz 10 elemet kell sorba redezi, ám az elemek között vaak egyformák Ekkor ismétléses permutációt haszáluk, a válasz 10!! 3!! = Példa Háy 10 jegyű szám készíthető 6 darab kettes, darab hetes és darab hatos számjegyből, ha midegyiket fel akarjuk haszáli? Ismétléses permutációról va szó, ahol a redszer 10 elemű, azaz = 10 Továbbá három darab külöböző elem va a redszerbe:, 7, 6 Az ezekhez tartozó multiplicitások: k = 6, k 7 = és k 6 = Tehát a válasz a kérdésre: 10! 6!!! 3

4 13 Kombiáció 6 Defiíció Egy elemű halmaz k elemű részhalmazait az elem k-adosztályú ismétlés élküli kombiációiak evezzük 7 Példa A H = {1,, 3, 7, 8, 10} halmazak a {, 7, 8} halmaz egy 3-ad osztályú kombiációja 8 Megjegyzés Részhalmazok felsorolásáál az elemek sorredje em számít, mert halmazelméleti szempotból {1,, 3} = {3, 1, } Vegyük észre, hogy egy -elemű halmaz k-elemű részhalmazáak megadása azt jeleti, hogy elemből kiválasztuk k darabot, és a feti megjegyzés alapjá eze kiválasztásál az elemek sorredje em számít 9 Defiíció Egy elemű halmaz k elemű részredszereit az elem k-adosztályú ismétléses kombiációiak evezzük 30 Példa A H = {1,, 3, 7, 8, 10} halmazak a 3, 7, 3, 1, 10, 1, 3 redszer egy 7-ed osztályú ismétléses kombiációja 31 Megjegyzés Az előző defiícióba a részredszer képzése azt jeleti, hogy egy elemet többször is kiválaszthatuk a halmazból Az elemek sorredje most sem számít, mivel a redszerbe em számít az elemek sorredje 3 Tétel Legye k Ekkor elem k-adosztályú ismétlés élküli kombiációiak száma )! 1) k + 1) = = k k)! k 1 33 Defiíció Az előző tételbe szereplő k) kifejezést biomiális együtthatóak evezzük 34 Tétel Az elem k-adosztályú ismétléses kombiációiak száma ) + k 1 k 35 Példa Háyféleképpe tudjuk kitöltei az ötöslottót? Magyarországo 90 számból 5-öt kell megtippeli) Mivel a sorsolás utá a megjelölt számok sorredje teljese irrelevás, így a 90 számból 5 darab kiválasztásáál a sorred em számít Tehát ) féleképpe tölthető ki egy ötöslottószelvéy 36 Példa Háyféleképpe osztható szét forityi jutalom 3 dolgozó között, ha mideki csak rel osztható összeget kaphat? Természetese az is megegedett, hogy valaki em kap semmit) Ismétléses kombiációról va szó, mert mide tízezresre ki kell választai egy embert a három közül Tehát 3-ból választuk 10 helyre, és egy-egy embert yilvá több ezreshez is ki kell választauk, így a megoldás ) = 1 10) 4

5 37 Példa Háy olya domió va, amelyek midkét felé a potok száma 0-tól 6-ig terjed? Így 7 elemből kell kiválasztai -t, de egy elemet midkét oldalra is kiválaszthatuk, azaz ismétléses kombiációt kell haszáli Így ) 7+ 1 = 8 ) = 8 domió va, ami a feladat feltételéek eleget tesz Biomiális tétel Emlékezzük vissza a középiskolába is tault a + b) = a + ab + b és a + b) 3 = a 3 + 3a b + 3ab + b 3 azoosságokra Mit ahogy az a következő tételből látható lesz, ez a -es és 3-as kitevő helyett általáosítható tetszőlegese agy egész kitevőre 38 Tétel Biomiális tétel) Ha N, továbbá a és b valós számok, vagy valós határozatlaok, akkor ) ) ) ) ) a + b) = a + a 1 b + a b + + ab 1 + b, vagy rövidebbe a + b) = i=0 ) a i b i i Azért, hogy lássuk, a biomiális tétel hogya kapcsolódik a kombiatorikai problémákhoz, vizsgáljuk meg a jobboldali összegebe fellépő általáos i) a i b i tagot Képzeljük el, hogy az darab a + b) téyezőt elkezdjük összeszorozi egymással egyesével Azokat a tagokat számoljuk, ahol i darab b-t, és i darab a-t szorzuk össze Háyféleképpe tehettük ezt meg? Potosa ayiféleképpe, aháyféleképpe az darab a + b) téyezőből ki tudjuk választai az i darab b-t Ez pedig potosa i) A biomiális együtthatókból felépíthető Pascal-háromszögből azoal látszódak a biomiális együtthatók legfotosabb tulajdoságai Az alábbi ábrá látható a Pascal-háromszög első éháy sora, melybe az k) értékek vaak feltütetve = 0, k = 0 0 = 1, k = 0, 1 1 ) 0) =, k = 0, 1, ) ) 1) = 3, k = 0, 1,, 3 3 ) 3 ) 3 ) ) = 4, k = 0, 1,, 3, 4 4 ) 4 ) 4 ) 4 ) 3) ) = 5, k = 0, 1,, 3, 4, 5 5 ) ) A biomiális együttható és a Pascal-háromszög legfotosabb tulajdoságait az alábbi tétel foglalja össze 5

6 39 Tétel Legye k, N 0 és k Ekkor érvéyesek az alábbi összefüggések 1 0) = ) = 1 A háromszög két oldalá 1-esek állak) ) k = k) A háromszög tegelyese szimmetrikus) 3 Ha 0 < k <, akkor ) k = 1 ) k ) k A háromszögbe bármelyik elem a felette lévő két elem összege, feltéve, hogy va felette két elem) 4 Bármely N 0 -ra i=0 i) = A Pascal-háromszögbe az i-edik sor összege i 1 ) Természetese adódik a kérdés, hogy a kitevő általáosítása utá, tudjuk-e tovább általáosítai a problémát, modjuk a változók számát tekitve A választ az alábbi tétel adja meg 40 Tétel Poliomiális tétel) Ha N, továbbá a 1,, a k valós számok, vagy valós határozatlaok, akkor 3 Szitaformula a a k ) = i 1,,i k N 0 i 1 ++i k =! i 1! i k! ai 1 1 a i a i k k Köye megfigyelhető a halmazokra voatkozó alábbi állítás 41 Állítás Ha A, B véges halmazok, akkor A B = A + B A B A feti állítás szemléletese köye igazolható, ugyais az A B halmazba azok az elemek vaak, amik legalább az egyikbe bee vaak Így megszámoljuk azokat, amelyek bee vaak A-ba, illetve külö, amik bee vaak B-be, de mivel a metszetüket kétszer számoltuk, így a metszet elemszámát egyszer le kell voi, hogy mide elemet csak egyszer számoljuk Természetese a feti állítás kiterjeszthető több halmazra is 4 Tétel Legyeek A 1, A véges halmazok Ekkor A 1 A = 1) r 1 r=1 {i 1,i r} {1,,} {i 1,,i r} =r A i1 A ir A feti tétel első ráézésre egyáltalá em tűik kéyelmesek Segíthet, ha megértjük, mi törtéik a képletbe Va darab véges halmazuk, és keressük az uiójuk elemszámát Az r = 1 eseté összeadjuk a halmazok elemszámát Így éháy elemet kétszer számoltuk ezért le kell vouk belőle bizoyos elemszámokat, például r = eseté a kettős metszetek elemszámát Ezutá hozzáadjuk a hármas metszetek elemszámát, levojuk a égyes metszetek elemszámát, és ezt folytatjuk, míg el em jutuk az r = esethez, ami az összes halmazak a metszete A feti tétel következméye a szitaformula 6

7 43 Tétel Szitaformula) Legyeek A 1, A halmazok a véges U uiverzum részhalmazai Ekkor A1 A = U + 1) r A i1 A ir r=1 {i 1,i r} {1,,} {i 1,,i r} =r A szitaformula a 4 Tétel egyees következméye, ugyais A1 A = U A 1 A 44 Példa A szegedi tudomáyegyetem matematika taszékcsoportja 100 matematika, 00 biológia és 400 iformatika szakos hallgatót oktat Akik egyszerre matematika és biológia szakosak, azokak a száma 1, a matematika és iformatika szakosoké 44, illetve a biológiaiformatika szakos hallgatók száma 6 Négy fő végzi egyszerre mid a három szakot Háy hallgatót oktat a matematika taszékcsoport? Jelölje I, B, M redre az iformatika, biológia és matematika szakos hallgatók halmazát Ekkor a a 4 Tétel szerit I B M = I + B + M I B I M B M + I B M = = 64 7

KOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen,

KOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen, KOMBINATORIKA 1 Készítette: Bordi Istvá Tóth Árpád Gimázium Debrece, boi@tagdebr.suliet.hu Kérdések: A KOMBINATORIKA TÁRGYA 1. elemet háyféleképpe lehet egymás mellé tei (permutáció). 2. elemből háyféleképpe

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Elemek egy lehetséges sorbarendezése az elemek egy permutációja. n elem összes lehetséges sorbarendezéseinek

Elemek egy lehetséges sorbarendezése az elemek egy permutációja. n elem összes lehetséges sorbarendezéseinek Kombiatorika! = 1 3 1 ejtsd: faktoriális 0! = 1 1! = 1! = 1 = 5! = 1 3 4 5 = 10 stb! 3! = 1 3 4 1 3 4 1 Vigyázat! Pl: 3! 3! = 1 1 Ismétlés élküli permutáció Elemek egy lehetséges sorbaredezése az elemek

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

Kombinatorika. A permutációk számának megállapítása: -a helyek sorszáma: I. II. III.

Kombinatorika. A permutációk számának megállapítása: -a helyek sorszáma: I. II. III. ombiatorika A kombiatorikába csak redezett halmazokkal foglalkozuk. Azt modjuk, hogy az A ( a, a,..., a ) halmaz egy redezett halmaz, ha az elemek bármely sorredcseréjére új halmazt kapuk (úgy modjuk:

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. 9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Kombinatorika elemei. dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék

Kombinatorika elemei. dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék Kombiatorika elemei dr. Szalkai Istvá Pao Egyetem, Veszprém, Matematika Taszék szalkai@almos.ui-pao.hu 2013.10.26. 2 2. fejezet Kombiatorika elemei Véges halmazok, a kombiatorika alapelvei, általáos elemi

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

EGY ÚJ SZÁMHÁROMSZÖG A

EGY ÚJ SZÁMHÁROMSZÖG A BELVÁROSI ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM BÉKÉSCSABA EGY ÚJ SZÁMHÁROMSZÖG A KOMBINATORIKÁBAN 0 3 4 5 6 7 8 9 0 0 0 0 3 3 0 4 9 8 6 0 5 44 45 0 0 0 6 65 64 35 40 5 0 7 854 855 94 35 70 0 8 4833 483 740 464

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Kombinatorika feladatok

Kombinatorika feladatok Kombiatorika feladatok 1. Tüdérországba csak 2 magáhagzót és 2 mássalhagzót haszálak. A szavakba legalább 1 mássalhagzó és legalább 1 magáhagzó va. Háy külöböző hárombetűs szó létezik Tüdérországba, ha

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Eötvös Lorád Tudomáyegyetem, Természettudomáyi Kar Matematikataítási és Módszertai Közpot ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Készítette: Varga Viktória Matematika Bsc taári szakiráy Témavezető: Fried

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 05. május 5. EMELT SZINT I. ) Oldja meg a valós számok halmazá az alábbi egyeleteket! a) si x cos x (6 pot) b) x x x (7 pot) a) cos x si x helyettesítése. Nullára redezve: si x si

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

A figurális számokról (II.)

A figurális számokról (II.) A figurális számokról (II.) Tuzso Zoltá, Székelyudvarhely A figurális számok jelölése em egységes, ugyais mide yelve más-más féle képpe jelölik, legtöbb esetbe a megevez szó els betjével. A továbbiakba

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudomáyegyetem Természettudomáyi és Iformatikai Kar horvath@if.u-szeged.hu. Mohó algoritmusok A mohó stratégia elemi 1. Fogalmazzuk meg az optimalizációs feladatot

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Kombinatorika és Gráfelmélet

Kombinatorika és Gráfelmélet Kombiatorika és Gráfelmélet Ez az előadásvázlat remélhetőe segíti a vizsgára való felkészülést, de em pótolja az előadást. Vizsgá lehetek olya kérdések, amelyekről ez a jegyzet em szól. Nyíregyháza, 2008.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

b g c bg bgh e e feltételek teljesednek. bvg-vel jelöljük. Vg részgráfhiba! A könyvjelz nem létezik.jának nevezzük a b g

b g c bg bgh e e feltételek teljesednek. bvg-vel jelöljük. Vg részgráfhiba! A könyvjelz nem létezik.jának nevezzük a b g Gráfelméleti alapfogalmak Mide józa ítélet ember elôtt ismeretes, hogy éháy év óta már elkezdôdött az írás magyar yelve is, amelyet ekük Cicero és mide mveltebb emzet példája alapjá súlyos okokból apról-apra

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs

Részletesebben