VII. A határozatlan esetek kiküszöbölése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VII. A határozatlan esetek kiküszöbölése"

Átírás

1 A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely más értékkel és a közelítés hibájára (potosságára a függvéy deriváltjából yerük valami iformációt (Lokálisa a függvéy ívét a hozzá tartozó húrral helyettesítjük A feladat természetétől függőe ez a közelítés lehet, hogy célravezető de lehet, hogy em Próbáljuk f ( megvizsgáli, hogy a alakú, határozatla esethez vezető határérték kiszámításáál mi törtéik ha az f és g értékeit a Lagrage vagy Cauchy tétel segítségével g( közelítjük Ha f, g folytoosak és deriválhatók az egy kis köryezetébe, és f ( g (, akkor a Lagrage tétel alapjá létezik olya c, amelyre:, f ( f ( f ( ( ( f c f c g ( g ( g ( ( c ( c Mivel a jobb oldalo levő kifejezésbe eseté c, modhatjuk, hogy ha létezek a f ( l és ( l határértékek és l, akkor f ( l Ha a Cauchy tételt haszáljuk a tört becslésére, em kell a két deriváltak külö-külö létezze a határértéke, elégséges a tört határértékéek létezése Így a g ( l következő tételhez jutuk: Tétel (A l Hospital tétel határozatlaság eseté Legye f, g :[ a, b] (a, b, a < b két valós függvéy és [, a b] Ha az f és g függvéy folytoos -ba, az f és g függvéy deriválható a [, b]\ { } V a halmazo (ahol V V (, f ( g( és 4 ( az egy köryezetébe, f ( 5 létezik a határérték, ( f ( f ( f ( akkor létezik a határérték is és g( g( ( Bizoyítás A Cauchy tételt alkalmazzuk az [ ε, + ε] itervallumo, ahol ε -t úgy választjuk meg, hogy az előbbi itervallum bee legye a feltételekbe szereplő köryezetek midegyikébe f ( f ( ( ( f c f ( c g( g( ( ( c ( c

2 4 A határozatla esetek kiküszöbölése Mivel eseté c, az előbbi egyelőség jobb oldalá levő kifejezés f ( határértéke eseté Így a bal oldalak is va határértéke és ez is ( f ( egyelő -al ( Előfordul, hogy a határértékbe megjeleő függvéyek em értelmezettek az potba, vagy a határértékük em egyelő a behelyettesítési értékükkel Ebbe az esetbe is haszálhatjuk az előbbi godolatmeetet, mert kicserélhetjük a behelyettesítési értéket Erre az esetre voatkozik a következő tétel: Tétel (A l Hospital tétel határozatla eset eseté Legye f, g :[ a, b] ( a, b, a < b két valós függvéy és [, a b] Ha az f és g függvéy deriválható a [, b]\ { }, g( és ( V V ( f ( V a halmazo (ahol g em ulla, ha az egy köryezetébe levő -tól külöböző pot, f ( 4 létezik a határérték, ( f ( f ( f ( akkor létezik a határérték is és g( g( (,, Bizoyítás Tekitjük az f( és g f (, ( g (, függvéyeket Ezekre alkalmazható az előbbi tétel, tehát a következtetés is igaz Megjegyzés Az előbbi tételek esetébe az potba a függvéyek em kellett deriválhatók legyeek Ha a függvéyek az -ba is deriválhatók, akkor az f ( g( egyelőségek alapjá f ( f ( f ( g ( g ( g( f ( és így eseté a jobb oldal határértéke ( ( eseté, tehát a bal ( f ( oldalak is va határértéke és egyelő -val Érvéyes tehát a következő tétel: ( Tétel (Cauchy Ha I egy itervallum, I és f, g : I két függvéy a következő tulajdoságokkal:

3 A határozatla esetek kiküszöbölése 4 f ( g( f és g deriválható az -ba és (, akkor létezik -ak olya V köryezete, amelybe g (, V \ { } és f ( f ( g ( ( Világos, hogy va olya eset, amikor mid a két tétel alkalmazható és va olya, amikor csak az egyik (sőt olya is, amikor egyik sem Példák Számítsuk ki -et! l Tekitjük az f, g :,, f ( és g( l, függvéyeket Ezek a függvéyek folytoosak is és deriválhatók is az értelmezési tartomáyuko, f ( f ( g( és, tehát a l Hospital ( tétel (vagy a Cauchy tétel értelmébe l Megjegyzés Ebbe az esetbe a határérték a l Hospital szabály élkül is kiszámítható a következő átalakítások segítségével: t ( + ( + l l t l( t + e Számítsuk ki -et! si Tekitjük az f, g :,, f ( e és g( si függvéyeket Ezek a függvéyek folytoosak és deriválhatók az értelmezési tartomáyuko, ( e f ( továbbá f ( g( és f ( cos ( A g e l Hospital szabály (vagy a Cauchy tétel alapjá si Megjegyzés A vizsgált határérték egyszerűe visszavezethető alaphatárértékekre: e e si si e + e Számítsuk ki -et! cos Megoldás Tekitjük az f, g :(,, ( f e + e és g( cos függvéyeket Ezek a függvéyek folytoosak és deriválhatók az értelmezési f ( e e tartomáyuko és Mivel ez a határérték is ( si alakú

4 4 A határozatla esetek kiküszöbölése határozatla eset, megismételjük a godolatmeetet Az f és deriválhatók az ( f ( f ( e + e értelmezési tartomáyo, és ( co ( ( s, e e e + e tehát li m és így si cos Megjegyzés Ezt a határértéket is köye kiszámíthatjuk az elemi határértékek e + e ( e segítségével: e cos e si e si si 4 Számítsuk ki a határértéket! Megoldás Az fg, :(,, f ( si és g( függvéyek folytoosak és deriválhatók az értelmezési tartomáyuko és si si f ( cos g ( 6 6 A l Hospital szabály alapjá (itt em alkalmazható a Cauchy tétel si 6 5 Az + si,, sorozat eseté számítsuk ki a, Kiszámítjuk a kért határérték égyzetét a következő átalakítások segítségével: A Cesaro-Stolz kritérium alapjá elégséges a határértéket kiszámítai Eek a kiszámításához a egyelőség alapjá elégséges az si f( függvéy határértékét kiszámítai -ba si 4 si si si si si 6 si si + határértéket Megoldás A sorozat szigorúa csökkeő és pozitív tagú, tehát koverges Ha a rekurzióba határértékre térük, az l sil egyelőséghez jutuk (ahol l az ( sorozat határértéke, tehát az ( sorozat koverges és határértéke

5 A határozatla esetek kiküszöbölése 4 Ebből következik, hogy 6 Számítsuk ki a f ( g ( e, és g( c os, \ határértéket, ha f, g :,, f ( tg, \ Megoldás Az f és a g függvéy em folytoos és em is deriválható az pot egyetle köryezetébe sem, de midkét függvéy folytoos és deriválható az potba és f ( g( valamit f ( és g ( Ebből f ( f ( következik, hogy a Cauchy tétel alkalmazható és g ( ( cos 7 Számítsd ki a határértéket cos Megoldás Mivel az f : \ { }, f ( cos függvéy deriváltja f ( cos si és cos si f (, ahol g( cos, ( si f ( az tört határértéke em létezik -ba Emiatt a l Hospital szabály em ( alkalmazható a határérték kiszámítására Az elemi határértékek segítségével viszot: f ( cos g ( cos Megjegyzés Az előbbi példákból látható, hogy a tételek feltételeit érdemes elleőrizi, mert ellekező esetbe hibás eredméyhez juthatuk, vagy hibás godolatmeet alapjá jutuk a helyes eredméyhez (esetleg em a megfelelő tételt alkalmazzuk Az előbbi példákból az is látszik, hogy érdemes az elemi módszereket midig összekombiáli a l Hospital szabállyal, a számolások egyszerűsítése céljából A l Hospital szabály emcsak a alakú határozatla esetek kiküszöbölésére haszálható, hisz mide határozatla eset ilye alakba írható A alakú esetekre voatkozik a következő tétel Tétel (l Hospital Ha a, b, a < b, (, a b és az f, g :( a, b függvéyek teljesítik a következő feltételeket: f és g deriválható függvéyek (, (, a b

6 44 A határozatla esetek kiküszöbölése g (, f ( 4 létezik a határérték, ( f ( f ( f ( akkor létezik a határérték is és g( g( ( f ( Bizoyítás Jelöljük a határértéket l -el Mivel g( és a ( a (, ezért g( és g( szigorúa mooto Legye (, (, a b és egy tetszőleges sorozat Cauchy tétel alapjá létezik c a, + ( úgy, hogy f ( f ( f + ( c g( g( + g ( c A a egyelőségből következik, hogy c a és így a feltétel alapjá f ( c létezik a határérték és egyelő l -el Ebből következik, hogy ( c ( ( f f + f ( l és így a Cézaro-Stolz tétel alapjá l Sikerült g( g( g( tehát igazoli, hogy f ( f ( g( ( Megjegyzés A l Hospital szabály akkor is alkalmazható, ha em valós szám, haem ± A továbbiakba l Hospital szabály (tétel éve fogjuk emlegeti l Példák Számítsuk ki a határértéket! Megoldás Az f :(,, f ( l és g :(,, g( függvéyekre f ( g( és ezek a függvéyek deriválhatók, tehát ( teljesülek a l Hospital szabály feltételei f, ezért létezik a ( l l határérték és l Megjegyzés Hasoló meggodolások alapjá, ha a > és a l, ha P egy valós együtthatójú poliom P ( Számítsuk ki a határértéket e

7 A határozatla esetek kiküszöbölése 45 Megoldás Az f ( deriválhatók és e Számítsuk ki a és g( e függvéyek az halmazo folytoosak és f (, tehát a l Hospital szabály alapjá ( e e Megoldás Az f ( halmazá és f ( ( határértéket és g ismételt alkalmazása alapjá, tehát ( e függvéyek deriválhatók a valós számok (az előbbi példa vagy a l Hospital szabály e e P ( Megjegyzés Belátható, hogy, ha P [ X ] e 7 A határozatla eset Ha a, b, a < b, ( a b f, g :( a, b deriválhatók, f ( és g( akkor a, f alakra redukálható, mivelg( : ( g( határozatla eset ( alakú f ( f ( g(, ahol f ( a a g( g( Hasoló átalakítást végezhetük így is: g( f ( g(, ekkor a -re vezethetjük vissza f ( Példák Számítsuk ki tg -et! vagy Megoldás Ez a határérték alakú, tehát a következő átalakítást vegezzük: ( ( si, ctg ( ctg tehát tg ( Számítsuk ki tg l si -et! > Megoldás Ez a határérték is alakú határozatla eset

8 46 A határozatla esetek kiküszöbölése cos l si ( l si ( tg l si és si, ctg > > ( ctg > > ctg si tehát tg l si > ( 7 A határozatla eset Ha a határérték [ f ( g( ] alakú, ahol f ( és li m (, a a a akkor feltételezhetjük, hogy f ( és g(, ezért írhatjuk, hogy f ( g( f ( f ( g( g( f ( vagy f ( g( f ( g( Így a ( f ( g( f ( g( a a f ( g( határérték alakú a határozatla esetté alakul A második esetbe a ( f ( g( határérték g kiszámítása előtt a ( f ( függvéy határértékét kell kiszámítai Ez alakú határozatla eset Példák Számítsuk ki a l határértéket! l Megoldás Ez alakú határozatlaság ez l ( l alakú lesz és erre alkalmazzuk a l Hospital szabályt: l l l, l l + + l + vagyis l Számítsuk ki a e határértéket! > Megoldás Ez is alakú határozatla eset e e, ahol li m e és ezért e > > Ha a, b, a < b és f, g :( a, b, ahol f ( > mide (, a b 74 A,, határozatla esetek eseté és f ( g ( vagy f ( és g ( vagy

9 A határozatla esetek kiküszöbölése 47 f ( és g ( g, akkor a [ ( ] ( f kiszámításáál a,, határozatla esetek jeleek meg Mide esetbe a esetre redukálódik, ha az [ ( ] g ( g ( l f f e ( egyelőséget haszáljuk fel Potosabba, ha létezik g ( l f a Példák ( tg Számítsuk ki -et! > [ ] ( akkor létezik f ( g alakú határozatla eset si > > si Számítsuk ki a l határértéket! > ( g ( l és [ f ( a ] g f ( e l Megoldás Ez alakú határozatla eset li m( tg l, és ez ctg Megoldás Ez > > tg >, tehát e e > alakú határozatla eset l( l l l > > l > l l > l e e > Következik, hogy Számítsuk ki a ( si határértéket! tg Megoldás Ez alakú határozatla eset tg l l si si tg l si ( tg e ctg, tehát li m si Gyakorlatok Számítsd ki az alábbi határértékeket (l Hospital-szabály: si tg tg a a a b c li m ( a > si tg cos( si cos l d li m e f ( ε > l ε ctg g (a >, > h li m + a e ( e + ( e cos i j si

10 48 A határozatla esetek kiküszöbölése l( sia k li m l l + l ( si b >, a, b > cos m si + si e si cos cos ( + e cos cos o a, a > p si > + + q si Vizsgáld meg, hogy a következő példákra alkalmazható-e a l Hospital szabály: si a e ( cos + si + e si b si + e ( cos + si si + + si cos c d + si ( si cos si + e Számítsd ki a következő határértékeket: ε a [ l l( ] b li m l ( ε > c li m < > 4 > d li m e ( tg tg f li m l g ctg h tg a e + e li m si i + a + j e, k + l l e e + m ( a 4 Bizoyítsd be, hogy ha az f : függvéy végteleszer deriválható, akkor a ( f ( f ( ( ( ( f ( P ( f (!!! f ( P ( poliomra (A P poliomot evezzük az f függvéyhez ( az potba redelt -ed redű Taylor féle poliomak 5 Bizoyítsd be, hogy ha az f : végteleszer deriválható függvéyre a ( P ( sorozat koverges, akkor a határértéke f ( Írd fel a következő függvéyek -ed redű Taylor poliomját: a f ( e b f ( si c f ( cos a d f ( ( +, a e f ( l( + >

11 A határozatla esetek kiküszöbölése 49 Érettségire és felvételire előkészítő feladatok Bizoyítsd be, hogy az f :(,, f ( ( + függvéy szigorúa csökkeő (Felvételi, e Adottak az f, g :, f (, g ( e + függvéyek + e Alkalmazható-e a Lagrage tétel a h :, h ( ( g f( függvéyre? Ha ige, számítsd ki a c értékét! (Felvételi, 99 m,, + + Az f :,, f ( függvéy eseté jelöljük p , (, S -sel az m,,p azo értékeiek összegét, amelyekre f teljesíti a Rolle tétel feltételeit és C -vel az így kapott közbeeső c értékek összegét Számítsd ki az S és az A értékét! (Felvételi, 99 f, 4 Számítsd ki az : \{,} f ( és f ( f ( e függvéy deriváltját, majd a határértékeket Bizoyítsd be, hogy az f ( egyeletek va egy -él agyobb gyöke (Érettségi javaslat 5 Bizoyítsd be, hogy az f :(,, f ( cos függvéyre teljesül az f ( + f ( > egyelőtleség, ha > (Érettségi javaslat 6 Bizoyítsd be, hogy ha,,, párokét külöböző valós számok és P( ( ( (, akkor P ( P ( P (

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására Általáosított mitavételi tétel és alkalmazása kváziperiodikus jelek leírására Dr. Földvári Rudolf BME Híradástechikai Elektroika Itézet ÖSSZEFOGLALÁS Az általáosított mitavétel külöböző esteiek bemutatása

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az + + 4 + + +... végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = + +

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez [ξ ] Módszertai kísérlet az életpálya fogalmáak formalizálására Előtaulmáy a fiatal biológusok életpályakutatását célzó támogatott projekthez Soós Sádor ssoos@colbud.hu; 2009/9 http://www.mtakszi.hu/kszi_aktak/

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

1. DIGITÁLIS ADATFELDOLGOZÁS

1. DIGITÁLIS ADATFELDOLGOZÁS 1. DIGITÁLIS ADATFELDOLGOZÁS A médiumok szite midegyike előállítható már digitális formába. Ez az ú. digitális közös evező lehetővé teszi az ilye adatok egységes kezelését. Miél összetettebb egy médium,

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben?

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben? Vizsgakérdések Fizika II. I. Mi jellemzi az elektromágeses mezőbe mozgó töltött részecskék eergia- és pályaviszoyait?. Írja fel a töltött részecskékre ató Loretz-erőt kifejező összefüggést! F qe q( v B)

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Folyadékkal mûködõ áramlástechnikai gépek

Folyadékkal mûködõ áramlástechnikai gépek 3. ÖRVÉNYSZIVATTYÚK A folyadékkal működő gépeket több szempot szerit lehet csoportokba osztai. Az egyik fő csoportjuk a folyadékba rejlő mukavégző képességet haszálja fel, és alakítja át a folyadék eergiáját,

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudomáyos közleméyei Alapítva: 2011 3 (1) Főszerkesztő: Takácsé György Katali Meghívott szerkesztő: Tóth Zoltá Felelős szerkesztő: Cserák József Szerkesztőbizottság:

Részletesebben

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív Iskolakultúra 202/3 Sátha Kálmá Kodoláyi Jáos Főiskola Neveléstudomáyi Taszék Numerikus problémák a kvalitatív megbízhatósági mutatók meghatározásáál A taulmáy a kvalitatív vizsgálatok megbízhatósági problémáiak

Részletesebben

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,

Részletesebben

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus)

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus) Alkalmazott tudomáyok Irodalom - Nyelvtudomáy Lektorálták: Dr. Fehér Zsuzsaa (PEME) Prof. Dr. M. H. Tewolde (Edutus) Tartalom Fekete Imre: Ekvivales Lax-stabilitási fogalom és alkalmazása a traszport egyeletre

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

2. modul Gazdasági matematika

2. modul Gazdasági matematika Matematika A. évfolyam. modul Gazdasági matematika Készítette: Lövey Éva Matematika A. évfolyam. modul: GAZDASÁGI MATEMATIKA Taári útmutató A modul célja Időkeret Ajálott korosztály Modulkapcsolódási potok

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002.

GEODÉZIA I. NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérnöki Szak. Dr. Bácsatyai László. Kézirat. Sopron, 2002. A geodéza tárgya, felosztása, alapfogalmak NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Erdőmérök Szak Dr. Bácsatya László GEODÉZIA I. Kézrat Sopro, 00. . A geodéza tárgya, felosztása, alapfogalmak A gyűjtögető,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

Kísérletek tervezése és értékelése

Kísérletek tervezése és értékelése STATISZTIKAI ALAPOK I. STATISZTIKAI ALAPOK Adatok ábrázolása Yogi Berra: "You ca observe a lot by watchig." I. STATISZTIKAI ALAPOK Mérési adatok ábrázolása: Pot ábrázolás (Dotplot) Dotplot for Y 9 3 Y

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

JUMO. Megjelenítõ a mérési adatok vizualizálásához, tárolásához és kiértékeléséhez. Rövid leírás. Sajátságok. Blokkvázlat

JUMO. Megjelenítõ a mérési adatok vizualizálásához, tárolásához és kiértékeléséhez. Rövid leírás. Sajátságok. Blokkvázlat JUMO Meß- ud Regelgeräte GmbH A-1232 Wie, Pfarrgasse 48 Magyarországi Kereskedelmi Képviselet Telefo: 00-43-1 / 61-061-0 H-1147 Budapest Öv u. 143. Fax: 00-43-1 / 61-061-59 Telefo/fax: 00-36-1 / 467-0835,

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

A Kvantum Fizikától a Lélekig

A Kvantum Fizikától a Lélekig Kiss Zoltá J: A Kvatum Fizikától a Lélekig Az Ortega y Gasset Társaság 013.01.31-i redezvéyéek előadás vázlata A Kvatum Fizikától a Lélekig Hiv. 1. A Kvatum Tér körülvesz beüket Ez az a tér amibe élük.

Részletesebben

VALÓS IDEJŰ MULTILATERÁCIÓ WAMLAT PILOTRENDSZER 3 MULTILATERÁCIÓ [4]

VALÓS IDEJŰ MULTILATERÁCIÓ WAMLAT PILOTRENDSZER 3 MULTILATERÁCIÓ [4] Szüllő Ádám Seller Rudolf VALÓS IDEJŰ MULILAERÁCIÓ WAMLA PILORENDSZER 3 A ikkbe bemutatott passzív radarredszer a multilateráiós tehika segítségével képes mide olya légi jármű valós idejű detekiójára és

Részletesebben

Reálbérek és kereseti egyenlõtlenségek, 1986 1996

Reálbérek és kereseti egyenlõtlenségek, 1986 1996 62 Kertesi Gábor Köllõ Jáos Közgazdasági Szemle, XLIV. évf., 997. július augusztus (62 634. o.) Kertesi Gábor Köllõ Jáos Reálbérek és kereseti egyelõtleségek, 986 996 A bérszerkezet átalakulása Magyarországo,

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ 127 128 Műszaki és Természettudomáyi Szekció Kiterjedéssel redelkező autoóm robotok gyülekezése Bolla Kálmá 1, Kovács Tamás 2, Fazekas Gábor 2 1 Iformatika Taszék,

Részletesebben

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese?

Egyenes-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyenese? Közgazdasági Szemle, LVII. évf., 1. március (1 1. o.) ERDŐS PÉTER ORMOS MIHÁLY ZIBRICZKY DÁVID Egyees-e a tőkepiaci árazási modell (CAPM) karakterisztikus és értékpapír-piaci egyeese? Taulmáyuk egyrészt

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik

27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik 7.B 7.B 7.B Digitális alapáramkörök Logikai alapfogalmak Mutassa be a logikai függvéyek leírási módjait: a szövegeset, az igazság táblázatosat, a logikai vázlatosat és az algebrai alakkal törtéı leírást!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó!

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó! Tkács M., Sorok elmélete és umerikus módszerek Kedves Olvsó! A Sorok elmélete és umerikus módszerek mérökhllgtókk című köyv elsősorb Szbdki Műszki Szkőiskol hllgtóik készült, hrmdik élévbe okttott Numerikus

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja

Bevezetés. 1 A pénz időértékének elve. Befektetés pénzáram grafikonja. 1.1. ábra - Befektetés pénzáram grafikonja Bevezetés A Pézügyta feladatgyűjteméy a Pézügyta tatágy gyakolataihoz készült példatá első észe. Az oktatási segédlet a pézügyi számítások világába vezeti be az olvasót. Bá az oktatási segédletbe sok képlet

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben