Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha"

Átírás

1 . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =, a mértai sor összegképlete szerit. H agy, akkor már elhayagolhatóa kicsi, ezért s =, emiatt természetes azt modai, hogy A továbbiakba 4 =. a a... alakú ú. végtele sorokat vizsgáluk, ahol -ek valós számok. Ezt a végtele mértai sort a következőképpe jelöljük:.. defiíció (Végtele sor kovergeciája). A végtele sor -edik részletösszege: s = a a. Ha a részletösszegek sorozata az L számhoz kovergál, s = L, akkor azt modjuk, hogy a végtele sor koverges és összege L. Egyébkét a végtele sort divergesek modjuk. Példa:. Mutassa meg, hogy az ( )... végtele sor koverges és összege. Megoldás: Legye s = ( ) Mivel k(k) = k k, ezért s = ( ) ( 3 ) ( 3 4 =. ) ( ) Ie. Az s = = q q q... q < eseté koverges, egyébkét diverges, mert s = q q q = q q, ha q és q 0 akkor és csak akkor, ha q <. Megjegyzés: A kovergecia difiíciójából látszik, hogy a végtele sor kovergeciájá em változtat az, ha véges számú tagot hozzáaduk vagy ha elveszük.. tétel (Műveletek sorokkal). Ha és b koverges sorok, továbbá = A és b = B, akkor. ( b ) = A B. ( b ) = A B 3. k = ka, ahol k tetszőleges valós szám. Bizoyítás: Csak.-et bizoyítjuk. A ( b ) - edik részletösszege: s = (a b ) (a b ) ( b ) = (a a ) (b b b ) = A B. Mivel A A és B B, ezért s A B. Példa: Határozza meg a Megoldás: = 3 6 = = = 3 6 sorozat összegét! = = = 3, 6 a mértai sor összegképlete alapjá.. Kovergeciakritériumok A végtele sorral kapcsolatba két kérdés fogalmazható meg:. Koverges-e a végtele sor?. Ha a végtele sor koverges, akkor mi az összege? Az alábbi tétel egy szükséges feltételt ad a végtele sor kovergeciájára:

2 . tétel. Ha a végtele sor koverges, akkor Bizoyítás: Nyilvá = 0. = (a a ) (a a ) = s s Mivel a végtele sor koverges, ezért s = s = L valamely valós L szám eseté. Így = s s = s s = L L = 0 Következméy: Ha a em létezik vagy em véges, akkor a végtele sor diverges. Példák:. végtele sor diverges, mert =. = ( ) végtele sor diverges, mert em létezik a = ( ). Ha a végtele sor eseté = 0, akkor lehet, hogy a végtele sor koverges, de lehet, hogy diverges. Példák:. A = végtele sor koverges és = 0.. A = végtele sor diverges, mert s = ( 3 ) ( )... 8 ( ) =, ezért a részletösszegek sorozata a -hez tart. A sorozatokál taultuk, hogy egy mooto övő sorozat potosa akkor koverges, ha korlátos. Eek a tételek a következméye az alábbi: 3. tétel. Legye 0 mide pozitív egész eseté. a végtele sor potosa akkor koverges, ha az s részletösszegek sorozata korlátos. A következő kritérium azt mutatja, hogy gyakra a végtele sort egy alkalmas improprius itegrállal összehasolítva megválaszolhatjuk a kovergecia kérdését. 4. tétel (Itegrákritérium). Legye csupa pozitív tagból álló sorozat. Tegyük fel, hogy va olya pozitív egész N és az [N, ) félegyeese csökkeő f(x) függvéy, amelyre = f() mide N eseté. a végtele sor és az improprius itegrál vagy egyszerre N koverges vagy diverges. Bizoyítás: A bizoyításba az N = esetre szorítkozuk (az általáos eset bizoyítása hasolóa k törtéik). Mivel f(x) csökkeő, ezért a k k k, ha k. Ezért egyrészt a a másrészt a 3 k a a a 3 3 a s a = = Ebből látszik, hogy ha az koverges, ami most azt jeleti, hogy felülről korlátos, akkor s is felülről korlátos lesz, tehát koverges. Másrészt, ha diverges, akkor em lesz alulról korlátos, ezért s sem, tehát is diverges.

3 Példa: A = p ha p, mivel f(x) = x p ha x ; f() = p koverges, ha p > és diverges, függvéy mooto csökkeő és az x dx improprius itegrál a p p-szabály alapjá koverges, ha p > és diverges, ha 0 < p. 5. tétel (Összehasolító kritérium). Legye olya végtele mértai sor, ahol 0.. Ha va olya koverges c sor és N pozitív egész, hogy mide > N eseté c, akkor végtele sor is koverges. (Majorás kritérium). Ha va csupemegatív tagból álló diverges d végtele sor és N pozitív egész szám, hogy mide > N eseté d, akkor sor diverges. (Miorás kritérium) Bizoyítás:. Az s = a, ( N) részletösszegre felső korlát a a a a N =N koverges végtele sor.. A végtele sorak ics felső korlátja, mert ha lee, akkor a d d d N =N felső korlátja lee d részletösszegeiek, tehát d is koverges lee, ami elletmodás. Példa. A sor koverges, mert 0 < és. a = = végtele sor koverges. végtele mértai sor diverges, mert = és a végtele sor diverges. = 6. tétel (Limeszes összehasolító kritériumok). Tegyük fel, hogy valamely pozitív egész N-re igaz, hogy > 0 és b > 0, h > N.. ha = c > 0, akkor és b egyszerre b kovergesek vagy egyszerre divergesek. c. ha b koverges. 3. ha b diverges. = 0 és b koverges, akkor is = és b diverges, akkor is Bizoyítás. Csak.-et bizoyítjuk. A feltétel miatt létezik egy M egész, hogy > M eseté b c < c, c < c < c b, c < b < 3c, c b < < 3c b. Ha b koverges, akkor 3c b is az, ezért az összehasolító kritérium alapjá sor is az. Ha b sor diverges, akkor c b is az, emiatt az összehasolító kritérium alapjá is diverges. Példák. A l = és. A = koverges. 3 = 3 sor koverges, mert = és a l = végtele sor diverges, mert = végtele sor diverges. 7. tétel (Háyadoskritérium). Legye csupa pozitív tagból álló végtele sor. Tegyük fel, hogy = ρ.. ha ρ <, akkor kovergese;. ha ρ >, akkor diverges; 3. ha ρ =, akkor a kritérium em alkalmazható. Bizoyítás.. Tegyük fel, hogy ρ <. létezik r, amelyre ρ < r < és N pozitív egész, hogy a < r, ha N. a N a N < r a N < ra N 3

4 a N a N < r a N < ra N < r a N és általába a Nm < r m a N. s felülről becsülhető a a a a N a N ra N r a N = a a a N a N ( r r... ) koverges sorral, így is koverges.. Ha ρ >, akkor létezik N, hogy N eseté 3. A ezért >, a N < a N < a N <... ezért a sorozat tagjai em tartaak a 0-hoz, így a a végtele sor diverges. és = = sorokra teljesül, hogy ρ = = és az első egy diverges, a második pedig egy koverges sor. Példák. A. A = = ()!, ezért = végtele sor koverges, mert = és ()! = = 0 <. végtele sor diverges, mert = = () és így () = >. 8. tétel (Gyökkritérium). Legye csupa pozitív tagból álló végtele sor. Tegyük fel, hogy a = ρ.. ha ρ <, akkor kovergese;. ha ρ >, akkor diverges; 3. ha ρ =, akkor a kritérium em alkalmazható. és Bizoyítás:. Ha a = ρ <, akkor egy rögzített ρ < r < eseté létezik N, hogy < r, < r, h N, alkalmas pozitív egész N eseté. Meg kell mutatuk, hogy s, ( N) felülről korlátos. Nyilvá:. Ha s = a a N a N a N < a a N r N r N r a a N r N r N a a N rn r. a = ρ >, akkor létezik N, hogy >, h N, ezért >, h N és így 0, ezért a végtele sor diverges. Példa: A végtele sor koverges, mert = = <. A következő tételbe ú. alteráló sorokkal foglalkozuk. Legyeek > 0. az a a a 3 a 4 váltakozó előjelű végtele sort alteráló sorak modjuk. 9. tétel (Leibiz-kritérium). A feti alteráló sor koverges, ha mooto csökkeő és = 0. Bizoyítás. A m-edik részletösszeg: s m = (a a ) (a 3 a 4 ) (a m a m ). s (m) = s m (a m a m ), ahol a mooto csökkeés miatt (a m a m ) 0. Igy az s m sorozat mooto övő. Másrészt s m = a (a a 3 ) (a 4 a 5 ) (a m a m ) a m a, megit csak a mooto csökkeés miatt. Mivel s m mooto ő és felülről korlátos, emiatt létezik a s m. De m s m = (s m a m) = m m s m a m = s m, m m m 4

5 ezért létezik a véges s. Példa: A ( ) = 3 4 = alteráló sor koverges, mert = mooto csökkeve tart a 0-hoz.. defiíció. A végtele sor abszolút koverges, ha koverges. Példa A = ( ) = végtele sor a Leibiz kritérium szerit koverges, és a tagok abszolút értékét véve a = = is koverges sor lesz az itegrál kritérium szerit, tehát az eredeti sor abszolút koverges. 3. defiíció. A koverges végtele sor feltételese koverges, ha diverges. Példa A = ( ) = sor a Leibiz-kritérium szerit koverges, de a tagok abszolút értékét véve a = = ú. harmoikus sor már diverges lesz az itegrálkritérium alapjá. 0. tétel. Ha a végtele sor abszolút koverges, akkor koverges is Bizoyítás. Legye c =. 0 c Mivel koverges, emiatt is koverges és így az összehasolító kritérium alapjá c is koverges végtele sor. De = ( ) = c és mivel két koverges végtele sor külöbsége is koverges, emiatt is koverges. 5

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az + + 4 + + +... végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = + +

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó!

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó! Tkács M., Sorok elmélete és umerikus módszerek Kedves Olvsó! A Sorok elmélete és umerikus módszerek mérökhllgtókk című köyv elsősorb Szbdki Műszki Szkőiskol hllgtóik készült, hrmdik élévbe okttott Numerikus

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

végtelen sok számot?

végtelen sok számot? Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív

Napjainkban többféle álláspont támasztja alá, vagy vonja kétségbe a kvalitatív Iskolakultúra 202/3 Sátha Kálmá Kodoláyi Jáos Főiskola Neveléstudomáyi Taszék Numerikus problémák a kvalitatív megbízhatósági mutatók meghatározásáál A taulmáy a kvalitatív vizsgálatok megbízhatósági problémáiak

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

2. modul Gazdasági matematika

2. modul Gazdasági matematika Matematika A. évfolyam. modul Gazdasági matematika Készítette: Lövey Éva Matematika A. évfolyam. modul: GAZDASÁGI MATEMATIKA Taári útmutató A modul célja Időkeret Ajálott korosztály Modulkapcsolódási potok

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudomáyos közleméyei Alapítva: 2011 3 (1) Főszerkesztő: Takácsé György Katali Meghívott szerkesztő: Tóth Zoltá Felelős szerkesztő: Cserák József Szerkesztőbizottság:

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

Elosztott energiaforrások hálózati visszahatása. Elosztott energiaforrások

Elosztott energiaforrások hálózati visszahatása. Elosztott energiaforrások Elosztott eergiforrások hálózti isszhtás Dr Dá Adrás egyetemi tár BME VET Elosztott eergiforrások Primer eergi Megújuló p szél íz biomssz Nem megújuló kőolj, földgáz hidrogé Elosztott eergiforrások Mechiki

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus)

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus) Alkalmazott tudomáyok Irodalom - Nyelvtudomáy Lektorálták: Dr. Fehér Zsuzsaa (PEME) Prof. Dr. M. H. Tewolde (Edutus) Tartalom Fekete Imre: Ekvivales Lax-stabilitási fogalom és alkalmazása a traszport egyeletre

Részletesebben

A Kvantum Fizikától a Lélekig

A Kvantum Fizikától a Lélekig Kiss Zoltá J: A Kvatum Fizikától a Lélekig Az Ortega y Gasset Társaság 013.01.31-i redezvéyéek előadás vázlata A Kvatum Fizikától a Lélekig Hiv. 1. A Kvatum Tér körülvesz beüket Ez az a tér amibe élük.

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL

KÖZPONTI STATISZTIKAI HIVATAL KÖZPONTI STATISZTIKAI HIVATAL EGÉSZSÉGESEN VÁRHATÓ ÉLETTARTAMOK MAGYARORSZÁGON 25 EGY ÖSSZETETT, KVANTIFIKÁLT MUTATÓ A NÉPESSÉG EGÉSZSÉGI ÁLLAPOTÁNAK MÉRÉSÉRE Budapest, 27 KÖZPONTI STATISZTIKAI HIVATAL,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Reálbérek és kereseti egyenlõtlenségek, 1986 1996

Reálbérek és kereseti egyenlõtlenségek, 1986 1996 62 Kertesi Gábor Köllõ Jáos Közgazdasági Szemle, XLIV. évf., 997. július augusztus (62 634. o.) Kertesi Gábor Köllõ Jáos Reálbérek és kereseti egyelõtleségek, 986 996 A bérszerkezet átalakulása Magyarországo,

Részletesebben

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele

CIVIL VERDIKT. ELMÉLETILEGnn. Elõzmények. CIVIL SZEMLE n 2007/1 n n n n n n n19. Márkus Eszter. Az egyesületek nyilvántartásba vétele csz10 elm 2 birosag.qxd 2007. 02. 25. 17:56 Page 19 ELMÉLETILEG CIVIL VERDIKT Az egyesületek yilvátartásba vétele Márkus Eszter Ilye eddig még em volt. A megyei bíróságok, ítélõtáblák és fõügyészségek

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon

ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Dunántúlon csz23_csz12 skadi.qxd 2010.06.10. 10:58 Page 5 ELMÉLETILEG ISMERETEK ÉS VÉLEMÉNYEK A NONPROFIT SZEKTOR SZERVEZETEIRŐL Egy empirikus kutatás tapasztalatai a Nyugat-Duátúlo Nárai Márta Bevezetés A civil

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL

KÖZPONTI STATISZTIKAI HIVATAL KÖZPONTI STATISZTIKAI HIVATAL Telefo: 345-6 Iteret: www.ksh.hu Adtgyűjtések Letölthető kérdőívek, útmuttók Az dtszolgálttás 229/26. (XI. ) Korm. redelet lpjá kötelező. Nyilvátrtási szám: 223/7 Adtszolgálttók:

Részletesebben

Í Í í É íé ű í Á É í í É í ú Í É Á í í í í É í í í í ú í í É ú ú í ű í ú í ú ú ú í ű í í í ú í í ű ú í í ú ú ú í ű í í í í í í í í íí í í í É ű ű ű í í É í É ú í í í ú í í ú í ú í í í É ú í ú ú í ú í í

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

Autoregressziós modellekkel kapcsolatos

Autoregressziós modellekkel kapcsolatos Autoregressziós modellekkel kapcsolatos határeloszlás tételek Pap Gyula Kossuth Lajos Tudomáyegyetem, Matematikai és Iformatikai Itézet H 4 ebrece, Pf.2 papgy@math.klte.hu. AR() modellek Tekitsük az (.)

Részletesebben

Logoptimális portfóliók empirikus vizsgálata

Logoptimális portfóliók empirikus vizsgálata Közgazasági Szemle, LVI. évf., 2009. jauár (1 18. o.) ORMOS MIHÁLY URBÁN ANDRÁS ZOLTÁN TAMÁS Logoptimális portfóliók empirikus vizsgálata A logoptimális portfólióelmélet matematikai bizoyítását, valamit

Részletesebben

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez

Módszertani kísérlet az életpálya fogalmának formalizálására Előtanulmány a fiatal biológusok életpályakutatását célzó támogatott projekthez [ξ ] Módszertai kísérlet az életpálya fogalmáak formalizálására Előtaulmáy a fiatal biológusok életpályakutatását célzó támogatott projekthez Soós Sádor ssoos@colbud.hu; 2009/9 http://www.mtakszi.hu/kszi_aktak/

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Finanszírozás, garanciák

Finanszírozás, garanciák 29..9. Fiaszíozás, gaaciák D. Fakas Szilvesze egyeemi doces SZE Gazdálkodásudomáyi Taszék fakassz@sze.hu hp://d.fakasszilvesze.hu/ Fiaszíozás émaköei. A péz idıééke, jövıéék és jeleéék, speciális pézáamlások

Részletesebben

27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik

27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik 7.B 7.B 7.B Digitális alapáramkörök Logikai alapfogalmak Mutassa be a logikai függvéyek leírási módjait: a szövegeset, az igazság táblázatosat, a logikai vázlatosat és az algebrai alakkal törtéı leírást!

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai

Ki a Köz és mi a haszon és Ki szerint? a Közhasznúság fogalmi és tartalmi deilemmái. a magyar civil crowdsourcing és crowdfunding jó gyakorlatai c ivil szemle www.civilszemle.hu X. évfolyam 3. szám ElmélEtilEg Ki a Köz és mi a haszo és Ki szerit? a Közhaszúság fogalmi és tartalmi deilemmái (Sebestéy Istvá) KözösségEK és civil társadalom a magyar

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

Á ó Á Ü É Ú Í Á í ó ó ó ó ó ó ö őí ó ó ü ű í ó ő ú ö ő ó ó í ó í ó ó ő í í í Í ó ó ó ö ó ó í ó í ö í ó ű í Íő ó ó ó ő í ó ő í ó ó ő í ö ó ü ö ó í ü í í ű ó ö ó í ó ö ö ö í ő í ó ó É É í ő ő í í ü ö í í

Részletesebben