Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha"

Átírás

1 . Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = =, a mértai sor összegéplete szerit. Ha agy, aor már elhayagolhatóa icsi, s =, emiatt természetes azt modai, hogy A továbbiaba =. a + a + + a +... alaú ú. végtele soroat vizsgálu, ahol az a -e valós számo. Ezt a végtele mértai sort a övetezőéppe jelöljü: a.. defiíció Végtele sor overgeciája. A a végtele sor -edi részletösszege: s = a + a + + a. Ha a részletösszege sorozata az L számhoz overgál, s = L, aor azt modju, hogy a a végtele sor overges és összege L. Egyébét a végtele sort divergese modju. Példa:. Mutassa meg, hogy az végtele sor overges és összege. Megoldás: Legye s = Mivel + = +, s = = Ie. Az s = + = + q + q + + q +... q < eseté overges, egyébét diverges, mert s = + q + q + + q = q q, ha q és q aor és csa aor, ha q <. Megjegyzés: A overgecia difiíciójából látszi, hogy a a végtele sor overgeciájá em változtat az, ha véges számú tagot hozzáadu vagy ha elveszü.. tétel Művelete soroal. Ha a és b overges soro, továbbá a = A és b = B, aor. a + b is overges és a + b = A + B. a b is overges és a b = A B 3. a is overges és a = A, ahol tetszőleges valós szám. Bizoyítás: Csa.-et bizoyítju. A a + b - edi részletösszege: s = a + b + a + b + + a + b = a + a + + a + b + b + + b = A + B. Mivel A A és B B, s A + B. Példa: Határozza meg a Megoldás: = = = = +3 6 sorozat összegét! = = = 3, 6 a mértai sor összegéplete alapjá.. Kovergeciaritériumo A a végtele sorral apcsolatba ét érdés fogalmazható meg:. Koverges-e a a végtele sor?. Ha a a végtele sor overges, aor mi az összege? Az alábbi tétel egy szüséges feltételt ad a a végtele sor overgeciájára:

2 . tétel. Ha a a végtele sor overges, aor Bizoyítás: Nyilvá a =. a = a + a + + a + a a + a + + a = s s Mivel a a végtele sor overges, s = s = L valamely valós L szám eseté. Így a = s s = s s = L L = Követezméy: Ha a a em létezi vagy em véges, aor a a végtele sor diverges. Példá:. végtele sor diverges, mert =. = végtele sor diverges, mert em létezi a =. Ha a a végtele sor eseté a =, aor lehet, hogy a a végtele sor overges, de lehet, hogy diverges. Példá:. A = végtele sor overges és =.. A = végtele sor diverges, mert s = = +, a részletösszege sorozata a + -hez tart. A sorozatoál taultu, hogy egy mooto övő sorozat potosa aor overges, ha orlátos. Ee a tétele a övetezméye az alábbi: 3. tétel. Legye a mide pozitív egész eseté. Eor a a végtele sor potosa aor overges, ha az s részletösszege sorozata orlátos. A övetező ritérium azt mutatja, hogy gyara a végtele sort egy alalmas improprius itegrállal összehasolítva megválaszolhatju a overgecia érdését. 4. tétel Itegráritérium. Legye a csupa pozitív tagból álló sorozat. Tegyü fel, hogy va olya pozitív egész N és az [N, félegyeese csöeő fx függvéy, amelyre a = f mide N eseté. Eor a a végtele sor és az fxdx improprius itegrál vagy egyszerre overges vagy egyszerre diverges. N Bizoyítás: A bizoyításba az N = esetre szorítozu az általáos eset bizoyítása hasolóa törtéi. Mivel fx csöeő, fxdx a + fxdx, ha. Ezért egyrészt a +a + +a másrészt a + fxdx+ + 3 fxdx fxdx+ + a + a + a a fxdx a + fxdx + + fxdx fxdx s a + fxdx + fxdx = fxdx = Ebből látszi, hogy ha az fxdx overges, ami most azt jeleti, hogy fxdx felülről orlátos, aor s is felülről orlátos lesz, tehát overges. Másrészt, ha + fxdx diverges, aor fxdx em lesz alulról orlátos, s sem, tehát a is diverges.

3 Példa: A = p ha p, mivel fx = x p ha x ; f = p overges, ha p > és diverges, függvéy mooto csöeő és az x dx improprius itegrál a p p-szabály alapjá overges, ha p > és diverges, ha < p. 5. tétel Összehasolító ritérium. Legye a olya végtele mértai sor, ahol a.. Ha va olya overges c sor és N pozitív egész, hogy mide > N eseté a c, aor a végtele sor is overges. Majorás ritérium. Ha va csupa emegatív tagból álló diverges d végtele sor és N pozitív egész szám, hogy mide > N eseté a d, aor a sor diverges. Miorás ritérium Bizoyítás:. Az s = a + + a, N részletösszegre felső orlát a a + a + + a N + =N+ overges végtele sor.. A a végtele sora ics felső orlátja, mert ha lee, aor a d + d + + d N + =N+ felső orlátja lee d részletösszegeie, tehát d is overges lee, ami elletmodás. Példa. A sor overges, mert + + < és. a = = végtele sor overges. végtele mértai sor diverges, mert + = + és a végtele sor diverges. = 6. tétel Limeszes összehasolító ritériumo. Tegyü fel, hogy valamely pozitív egész N-re igaz, hogy a > és b >, ha > N. Eor a. ha = c >, aor a és b egyszerre b overgese vagy egyszerre divergese. c a a. ha b overges. a 3. ha b diverges. = és b overges, aor a is = és b diverges, aor a is Bizoyítás. Csa.-et bizoyítju. A feltétel miatt létezi egy M egész, hogy > M eseté a b c < c, c < a c < c b, c < a b < 3c, c b < a < 3c b. Ha b overges, aor 3c b is az, az összehasolító ritérium alapjá a sor is az. Ha b sor diverges, aor c b is az, emiatt az összehasolító ritérium alapjá a is diverges. Példá. A l = és. A = overges. + 3 = + 3 sor overges, mert = és a l = végtele sor diverges, mert = végtele sor diverges. 7. tétel Háyadosritérium. Legye a csupa pozitív tagból álló végtele sor. Tegyü fel, hogy Eor a + = ρ. a. ha ρ <, aor a overgese;. ha ρ >, aor a diverges; 3. ha ρ =, aor a ritérium em alalmazható. Bizoyítás.. Tegyü fel, hogy ρ <. Eor létezi r, amelyre ρ < r < és N pozitív egész, hogy a+ a < r, ha N. Eor a N+ a N < r a N+ < ra N 3

4 a N+ a N+ < r a N+ < ra N+ < r a N és általába pozitív egész m eseté a N+m < r m a N. Eor az s részletösszeg felülről becsülhető a a + a + + a N + a N + ra N + r a N + = a + a + + a N + a N + r + r +... overges sorral, így a is overges.. Ha ρ >, aor létezi N, hogy N eseté 3. A a + a >, a N < a N+ < a N+ <... a sorozat tagjai em tartaa a -hoz, így a a végtele sor diverges. és = a + a = sorora teljesül, hogy ρ = = és az első egy diverges, a másodi pedig egy overges sor. Példá. A!. A = a + = + +!, = végtele sor overges, mert a =! és + +!! = + = <. végtele sor diverges, mert a = a + = + + és így + + = >. 8. tétel Györitérium. Legye a csupa pozitív tagból álló végtele sor. Tegyü fel, hogy Eor a = ρ.. ha ρ <, aor a overgese;. ha ρ >, aor a diverges; és 3. ha ρ =, aor a ritérium em alalmazható. Bizoyítás:. Ha a = ρ <, aor egy rögzített ρ < r < eseté létezi N, hogy a < r, a < r, ha N, alalmas pozitív egész N eseté. Meg ell mutatu, hogy az s, N részletösszege felülről orlátosa. Nyilvá:. Ha s = a + + a N + a N + a N+ + + a < a + + a N + r N + r N+ + + r a + + a N + r N + r N+ + a + + a N + rn r. a = ρ >, aor létezi N, hogy a >, ha N, a >, ha N és így a, a a végtele sor diverges. Példa: A végtele sor overges, mert = = <. A övetező tételbe ú. alteráló soroal foglalozu. Legyee a >. Eor az a a + a 3 a 4 + váltaozó előjelű végtele sort alteráló sora modju. 9. tétel Leibiz-ritérium. A feti alteráló sor overges, ha a mooto csöeő és a =. Bizoyítás. A m-edi részletösszeg: Eor s m = a a + a 3 a a m a m. s m+ = s m + a m+ a m+, ahol a mooto csöeés miatt a m+ a m+. Igy az s m sorozat mooto övő. Másrészt s m = a a a 3 a 4 a 5 a m a m a m a, megit csa a mooto csöeés miatt. Mivel s m mooto ő és felülről orlátos, emiatt létezi a s m. De m s m+ = s m + a m+ = m m 4

5 s m + a m+ = m m létezi a véges s. m s m, Példa: A = = alteráló sor overges, mert a = mooto csöeve tart a -hoz.. defiíció. A a végtele sor abszolút overges, ha a overges. Példa A = = végtele sor a Leibiz ritérium szerit overges, és a tago abszolút értéét véve a = = is overges sor lesz az itegrál ritérium szerit, tehát az eredeti sor abszolút overges. 3. defiíció. A a overges végtele sor feltételese overges, ha a diverges. Példa A = = sor a Leibiz-ritérium szerit overges, de a tago abszolút értéét véve a = = ú. harmoius sor már diverges lesz az itegrálritérium alapjá.. tétel. Ha a a végtele sor abszolút overges, aor overges is. Bizoyítás. Legye Eor c = a + a. c a Mivel a overges, emiatt a is overges és így az összehasolító ritérium alapjá c is overges végtele sor. De a = a + a a = c a és mivel ét overges végtele sor ülöbsége is overges, emiatt a is overges. 5

6 . Függvéysoro. Bevezetés és defiíció A végtele soroál taultu, hogy az + x + x + + x +... végtele összeg x < eseté overges. A feti végtele összegre úgy is godolhatu, hogy végtele so függvéyt adu össze és ezt vizsgálju. Ez vezet el a övetező fogalomhoz:. defiíció. Legyee f x, =,,... olya függvéye, amelye özös értelmezési tartomáya I. Eor a belőlü épzett függvéysoro az f x + f x + + f x +... ifejezést értjü, ahol x I. Egy orét x I értéet behelyettesítve a övetező végtele sort apju: Ha cos x <, aor a vizsgált függvéysor abszolút overges, tehát oveges. Tudju, hogy cos x. Külö meg ell vizsgáli a cos x = és a cos x = eseteet. Ha cos x =, aor a függvéysor a övetező végtele sort adja: , ami egy diverges sor. A cos x = egyelet potosa az x = eseté teljesül egész szám. Ha cos x =, aor a függvéysor a övetező alteráló sort adja: , ami egy overges sor a Leibiz-ritérium alapjá. A cos x = egyelet potosa az x = + eseté teljesül egész szám. Összefoglalva apju, hogy a overgeciatartomáy a valós számo halmaza ivéve a alaú számoat. f x + f x + + f x Ez vagy overges vagy diverges.. defiíció. Azo x I számo halmazát, amelyere overges sor, az f x + f x + + f x f x + f x + + f x +... függvéysor overgeciatartomáyáa modju. Példá:. Határozza meg az e x = e x + e x + e 3x + + e x +... = függvéysor overgeciatartomáyát! Megoldás: A feti függvéysor egy e x háyadosú mértai sor, ami potosa aor overges, ha e x <. Ez pedig potosa aor teljesül, ha x <, tehát a overgeciatartomáy a egatív számo halmaza.. Határozza meg az = cos x = cos x+ cos x + cos3 x 3 függvéysor overgeciatartomáyát! Megoldás: A györitériumot alalmazzu: cos x = cos x + cos x Hatváysoro Ebbe a fejezetbe egy speciális, de alalmazás szempotjából alapvető fotosságú függvéysort tárgyalu. 3. defiíció. Az x = hely örüli hatváysora evezzü a c x = c + c x + c x + + c x +... = alaú függvéysort. Az x = a örüli hatváysor: c x a = = c + c x a + c x a + + c x a Itt az a számot a hatváysor özéppotjáa, a c, c, c valós számoat pedig a hatváysor együtthatóia evezzü. Példa. Határozza meg az 3 x 3+ 9 x x hatváysor overgeciatartomáyát és adja meg a feti sor által defiiált függvéyt a overgeciatartomáyba! Megoldás: A feti hatváysor egy olya mértai sor,

7 amelye első eleme és háyadosa x 3 3. Ez potosa aor overges, ha x 3 3 < < x < 6. Eor az előállított függvéy a mértai sor összegéplete szerit: x 3 = 3 x. 3. Határozza meg a = x! hatváysor overgeciatartomáyát! Megoldás: Az x valós szám aor lesz bee a overgeciatartomáyba, ha a = x! végtele sor overges. Alalmazzu a háyados ritériumot a overgecia eldötésére: x + = x + = <, +! x! mide valós x eseté overges sort apu, tehát a overgeciatartomáy a valós számo halmaza. 3. Határozza meg a = x hatváysor overgeciaratomáyát! Megoldás: Az x valós szám aor lesz bee a overgeciatartomáyba, ha a x = végtele sor overges. Alalmazzu a györitériumot a overgecia eldötésére: x = x = +, ha x, mide x eseté diverges sort apu, tehát a overgeciatartomáy a {} halmaz. Az alábbiaba azt mutatju meg, hogy éz i egy overgeciatartomáy és hogya lehet egyszerűe meghatározi azt.. tétel Hatváysoro overgeciatétele.. Ha a = a x hatváysor overges valamely x = c szám eseté, aor abszolút overges mide x eseté, ha x < c.. Ha a = a x hatváysor diverges valamely x = d szám eseté, aor diverges mide x eseté, ha x > d. Bizoyítás:. Ha = a c overges, aor tudju, hogy a c =, létezi N egész, hogy N eseté a c <, a < c. Ie apju, hogy ha x < c, aor N eseté a x < x. c Ezért a = a x végtele sorból formált s részletösszegre felső becslés feltehető, hogy N: a + a x + a x + + a N x N + a N x N + a N+ x N+ + + a x a + a x + a x + + a N x N + x N + x N c c overges végtele sor.. Ha valamely x eseté x > d és = a x overges lee, aor a Tétel első már bizoyított fele szerit = a d is overges lee, ami elletmodás. A feti tétel alapjá már öyű leíri a = a x hatváysor overgeciatartomáyát: Ha létezi olya c valós szám, amelyre = a c overges végtele sor és létezi d valós szám, amelyre = a d diverges végtele sor, aor R-rel jelölve a { c : a c = overges} halmaz legisebb felső orlátját apju, hogy olya x-re, amelyre x < R a a x = overges lesz, mivel R defiíciója szerit va olya c valós szám, amelyre x < c < R és = a c overges végtele sor, de eor az előző tétel. szerit = a x is overges lesz. Másrészt, ha valamely d valós szám eseté x > R, aor R defiíciója miatt = a x diverges lesz.

8 Ha em létezi olya c, amelyre = a c overges, aor ez azt jeleti, hogy a overgeciatartomáy a {} halmaz; míg ha olya d em létezi, amelyre = a d diverges, aor a overgeciatartomáy a valós számo halmaza. Összefoglalva és most már a özéppotú hatváysorora imodva apju, hogy:. tétel. A a x a = hatváysor overgeciatartomáya övetezőéppe ézhet i:. Létezi R >, hogy ha x a < R, aor overges a hatváysor, míg ha x a > R, aor overges. Külö ell meggodoli az x = a±r számo eseté a overgeciát; eszerit a overgeciatartomáy egy yílt vagy félig yílt, félig zárt vagy egy zárt itervallum lehet.. A sor csa az x = a eseté overges, egyébét diverges. 3. A sor mide valós szám eseté overges. A feti tételbe szereplő R-et overgeciasugára hívju. Ha létezi a a határérté, aor a overgeciasugarat öyű meghatározi: 3. tétel.. Ha létezi a < harérérté, aor. Ha R = a. a < a =, aor a overgeciatartomáy a valós számo halmaza. 3. Ha a =, aor a overgeciatartomáy az {a}, a hatváysor csa x = a eseté overges. Bizoyítás: Csa.-et bizoyítju: Ha a = a x a overges, aor a x a = x a a, x a a. Ha a = a x a diverges, aor a x a = x a a, Ie apju, hogy x a x a < a. a eseté overges a = a x a végetele sor, míg ha x a > a, aor diverges. Ez mutatja, hogy a overgeciasugár Az előző tétel mitájára meg lehet mu- Megjegyzés: tati, hogy R = a. R = a a +, ha ez a határérté létezi végtele is lehet. Összefoglalva: A a x a = hatváysor overgeciatartomáyáa meghatározása a övetezőéppe törtéi: Kiszámolju a R overgeciasugarat: Ez alapjá R = a = a a +. ha R =, aor a overgeciartamáy a {a} halmaz, csa x = a-ba overges a sor;. ha R = +, aor a overgeciartamáy a valós számo halmaza mideütt overges a hatváysor; 3. ha R pozitív valós szám, aor a hatváysor overges az ]a R, a + R[ yílt itervallumba és diverges a ], a R[ és ]a + R, [ yílt félegyeesee. Az x = a R potról a a R végtele sor overgeciája, míg az x = = a + R potról a döt. a R végtele sor overgeciája = 3

9 Példa: Határozza meg a = x = x + x + x hatváysor overgeciatartomáyát! Megoldás: Nyilvá a özéppot a = és az együttható a =. Emiatt R = =, a hatváysor overges a ], [ yílt itervallumba és diverges a ], [ és ], [ félegyeesee. Ha x =, aor a = = harmoius sort apju, amiről tudju, hogy diverges. Ha x =, aor a = = alteráló sort apju, ami a Leibiz-ritérium alapjá overges. Így a overgeciatartomáy a [, [ balról zárt, jobbról yílt itervallum. A övetező tétel azt modja, hogy egy hatváysor által megadott függvéy deriválása és itegrálása a hatváysor tagjaia deriválását és itegrálását jeleti. 4. tétel.. Ha a c x a = hatváysor a R < x < a + R eseté overges, aor meghatároz egy ]a R, a+r[ yílt itervallumo lévő fx függvéyt, amelyre fx = c x a. = Ee a függvéye mide -re létezi a deriváltja, amit az eredeti sor tagjaia deriválásával apu meg: f x = c x a stb. f x = = c x a =. A ]a R, a + R[ yílt itervallumo a = c x a + + hatváysor szité overges lesz és mide a R < x < a + R egyelőtlesége eleget tevő x eseté fxdx = = c x a + + Példa: fx = arctgx hatváysora: + C. f x = + x = x = x + x 4 x , de így f xdx = x + x dx x x3 3 + x5 5 x C, = arctg = C = C, arctx = x x3 3 + x5 5 x , ha x <, < x <. 3. Taylor-soro Az fx függvéyt aarju hatváysorét felíri, rögzített a mellett olya a -eet eresü, amelyere fx = a x a = = a + a x a + a x a + + a x a +... Tegyü fel, hogy fx végtele soszor differeciálható az a egy öryezetébe. Eor f x = f x = f x = a x a = a x a = a x a 3 =3 stb. Behelyettesítve a-t apju, hogy fa = a 4

10 és általába f a = a f a = a f a = 3a 3 f a =!a, a = f a.! és ez aor teljesül, ha x <, < x < 4. A övetezőbe arra eressü a választ, hogy a Taylorsor mior állítja elő a függvéyt. Ehhez az. félévbe tault Taylor-tétel yújtja az alapot: 4. defiíció. Legye fx egy olya függvéy, amelyi végtele soszor differeciálható egy olya itervallumba, amelye belső potja a. Az fx függvéy által geerált Taylor-sor az x = a helye: = f a x a =! fa + f ax a + f a x a + +! f a x a +....! Az fx függvéy által geerált Maclauri-sor az x = helye vett Taylor-sor: = f + f x + f! f x =! x + + f x +....! Példa: Határozza meg az fx = x függvéy a = -beli Taylor-sorát! Megoldás: Nyilvá és általába f x = x f x = x 3 f x = 3x 4 f x =!x +. Ezért f =! +!! tehát a Taylor-sor: = +, x x x , ami egy egy x első tagú, háyadosú mértai sor. Ez yilvá megfelelő, mivel x = x, 5. tétel Taylor-tétel. Ha az fx függvéy az a I itervallumo aárháyszor differeciálható, aor mide pozitív egész és x A eseté ahol fx = fa + f ax a + f a x a +...! egy a és x özötti c-vel. + f a x a + R x,! R x = f + c x a+ +! Példa: Bizoyítsu be, hogy mide valós x eseté e x = = x! = + x + x! + x3 3! + + x! +... Megoldás: Írju fel az fx = ex függvéy Maclaurisorát! Eor a Taylor-tétel szerit ahol f x = e x f =, e x = + x + x! + + x! + R x, R x = egy és x özötti c-vel. Ezért, ha x <, aor Ha x >, aor R x x + +! R x e x x + +! Ezért tetszőleges valós x eseté e c +! x R x =,, ha, ha. 5

11 ahoa már övetezi az állítás. Követezméy: Ha x = az előző példába, aor azt apju, hogy e = e = + +! + 3! + +! + = =! A feti godolatmeetből adódó állítás a övetező tételbe fogalmazható meg: 6. tétel. Ha létezi M ostas, amellyel x és a özötti valameyi t eseté f + t M, aor a Taylor-tételbe szereplő R x maradétag ielégíti az x a + R x M +! egyelőtleséget. Ameyibe ez a feltétel teljesül mide -re, aor fx Taylor-sora fx-et állítja elő. Példa:. Mide valós x eseté Megoldás: Legye si x = x x3 3! x5 5! + x7 7! fx = si x f = f x = cos x f = f x = si x f = f x = cos x f = f 4 x = si x f 4 = f 5 x = cos x f 5 = stb. Ie a Taylor sor: Mivel x x3 3! x5 5! + x7 7! f + x = ± si x vagy ± cos x, ami bizoyítja az állítást. f + t,. Hasolóa bebizyítható, hogy mide valós x eseté cos x = x! + x4 4! x6 6! x8 8! +..., de úgyaez övetezi abból is, hogy és si x = cos x x x3 3! x5 5! + x7 7! +... = x! + x4 4! x6 6! +..., 3. A cos x Taylor-sorából, már a cos x Taylor-sorát öyű meghatározi, csa a cos x Taylor-sorába az x-et x-re ell cseréli: cos x = x! + x4 4! x6 6! Határozzu meg az fx = +x m Taylor-sorát, ahol m valós szám. Megoldás: Köye igazolható, hogy tetszőleges pozitív egész eseté f x = mm... m + + x m, f = mm... m +, ahoa a Taylor sor + mx + mm x + + mm... m + x +....! Ha m emegatív egész, aor a Taylor-sor m + darab emulla tagot tartalmaz és biomiális tételt apju vissza. Ha m em emegatív egész, aor végtele so tagja va a Taylor-sora. Igazolható, hogy x < eseté overges a sor és előállítja + x m -et. Alalmazáso:. Határozza meg 3 potossággal az határozott itegrált! Megoldás: Az e x Taylor sorából apju, hogy e x e x dx = = x + x4! x6 3! + x8 4! +..., e x dx x + x4! x6 3! + x8 4! x +... dx = 5! 6

12 [x x3 3 + x5 x7 4 + x9 6 x ] = , ahoa apju, hogy egy megfelelő özelítés a Valójába a hibát potosa meg ellee becsüli de ez a övetező ét tagra ráézve hihető.. Határozza meg a határértéet! Megoldás: Mivel si x x x x 3 si x = x x3 3! + x5 5! x7 7! +..., si x x x x 3 = x x x3 3! + x5 5! x7 7! +... x x 3 = x3 3! + x5 5! x7 7! +... x x 3 = x 3! + x 5! x4 7! + = 6. 7

13 . Fourier-soro. Bevezetés és defiíció Ee a fejezete a célja, hogy egy szerit periodius függvéyt felírju mit trigoometrius függvéyeből épzett függvéysorét. Nyilvá a cos x és a si x függvéye szerit periodius függvéye és általába tetszőleges egész szám eseté a cos x és a si x függvéye szité szerit periodius függvéye, továbbá az ezeből formált a + a cos x + si x = ú. trigoometrius poliomo is tetszőleges a, a, b valós számo eseté szerit periodius függvéyt ada. Ee a fejezete a célja a szerit periodius függvéyt felíri függvéysorét. a + a cos x + si x = A továbbiaba feltesszü, hogy a szerit peiodius fx Riema-itegrálható a [, ] itervallumba. Először az fx-et a a + a cos x + b si x = trigoometrius poliommal özelítjü. Az együtthatóat úgy válaszju, hogy a övetező, összese + feltétel teljesüljö:.. 3. fxdx = fx cos xdx = fx si xdx = f xdx f x cos xdx, f x si xdx, Az első feltételből a övetezőt apju: [ a x + fxdx = f xdx = a + = a cos x + b si xdx = = a si x =,,... =,,... ] cos x b = a, a = fxdx. Az a, b együttható meghatározásához szüségü lesz a övetező itegrálora:. Ha l pozitív egésze, aor a b c. Ha = l, aor a b c cos x cos lxdx = [ si + lx + + l si x si lxdx = [ si lx l si x cos lxdx = cos+lx+cos ldx = si lx l ] = cos lx cos+ldx = si + lx + l [ cos + lx + l cos xdx = [ si x x + 4 si xdx = [ si x x 4 si x cos xdx = [ cos x ] = si+lx+si ldx = ] cos lx = l + cos x dx = ] = ; cos x dx = ] ] =. si xdx = =

14 A fetieet haszálva már meg tudju határozi az a és b együtthatóat: fx cos xdx = f x cos xdx = a + a cos x+ a l cos lx + b l si lx cos xdx = l= a l cos lx cos x+b l si lx cos xdx = a, l= a = fx cos xdx Hasolóa apju a b együtthatóat: fx si xdx = f x si xdx = a + a si x+ a l cos lx + b l si lx si xdx = l= a l cos lx si x+b l si lx si xdx = b, l= b = fx si xdx. Az előbb apott együttható em függe -től, emiatt természetes a övetező szerit periodius függvéyel özelítei a szerit periodius fx-et:. defiíció. A szerit periodius fx Fourier-sora: ahol és a + a cos x + b si x, = a = a = b = fxdx, fx cos xdx fx si xdx. Példa: Fejtsü Fourier-sorba az {, < x <, fx =, < x függvéyt! Megoldás: Nyilvá és a = fxdx = a = dx + dx = 3 ; fx cos xdx = cos xdx + cos xdx = [si x b = [ ] [ si x + ] fx si xdx = = si xdx + si xdx = ] [ cos x + cos Így a emulla együttható: a = 3, b = a Fourier sor: 3 cos x ] =. =, =,,..., si 3x si 5x si x Fourier-sor részletösszegei. A övetező tétel azt modja i, hogy a Fouriersor részletösszege a legisebb átlagos hibaégyzet tulajdoságú.

15 . tétel. Legye az fx szerit periodius függvéy, az -edi részletösszege: s x. Legye t x = α + α cos x + β si x = tetszőleges α, α, β valós együtthatóal. Eor mide eseté fx s x dx fx t x dx és egyelőség csa aor teljesül, ha α = a, α = a, β = b. De Bizoyítás: Nyilvá fx t x dx = f xdx + t xdx fxt xdx. = fx α α + fxt xdx = α cos x + β si x dx = = α fxdx+ fx cos xdx + β α a + α a + β b. = fx si xdx = A t x defiíciójából öyű elleőrizi, hogy: t xdx = α + α + β. = Ezért fx t x dx = f xdx+α+ α a + α+β = α a + β b = = f xdx+α a + a + α a + β b = a + b, = amie a miimuma α = a, α = a, β = b eseté lesz, ahoa már övetezi a tétel. A miimum eseté: fx s x dx = f xdx ahoa apju, hogy a + fx dx a + a + b, = a + b. = Mivel ez mide eseté igaz, fx dx a + a + b. = A övetező, itt em bizoyított állítás azt modja i, hogy itt egyelőség áll:. tétel Parseval-formula. Ha a szerit periodius fx Riema-itegrálható a [, ] itervallumba, aor fx dx = a + a + b. = Ebből már övetezi, hogy égyzetes átlagba a részletösszeg özel va az fx függvéyhez: fx s x dx =. Példa: A Parseval formulát haszálju az {, < x <, fx =, < x függvéy eseté! Megoldás: Tudju, hogy a em-ulla Fourieregyüttható: a = 3, b =, =,,.... 3

16 Ezért 5 = fx dx = a + a + b = ahoa redezés utá = 4, , 8 = Fourier-sor potoéti overgeciája A övetezőbe arra eressü választ, hogy a fet apott Fourier-sor milye feltétele eseté állítja elő az fx periodius függvéyt. Ehhez szüség va a övetező defiicióra:. defiíció. Az fx függvéy szaaszosa folytoos az I itervallumo, ha véges so pot ivételével az fx folytoos és ahol szaadása va, ott létezi a bal és jobboldali határérté. A feti defiícióra támaszodva már megadhatju, hogy a Fourier-sor milye apcsolatba va az fx-szel. 3. tétel. Tegyü fel, hogy az fx és f x függvéye szaaszosa folytoosa a [, ]-be. Eor a Fouriersor értée az fx folytoossági potjaiba megegyezi fx-szel, míg szaadási potoba a bal és jobboldali határérté átlagát veszi fel. A feti, em bizoyított tétel övetezméye: Követezméy: Ha a szerit peiodius fx függvéy olya, hogy a [, ] itervallum felbotható véges so itervallumra úgy, hogy egy részitervallumo a függvéy mooto és folytoos, a szaadási potoba létezi a bal ill. jobboldali határérté, aor a Fourier-sor előállítja a függvéyt az fx folytoossági potjaiba és a szaadási helyee a Fourier-sor az fx ottai bal és jobboldali határérté átlagát veszi fel. Példá:. a Fejtsü Fourier-sorba az fx = x, ha < x < szerit periodius függvéyt! b Határozza meg f értéleit úgy, hogy fx midehol folytoos legye! Megoldás: A határozott itegrál defiíciója alapjá: továbbá és [ x [ x a = a = ] si x b = [ cos x ] cos x cos + xdx =, x cos xdx = ] si x =, x si xdx = [ si x cos x ] dx = dx = =. Így a Fourier-sor: si x si 3x si x A overgeciáról szóló tétel alapjá az f = választás ell ahhoz, hogy a Fourier-sor előállítsa a függvéyt a szaadási helye. Megjegyezzü, hogy az x = helyettesítés a övetezőt adja: = f si si 3 = si = , 4 = , ami em olya meglepő, mivel taultu, hogy arctgx = x x3 3 + x ha < x <, 5 ami a fetie alapjá x = és x = eseté is igaz. 4

17 . Fejtsü Fourier-sorba az függvéyt! fx = si 3 x Olya a, a, b valós számoat ell találu, amelyeel si 3 x = a + a cos x + b si x. = A liearizációs formulá szerit: si 3 x = si x si x = cos x si x = si x si x cos x = si x 4 si 3x + si x = 3 4 si x si 3x, 4 a emulla Fourier-együtthatóá: b = 3 4 és b 3 = Páros és páratla függvéye Az alábbiaba azt godolju meg, hogy páros és páratla függvéye eseté hogya egyszerűsödi le az együttható iszámítása. A továbbiaba felhaszálju, hogy ha gx egy szerit periodius függvéy, aor a [, ] itervallumo vett itegrál megegyezi a [, ] itervallumo vett itegrállal, gxdx = gxdx.. Legye fx egy páros függvéy. Eor fx párossága miatt a = fxdx = fxdx = továbbá fx cos x párossága miatt a = fx cos xdx = fx cos xdx. Mivel fx si x páratla, b = fx si xdx = fxdx, fx cos xdx = fx si xdx =., tehát a Fourier-sor em tartalmaz sziuszos tagoat, emiatt ezt a Fourier-sort tiszta osziuszos Fouriersora modju.. Most legye fx egy páratla függvéy. Eor fx páratlasága miatt a = fxdx = fxdx =, továbbá fx cos x páratlasága miatt a = fx cos xdx = fx cos xdx = Mivel fx si x páros, b = fx si xdx = fx si xdx, fx si xdx = emiatt ez a Fourier-sor csa sziuszos tagoat tartalmaz, ezt tiszta sziuszos Fourier-sora modju. Példá:. Fejtsü tiszta sziuszos Fourier-sorba az függvéyt! fx = x x x Megoldás: A függvéyt a [, ] itervallumo úgy egészítjü i, hogy a [, ] itervallumba páratla legye. Erre a függvéyre már alalmazhatom a feti épleteet. A részleteet mellőzve a övetezőt apju b = b = fx = 8 x x si xdx = 8 3, si 3x si 5x si x Magyarázza meg, hogy a orábba iszámolt fx = x, < x < szerit periodius függvéy Fourier-sora miért em tartalmaz osziuszos tagot! Megoldás: Teitsü a gx = fx függvéyt. Ez már páratla lesz, emiatt az ő Fourier-sora csa sziuszos tagoat tartalmaz. Ehhez a Fourier-sorhoz hozzáadva -et megapju fx Fourier-sorát. 5

18 5. T szerit periodius függvéye Fourier-sora Tegyü fel, hogy fx egy T szerit periodius, a [, T ]-be Riema itegrálható függvéy. Eor őt a övetező alaú Fourier-sorba fejthetjü: ahol és a + = a = T b = T a cos T x + b si T x, a = T T T T fxdx, fx cos T xdx fx si T xdx. A overgeciára hasoló tétel modható i, mit ami a szrit periodius függvéyere voatozi. A részleteet mellőzzü. 6

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Numerikus sorok, Taylor-sorok, Fourier-sorok Kidolgozott feladatok

Numerikus sorok, Taylor-sorok, Fourier-sorok Kidolgozott feladatok Numerius soro, Taylor-soro, Fourier-soro Kidolgozott feladato.példa: Vizsgálju meg a átalaításoal apju, hogy 5 umerius sor overgeciáját. Azoos 5 5 4 4 5 5 5 5 ; 4 4 A sor tehát szétbotható ét mértai sor

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

90 Folytonos függvények. IV. Folytonos függvények

90 Folytonos függvények. IV. Folytonos függvények 9 Folytoos függvéye IV Folytoos függvéye Az előző fejezetbe adott f : D függvéy viseledését a D halmaz torlódási potjáa öryezetébe vizsgáltu Az pot em feltétleül tartozott a D halmazhoz ( D ) Ebbe a fejezetbe

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Számelméleti érdekességek dr. Kosztolányi József, Szeged

Számelméleti érdekességek dr. Kosztolányi József, Szeged Magas szitű matematiai tehetséggodozás Számelméleti érdeessége dr. Kosztoláyi József, Szeged A számelmélet bőveledi olya érdésebe, problémába, összefüggésebe, amelye elemi módszereel megözelíthető. Bizoyos

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

A fogótétel alkalmazása sorozatok határértékének kiszámolására

A fogótétel alkalmazása sorozatok határértékének kiszámolására A fogótétel alalmazása sorozato határértéée iszámolására Tuzso Zoltá, Széelyudvarhely Mide izoyal ics más olya matematiai tétel amelye olya so megevezése lee, mit az úgyevezett fogótétele, amelye gyaori

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

I. Sorozatok. I.1. Sorozatok megadása

I. Sorozatok. I.1. Sorozatok megadása Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

V. Oszthatóság a természetes számok halmazában

V. Oszthatóság a természetes számok halmazában V Oszthatóság a természetes számo halmazába V Általáos fogalma az oszthatósággal apcsolatba A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelműe léteze q és r természetes

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

A teveszabály és alkalmazásai

A teveszabály és alkalmazásai A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

m,p) binomiális eloszlás.

m,p) binomiális eloszlás. A Valószíűségszámítás I. előadássorozat hatodi témája. Néháy fotos diszrét eloszlás. Ismertetem éháy fotos diszrét eloszlás defiicióját, és tárgyalom eze legfotosabb tulajdoságait. Az eloszláso bevezetés

Részletesebben

I. FEJEZET: ANALÍZIS... 3

I. FEJEZET: ANALÍZIS... 3 Tartalomjegyzék I. FEJEZET: ANALÍZIS... 3.. NUMERIKUS SOROZATOK... 3... Numerikus sorozatok: határérték, mootoitás, korlátosság... 3..2. A Cauchy-féle általáos kovergecia kritérium... 5..3. Sorozatok közgazdaságtai

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

Matematika szigorlat (A1-A2-A3)

Matematika szigorlat (A1-A2-A3) Matematika szigorlat (A1-A2-A3) szóbeli kérdések kidolgozás ikkel, 2014-2016 Felhaszált források: 1. Szilágyi Brigitta előadásai készült saját jegyzet 2. Obádovics J. Gyula, Szarka Zoltá Felsőbb matematika

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Járatszerkesztési feladatok

Járatszerkesztési feladatok Járatszeresztési feladato 1 Járatszeresztési feladato DR. BENKŐJÁNOS Agrártudomáyi Egyetem GödöllőMezőgazdasági Géptai Itézet A járat alatt a logisztiába általába a járműve meghatározott több állomást

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok Soozato 5 I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK I.. Soozato A legtöbb embe szóicsébe szeepel a soozat szó. Ez azt jeleti, hog edelezi valamile soozatfogalommal. Megéti, ha a miet sújtó

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

SZÁMHALMAZOK Halmazábrán ábrázolom a valós számok halmazát és részhalmazait (néhány példával). (C) pl. 1/4; 1/2. pl. 1;2;0;-1; N pl. 0. pl.

SZÁMHALMAZOK Halmazábrán ábrázolom a valós számok halmazát és részhalmazait (néhány példával). (C) pl. 1/4; 1/2. pl. 1;2;0;-1; N pl. 0. pl. 2. tétel Számhalmazo (a valós számo halmaza és részhalmazai), oszthatósággal apcsolatos problémá, számredszere. SZÁMHALMAZOK Halmazábrá ábrázolom a valós számo halmazát és részhalmazait (éháy példával).

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

24. tétel Kombinatorika. Gráfok.

24. tétel Kombinatorika. Gráfok. Mgyr Eszter Emelt szitő érettségi tétele 4. tétel Komitori. Gráfo. Komitori: A mtemti zo elméleti területe, mely egy véges hlmz elemeie csoportosításávl, iválsztásávl vgy sorrederásávl fogllozi. Permutáció

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematiai logia, bizoyítási módszere I. Elméleti összefoglaló Logiai művelete A matematiai logia állításoal foglalozi. Az állítás (vagy ijeletés) olya ijelető modat, amelyről egyértelműe eldöthető,

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

A természetes számok halmaza (N)

A természetes számok halmaza (N) A természetes számo halmaza (N) A természetes számoat étféleéppe vezethetjü be: ) A Peao-féle axiómaredszerrel ) Evivalecia osztályo segítségével ) A természetes számo axiomatius értelmezése. A Peao-axiómá

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

n*(n-1)*...*3*2*1 = n!

n*(n-1)*...*3*2*1 = n! Kombiatoria Permutáció: egymástól ülöböző elem egy meghatározott sorredbe való elredezése az elem egy permutációja. Az összes permutáció (ülöböző sorrede) száma: P! 0!: *(-)*...***! Ismétléses permutáció:

Részletesebben