Gyakorló feladatok II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gyakorló feladatok II."

Átírás

1 Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz október

2 Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt, hogy az a : N R sorozat a felülről em korlátos, c em mooto övekedő, b em korlátos, d em mooto csökkeő. F2. Korlátosság és mootoitás szempotjából vizsgálja meg az alábbi sorozatokat: a számtai sorozat; c a := + =, 2,...; 2 d b mértai sorozat; a := e a := 2 N; f a := =, 2,...; N. F3. Igazolja, hogy ha az a, N valós számsorozat mooto, akkor a számtai közepekkel képzett sorozat is mooto. σ := a + a a =, 2,... Számsorozat határértéke F4. Mutassa meg, hogy ha egy sorozat- a ba véges számú tagot bárhogya megváltoztatuk, b ba véges számú tagot beiktatuk, c ból véges számú tagot elhagyuk, ez a sorozatak sem a kovergeciáját, sem a határértékét em befolyásolja. F5. Mit jelet az, hogy az a sorozatak 2 koverges? em határértéke? Lehet-e egy ilye sorozat F6. Fogalmazza meg pozitív állítás formájába azt, hogy egy a : N R sorozat em koverges! Igazolja, hogy a, N sorozat em koverges, azaz diverges. F7. Tegyük fel azt, hogy az A R szám mide köryezete az a : N R sorozatak végtele sok tagját tartalmazza. Következik-e ebből az, hogy az a sorozat koverges? F8. Mutassa meg, hogy ha egy sorozat koverges és a határértéke pozitív, akkor egy idextől kezdve a sorozat midegyik tagja szité pozitív. F9. Értse meg és jegyezze meg a kovergecia defiíciójába szereplő jelek jeletését. Ezek szite bármelyik más kombiációja külöbözik a kovergecia defiíciójától. Például: Tegyük fel, hogy az a : N R sorozat határértéke az A R szám. Igaz-e az, hogy 0 N, hogy ε > 0-ra és > 0 -ra a A < ε? 2

3 F0. A határérték defiíciója alapjá igazolja az alábbi egyelőségeket: + a lim + 2 = + ; 2 b lim = 3 ; c lim 4 = + ; d lim = ; e lim = ; f lim = ; g lim = + ; h lim = F. Igazolja, hogy lim a = 0 lim a = 0. F2. Tegyük fel, hogy a emegatív tagú a sorozat az A valós számhoz kovergál. Bizoyítsa be, hogy a A 0; b a a sorozat is koverges, és lim a = A. Mit lehet modai az a sorozat határértékéről akkor, ha az a sorozat + -hez tart? F3. Nevezetes sorozatok. A bizoyítással együtt jegyezze meg a következő állításokat: a Tetszőleges c R eseté a c N kostassorozat koverges, és lim c = c. b lim = 0, c A sorozat diverges. d Mértai sorozat. Legye q R. A q mértai sorozat potosa akkor koverges, ha q <, vagy q =, és lim q = 0, ha q <, ha q = +, ha q >. e Mide a > 0 valós számra az a sorozat koverges, és f Az sorozat koverges, és lim =. lim a =. g Ha k rögzített természetes szám és a > rögzített valós szám, akkor az k /a k sorozat koverges és lim a = 0. h Mide a R eseté az a a sorozat koverges, és lim! i Az! sorozat koverges, és j Az a := koverges. Legye! lim = 0.! = 0. + N sorozat mooto övekedő és felülről korlátos, tehát e := lim + N. 3

4 Megjegyzés. Az + / sorozat határértékére külö szimbólum bevezetéséek idoka a következő. Igazolható, hogy ez a határérték irracioális, sőt traszcedes szám. Ez utóbbi azt jeleti, hogy ics olya egész együtthatós poliom, amiek ez a szám gyöke lee. A 2 szám például irracioális, de em traszcedes szám, mert 2 gyöke az x 2 2 = 0 egyeletek. Az e számot Euler vezette be az 748-ba megjelet Itroductio i Aalysi Ifiitorum című mukájába. k Mide x R számra lim x + = e x. F4. A koverges sorozatokra voatkozó tételek alapjá határozza meg a következő sorozatok határértékét! 3 7 a a := N; b a := N; c a := N; d a := 3 2 N; e 3 ; f + ; g ; h ; i 2, N ; j , N ; 3 k a := 2 =, 2,...; l a := =, 2,...; m ; ; + o a := N; p a := N; + 3 q a := N; r a := N; + 5 F5. Határozza meg a következő sorozatok határértékét: a a := =, 2,...; b a := + 2+ N; 2 c a := + = 2, 3,...; d a := N; e a := = 2, 3,...; f a := = 8, 9, F6. Igaz-e, hogy ha a a koverges és a + b koverges b koverges; b a koverges és a b koverges b koverges; c a koverges és b diverges a + b diverges; d a koverges és b diverges a b diverges; e a diverges és b diverges a + b diverges; f a diverges és b diverges a b diverges? 4

5 Végtele számsorok F7. Nevezetes sorok. Bizoyítsa be és jegyezze meg a következő állításokat: a Mértai sor. Legye q R. A q mértai sor potosa akkor koverges, ha q < és + b A c A d A + q = + q + q 2 + q 3 + q 4 + = q + sor koverges és harmoikus sor diverges. sor diverges. + =. q <. e A + sor koverges és 2 2 < 2. f Hiperharmoikus sor. Legye α rögzített valós szám. A sort hiperharmoikus sorak evezzük. Eek kovergeciájára a következő teljesül: { koverges α > α diverges α. g A! sor koverges és + α! = + + 2! + 3! + 4! + = e. h A + = sor koverges Leibiz típusú sor. 4 F8. Sorok összegéek meghatározása: A részletösszeg-sorozat határértékéek meghatározásával adja meg az alábbi sorok összegét: a 5 4 ; b c ; d e + 2 ; f =3 g ; h i +! ; j F9. Mutassa meg, hogy a sor diverges ; ; 2 4 ; ; ! 5

6 F20. Kovergesek-e az alábbi sorok: a 0, ; b? F2. Lehet-e koverges a a + b sor, ha a koverges és b diverges? F22. Kovergecia szempotjából mit lehet modai a a + b sorról, ha a is és b is diverges? F23. Mutassa meg, hogy az összehasolító kritériumba a emegativitás feltétele em hagyható el. Adjo meg tehát olya a és b sorozatokat, amelyekre a b N teljesül, a b sor koverges, de a a sor diverges. F24. Kovergecia szempotjából vizsgálja meg az alábbi sorokat: a 2 ; b 2 2! ; c 2 ++ ; d ; + + e + 2 ; f. F25. Az alábbi sorok közül melyek kovergesek? a! 2 ; b 2 2 ; =2 c! 2 2! ; d =50 e! 2 ; f 2 2 ; g ; h i 2 + ; j + 2! 3 2!! ; ; + 2 ; k! ; l 2! ; k= m ; 4! +/ ; k= o ; p k= ; F26. Váltakozó előjelű sorok kovergeciáját a Leibiz-kritériummal vizsgálhatjuk. Sok esetbe a kovergecia téye következik abból is, hogy a szóba forgó sor abszolút koverges. Vizsgálja meg, hogy az alábbi sorok divergesek, feltételese kovergesek, vagy abszolút kovergesek-e? 6

7 a ; b ; c ; d F27. Koverges-e az sor? F28. Végtele tizedestörtek. a Adja meg az 3, 7 9, 2 5 számok tizedes tört alakját. b Írja fel p q alakba p, q N a következő számokat: 0, 23; 7, ; 0, 7; 0, ; 0, F29. Sorok összegéek közelítő meghatározása I. Igazolja, hogy az alábbi sorok kovergesek. Számítsa ki az s 4 részletösszeget, és becsülje meg s 4 -ek a sor összegétől való eltérését. Ezek alapjá adjo meg olya itervallumot, amelybe a sor összege bee va. a! ; b 2 ; c + 2 ; d!2. F30. Sorok összegéek közelítő meghatározása II. Mutassa meg, hogy az alábbi sorok kovergesek. Határozza meg, hogy milye idexű részletösszegei közelítik meg a sor összegét a megadott ε-ál kisebb hibával. Számítsa ki a megfelelő s részletösszeget, és ezek alapjá adja meg azt az itervallumot, amelybe a sor összege bee va. Háy tizedesjegyig potos a közelítés? a!, ε = 0 2 ; b 2, ε = 0 2 ; c +, ε = 0 4 ; d!!4, ε =

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

EGY ÚJ SZÁMHÁROMSZÖG A

EGY ÚJ SZÁMHÁROMSZÖG A BELVÁROSI ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM BÉKÉSCSABA EGY ÚJ SZÁMHÁROMSZÖG A KOMBINATORIKÁBAN 0 3 4 5 6 7 8 9 0 0 0 0 3 3 0 4 9 8 6 0 5 44 45 0 0 0 6 65 64 35 40 5 0 7 854 855 94 35 70 0 8 4833 483 740 464

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az + + 4 + + +... végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = + +

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

PMMANB 311 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

PMMANB 311 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK M A T E M A T I K A I. PMMANB 3 segédlet a PTE PMMK építőmérök hallgatói részére Az építész- és az építőmérök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3./000.0

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA.. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika. elektronikus

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

végtelen sok számot?

végtelen sok számot? Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó!

Takács M., Sorok elmélete és numerikus módszerek. Kedves Olvasó! Tkács M., Sorok elmélete és umerikus módszerek Kedves Olvsó! A Sorok elmélete és umerikus módszerek mérökhllgtókk című köyv elsősorb Szbdki Műszki Szkőiskol hllgtóik készült, hrmdik élévbe okttott Numerikus

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Rádiókommunikációs hálózatok

Rádiókommunikációs hálózatok Rádiókommuikációs hálózatok Készült az NJSZT Számítógéphálózat modellek Tavaszi Iskola elöadás-sorozataihoz. 977-980. Gyarmati Péter IBM Research, USA; Budapest Föváros Taácsa. I this paper we show a somewhat

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

I. Sorozatok. I.1. Sorozatok megadása

I. Sorozatok. I.1. Sorozatok megadása Mgyr Zsolt: Alízis özépisoláb I Sorozto oldl Def A pozitív egész számo hlmzá értelmezett számértéű függvéyeet sorozto evezzü Megjegyzés: Egyes tárgylási módob éyelmességi szempotból em N R függvéyeről,

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

kiértékelésének technikája

kiértékelésének technikája 1 H NMR titrálások felvételéek és kiértékeléséek techikája Midazokak, akik elıször próbálkozak NMR titrálásokkal. Készítette: Dr. Lázár Istvá DE Szervetle és Aalitikai Kémiai Taszék Debrece, 2006. jauár

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden Analízis-lexikon abszolút maximumhelye Legyen hogy tetszőleges függvény, és része értelmezési tartományának Azt mondjuk, az -nek -ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha minden esetén

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről Vác Város Ökormáyzat 11 /2004. (IV.30.) számú redelet az ökormáyzati beruházások és felújítások redjéről Vác Város Képviselőtestülete az ökormáyzati beruházások és felújítások egységes szemléletű gyors

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus)

Alkalmazott tudományok Irodalom - Nyelvtudomány. Lektorálták: Dr. Fehér Zsuzsanna (PEME) Prof. Dr. M. H. Tewolde (Edutus) Alkalmazott tudomáyok Irodalom - Nyelvtudomáy Lektorálták: Dr. Fehér Zsuzsaa (PEME) Prof. Dr. M. H. Tewolde (Edutus) Tartalom Fekete Imre: Ekvivales Lax-stabilitási fogalom és alkalmazása a traszport egyeletre

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

2. modul Gazdasági matematika

2. modul Gazdasági matematika Matematika A. évfolyam. modul Gazdasági matematika Készítette: Lövey Éva Matematika A. évfolyam. modul: GAZDASÁGI MATEMATIKA Taári útmutató A modul célja Időkeret Ajálott korosztály Modulkapcsolódási potok

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

6. Moduláris programtervezés

6. Moduláris programtervezés A visszavezetés techikájáak megértése, elsajátítása ömagába köyű feladat. Alkalmazása akkor válik ehézzé, amikor egy összetett probléma megoldásához egyszerre több programozási tételt is fel kell haszáli.

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

1. Fejezet A sorozat fogalmának intuitív megközelítése

1. Fejezet A sorozat fogalmának intuitív megközelítése SOROZATOK SZÁMTANI, MÉRTANI ÉS HARMONIKUS HALADVÁNYOK Körtesi Péter, Szigeti Jeő. Fejezet A sorozt foglmák ituitív megközelítése A sorozt számok egy redezett felsorolás, számokt sorozt tgjik evezzük. Egy

Részletesebben

A szűréstechnika új világa

A szűréstechnika új világa HU A szűréstechika új világa Tiszta megoldás az ipari szeyeződésekre erőművek épületgépészet acélipar papíripar Ipari szűrők a DANGO & DIENENTHALTÓL A DANGO & DIENENTHAL Filtertechik GmbH immár kb.70 éve

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után

MATEMATIKA C 12. évfolyam 1. modul Sorban, egymás után MATEMATIKA C. évflyam. mdul Srba, egymás utá Készítette: Kvács Kárlyé Matematika C. évflyam. mdul: Srba egymás utá Taári útmutató A mdul célja Időkeret Ajáltt krsztály Mdulkapcslódási ptk Srzat fgalma,

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám 71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés NBG GI866G4. Statisztika fogalma. Statisztikai alapfogalmak. Statisztika fogalma Statsztka Sportszervező BSc képzés NBG GI866G4 010-011-es taév II félév Statsztka alapfogalmak Oktató: Dr Csáfor Hajalka főskola doces Vállalkozás-gazdaságta Tsz E-mal: hcsafor@ektfhu Statsztka alapfogalmak

Részletesebben