Analízis feladatgy jtemény II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Analízis feladatgy jtemény II."

Átírás

1 Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához ( taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003

2 Tartalomjegyzék I. Feladatok 3. Valós sorozatok Valós sorozat fogalma. Elemi tulajdoságok Koverges és diverges sorozatok. Sorozatok határértéke Sorozatok kovergeciájáak és határértékéek a vizsgálata Rekurzív sorozatok határértéke Sorozat esz szuperiorja és esz iferiorja II. Megoldások 7. Valós sorozatok Valós sorozat fogalma. Elemi tulajdoságok Koverges és diverges sorozatok. Sorozatok határértéke Sorozatok kovergeciájáak és határértékéek a vizsgálata Rekurzív sorozatok határértéke Sorozat alsó és fels határértéke

3 I. rész Feladatok 3

4

5 . Valós sorozatok 5. Valós sorozatok.. Valós sorozat fogalma. Elemi tulajdoságok Deíciók, tételek és megjegyzések D. A természetes számok halmazá értelmezett függvéyeket sorozatokak hívjuk. Ha X egy tetsz leges emüres halmaz, akkor x : N X egy X-beli sorozat. Eek a függvéyek az N helye felvett x() helyettesítési értékét az x sorozat -edik tagjáak evezzük és az x szimbólummal jelöljük, az számot pedig az x tag idexéek modjuk. Ezt felhaszálva magát a sorozatot gyakra úgy jelöljük, hogy (x, N) vagy (x ). D. Egy a : N R függvéyt valós sorozatak evezük. Mj. Mj. Mj3. Mide rögzített r egész szám eseté az { Z r} R függvéyeket is sorozatokak tekitjük. A további deíciók, tételek ezekre is érvéyesek leszek, de ezt külö em fogjuk modai. Sorozatok megadása. Egy a = (a ) : N R sorozat megadása tehát azt jeleti, hogy mide N eseté megadjuk a -et. Ez törtéhet explicit módo. Például: (a) a := 3 + ( N), (b) a := 00 ( = 0,,,...), { (c), ha =, 3, 5,... a :=, ha =, 4, 6,.... Sorozatot megadhatuk azoba úgy is, hogy megadjuk a sorozat els (éháy) tagját, a további tagokat pedig az el ttük lev (k) felhaszálásával deiáljuk. Az ilye esetekbe azt modjuk, hogy a sorozatot rekurzív módo adtuk meg. Például: (a) a := α, a + := a + d ( N), ahol α és d rögzített valós számok; (b) a := α, a + := α + a ( N), ahol α rögzített valós szám. Sorozatok ilyeté formá való megadását egylépéses rekurzióak evezzük. k-lépéses rekurzióról beszélük akkor, ha a sorozat egy tagját az el tte lev k-tag függvéyébe adjuk meg. Kétlépéses rekurzióra egy példa: a :=, a := és a + := a + + a ( N). (Ezt a sorozatot Fiboacci-sorozatak evezzük.) A rekurzív sorozatokról. o A rekurzív összefüggésb l kiidulva éháy esetbe viszoylag egyszer e meg lehet adi a sorozat -edik tagját az idex függvéyébe (l. a feladatokat). o Vessük fel azt a kérdést, hogy (például egylépéses) rekurzióval vajo jól deiáltuk-e egy sorozatot, azaz ha megadjuk a sorozat kezd tagját és azt, hogy az (+)-edik tag hogya függ az -edik tagtól, akkor ezek egyértelm e meghatározzák-e már mide természetes szám eseté a sorozat -edik tagját. Az ituíciók szerit erre a kérdésre ayira yilvávalóa igaz a válaszuk, hogy az els pillaatba a kérdés felvetése sem t ik idokoltak. A megérzésük természetese helyes, és ezt be is lehet bizoyítai. Az egylépéses rekurziókra voatkozóa érvéyes a

6 6. Valós sorozatok rekurziótétel: Ha f : R R egy tetsz leges függvéy és α R egy adott valós szám, akkor! a = (a ) : N R sorozat, amelyre a = α és a + = f(a ) ( N) teljesül. Megjegyezzük még azt is, hogy többlépéses rekurziókra is hasoló állítás érvéyes. T. Az (a ) : N R és a (b ) : N R sorozat akkor és csak akkor egyel, ha bármely idex eseté az azoos idex tagok egyel ek, azaz a = b ( N). D3. Az a : N R sorozat mooto öveked [szigorúa mooto öveked ], ha mide N eseté a a + [a < a + ]; mooto csökke [szigorúa mooto csökke ], ha mide N idexre a a + [a > a + ]. Eze sorozatok közös eve a mooto sorozat. Mj4. Sorozat mootoitását sokszor a teljes idukció elvével igazolhatjuk. Gyakra haszos lehet, ha a mootoitás deíciójába szerepl egyel tleség helyett egy vele ekvivales egyel tleséget próbáluk igazoli. Például: a + a ( N) a + a 0 ( N); ha a > 0 ide -re, akkor a + a ( N) a + a ( N). D4. Az (a ) : N R sorozat alulról korlátos, ha létezik olya k R szám, hogy mide N idexre a k; felülr l korlátos, ha létezik olya K R szám, hogy mide N eseté a K; korlátos, ha alulról is és felülr l is korlátos. T. Egy számsorozat potosa akkor korlátos, ha az értékkészlete korlátos, azaz ha létezik olya K R + szám, hogy a K mide N eseté. Mj5. Sorozat korlátosságát, például egy megsejtett fels korlátot sok esetbe a teljes idukció módszerével igazolhatjuk. D5. Az a = (a ) : N R sorozat értékkészletéek szuprémumát [imumát] a sorozat szuprémumáak [imumáak] evezzük: Feladatok sup a := sup R a = sup{a N} [if a := if R a = if{a N}]. F. Mutassa meg, hogy a tetsz leges α, d és q valós számmal képzett (a) a := α, a + := a + d ( N) számtai sorozat -edik tagja a = α + ( )d ( N); (b) a := α, a + := qa ( N) mértai sorozat -edik tagja a = αq ( N). F. Tetsz leges α, A és B valós számokból kiidulva képezzük az a := α, a + := Aa + B ( N) rekurzív módo megadott sorozatot. Az α, A, B és az számok függvéyekét adja meg a sorozat -edik tagját. (Ha A =, akkor (a ) egy számtai-, ha B = 0 akkor pedig egy mértai sorozat.)

7 .. Valós sorozat fogalma. Elemi tulajdoságok 7 F3. (Fiboacci, 0.) Háy yúlpár származik az év végéig egyetle yúlpártól, ha mide pár mide hóap végé egy újabb párt hoz létre, és ezek az utódpárok életük második hóapjától kezdve szaporodak? F4. Mutassa meg, hogy az a :=, a :=, a + := a + a + ( N) Fiboacci-sorozat -edik tagja ( a = ( + 5 ) ( ) 5 ) ( N). 5 F5. Hogya lehet az a :=, a :=, a + := a +a + ( N) Fiboacci-sorozat -edik tagjára az el z feladatba mutatott összefüggést megkapi? F6. Határozza meg az alábbi sorozatok -edik tagját az idex függvéyekét: (a) a := és a + := a ( N), (b) a := 0 és a + := a ( N), (c) a :=, a := és a + := a + + a ( N). F7. Mutassa meg, hogy az a := ( N) sorozatra a következ teljesül: a második tagtól kezdve a sorozat midegyik tagja a szomszédos tagok harmoikus közepe, azaz a = + ( =, 3,...). a a Ezért szokás az a := ( N) sorozatot harmoikus sorozatak evezi. F8. Pozitív állítás formájába fogalmazza meg azt, hogy az (a ) : N R sorozat (a) felülr l em korlátos, (c) em mooto öveked, (e) em korlátos, (b) alulról em korlátos, (d) em mooto csökke, (f) em mooto. F9. Korlátosság és mootoitás szempotjából vizsgálja meg az alábbi sorozatokat: (a) számtai sorozatok, (b) mértai sorozatok, (c) a := + ( =,,...), (d) a := ( ) (e) ( ), (f) ( ( ) 3), (g) a := ( N), (h) a := 7 ( =,,...), ( N). F0. Igazolja, hogy ha az (a, N) valós sorozat mooto, akkor a számtai közepekkel képzett σ := a + a + + a ( N) sorozat is mooto. Mit lehet modai a (σ ) sorozat korlátosságáról?

8 8. Valós sorozatok F. Mutassa meg, hogy az (a) a := ( N) sorozat mooto öveked és felülr l korlátos, (b) a := ( N) sorozat mooto öveked és felülr l em korlátos. Mj6. Itt hívjuk fel a gyelmet a következ kre. A mootoitás midkét esetbe yilvávaló. Jóval ehezebb a korlátosság kérdése. A problémát az okozza, hogy ehéz el re láti azt, hogy a sorozatok tagjai agy idexek eseté hogya viselkedek. Midkét sorozat -edik tagját úgy képezzük, hogy az el tte lev taghoz agy -ekre egy kicsi számot aduk. A feladat állítása szerit tehát az ilye esetekbe el fordulhat az is, hogy korlátos sorozatot kapuk, de az is el fordulhat, hogy az így képzett sorozat em lesz korlátos. (Megjegyezzük még azt is, hogy a korlátosságra voatkozó sejtést pl. számítógépes kísérletezéssel lehete kialakítai.) F. Mutassa meg, hogy az (a) a := ( + ) ( N) sorozat mooto öveked és korlátos, (b) a := ( + ) + ( N) sorozat mooto csökke és korlátos. F3. Mooto-e az a := ( ) ( N) sorozat? F4. Határozza meg az alábbi sorozatok szuprémumát és imumát, legkisebb és legagyobb tagját, ha azok létezek: (a) ( ( ), N), (b) ( ( ), N ), (c) (, N), (d) ( , N )... Koverges és diverges sorozatok. Sorozatok határértéke Deíciók, tételek és megjegyzések D6. Az (a ) : N R valós sorozatot kovergesek evezzük akkor, ha létezik olya A valós szám, hogy eek mide köryezeté kívül a sorozatak csak véges sok tagja va, azaz ( ) A R, hogy ε > 0 eseté az { N a k ε (A)} halmaz véges. Mj7. Mivel k ε (A) = (A ε, A + ε), ezért a k ε (A) a A < ε és a k ε (A) a A ε. T3. Az (a ) : N R valós sorozat akkor és csak akkor koverges, ha ( ) A R, hogy ε > 0 számhoz 0 N, hogy 0 idexre a A < ε. Mj8. Szavakkal: Az (a ) : N R valós sorozat akkor és csak akkor koverges, ha létezik olya A R valós szám, hogy eek mide ε > 0 sugarú köryezetéhez létezik olya 0 N küszöbidex, hogy a sorozat mide 0 -ál agyobb (vagy egyel ) idex a tagja bee va az A szám ε-sugarú köryezetébe.

9 .. Koverges és diverges sorozatok. Sorozatok határértéke 9 T4. Ha az (a ) : N R sorozat koverges, akkor egyetle olya A R szám létezik, amelyre ( ) (illetve a vele ekvivales ( )) teljesül. Ezt az A számot az (a ) sorozat határértékéek evezzük, és az alábbi szimbólumok valamelyikével jelöljük: Mj9. a := A, (a ) := A, + és úgy olvassuk, hogy esz a, ha tart + -hez egyel A-val, esz a egyel A-val. Azt a téyt, hogy (a ) = A így is jelöli fogjuk: a A ( + ) vagy a + A, és ezt úgy olvassuk, hogy a tart vagy kovergál A-hoz, ha tart + -hez. T5. Legye (a ) : N R egy valós sorozat. Ekkor Mj0. Mj. Mj. (a ) = A R ε > 0 számhoz 0 N, hogy 0 idexre a A < ε. Szavakkal: Az (a ) sorozatak a A R valós szám akkor és csak akkor határértéke, ha az A szám mide köryezetéhez létezik olya küszöbidex, hogy a sorozat mide eél agyobb (vagy egyel ) idex tagja bee va a szóba forgó köryezetbe. Pogyolá fogalmazva: Az a téy, hogy az (a ) sorozatak az A R valós szám a határértéke azt jeleti, hogy a sorozat agy idex tagjai közel vaak az A számhoz. (Felhívjuk a gyelmüket arra, hogy ez a kissé potatla megfogalmazás em helyettesítheti a potos deíciót!) Az ε > 0 számot hibakorlátak is evezik. Világos, hogy az 0 küszöbidex függ az ε számtól, ezért 0 -at az ε-hoz tartozó küszöbidexek is szokás hívi. Az is yilvávaló, hogy egy adott ε számhoz tartozó 0 küszöbidex em egyértelm ; ui. bármely 0 -ál agyobb természetes szám is egy jó küszöbidex. D7. Az (a ) : N R valós sorozat diverges, ha em koverges, azaz (l. (*)) A R számhoz ε > 0, illetve egy másik változatba (l. (**)) hogy az { N a k ε (A)} halmaz végtele, A R számhoz ε > 0, hogy 0 N idexhez 0 idex, amelyre a A ε. D8. Az (a ) valós sorozatak plusz végtele a határértéke (vagy az (a ) sorozat plusz végtelehez tart), ha mide P valós számhoz létezik olya 0 idex, hogy mide 0 idexre a > P teljesül, azaz P R számhoz 0 N, hogy 0 idexre a > P. Jelölés: (a ) = + vagy a + ( + ). D9. Az (a ) valós sorozatak míusz végtele a határértéke (vagy az (a ) sorozat míusz végtelehez tart), ha mide P valós számhoz létezik olya 0 idex, hogy mide 0 idexre a < P teljesül, azaz P R számhoz 0 N, hogy 0 idexre a < P. Jelölés: (a ) = vagy a ( + ).

10 0. Valós sorozatok D0. A plusz, illetve a míusz végtele ε > 0 sugarú köryezetét így értelmezzük: T6. Legye (a ) egy valós sorozat. Ekkor k ε (+ ) := ( ε, + ), illetve k ε ( ) := (, ). ε (a ) = + ε > 0 számhoz 0 N, hogy 0 idexre a k ε (+ ), (a ) = ε > 0 számhoz 0 N, hogy 0 idexre a k ε ( ). D. Azt modjuk, hogy az (a ) : N R valós sorozatak va határértéke, ha a sorozat koverges vagy plusz végtele vagy míusz végtele a határértéke. Ez azzal egyeérték, hogy ( ) A R, hogy ε > 0 valós szám eseté az { N a k ε (A)} halmaz véges, Mj3. Mj4. illetve egy másik változatba A R, hogy ε > 0 számhoz 0 N idex, hogy 0 idexre a k ε (A). A feti tulajdosággal redelkez A R elem egyértelm e meghatározott. Ezt az (a ) sorozat határértékéek evezzük. Jelölés: (a ) = A R. ( ) tehát azt jeleti, hogy va olya A R elem, amelyikek mide köryezeté kívül a sorozatak csak véges sok tagja va. Jegyezze meg jól, hogy a továbbiakba a (a ) R jelölés azt jeleti, hogy az (a ) sorozat koverges (azaz véges a határértéke), a (a ) R jelölés pedig azt fejezi ki, hogy az (a ) sorozatak va határértéke (azaz a sorozat koverges vagy + vagy pedig a határértéke). Feladatok F5. Bizoyítsa be a T3. tételt. F6. Fogalmazza meg többféleképpe azt a téyt, hogy az (a ) valós sorozat határértéke. F7. Mit jelet az, hogy az (a ) sorozatak koverges? em határértéke? Lehet-e egy ilye sorozat F8. Fogalmazza meg pozitív állítás formájába azt, hogy egy (a ) : N R sorozat em koverges! Igazolja, hogy a ( ( ), N ) sorozat em koverges, azaz diverges. F9. Tegyük fel, hogy az A R szám mide köryezete az (a ) : N R sorozatak végtele sok tagját tartalmazza. Következik-e ebb l az, hogy az (a ) sorozat koverges? F0. Tegyük fel, hogy az (a ) : N R sorozat határértéke az A R szám. Igaz-e az, hogy 0 N, hogy ε > 0 számra és 0 idexre a A < ε?

11 .. Koverges és diverges sorozatok. Sorozatok határértéke F. Koverges-e az (a ) valós sorozat, ha (a) A R és ε > 0, hogy a A < ε N eseté; (b) A R hogy ε > 0 számhoz 0 N, hogy a 0 A < ε; (c) A R és 0 N hogy > 0 idexre és ε > 0 számra a A < ε? F. Fogalmazza meg pozitív állítás formájába azt, hogy az (a ) valós sorozatak ics határértéke. F3. A határérték deíciója alapjá mutassa meg, hogy (a) (c) (e) = ; (b) = 5 ; = + ; (d) = + ; = ; (f) =. F4. A deíció alapjá dötse el, hogy va-e határértéke az alábbi sorozatokak. Melyik sorozat koverges? + (a) a := + + ( N); (b) a := + ( N); + (c) a := + ( N); (d) ( 3 3 ) ; (e) a := + ( N); (f) a := + ( N); (g) + + a := ( N); (h) a := ( N); + (i) ( + ( ) ) ; (j) ( ( ) ) ; (k) ( + ( ) ) ; (l) ( ( ) ). F5. Kovergecia szempotjából vizsgálja meg a számtai sorozatokat. F6. Tegyük fel, hogy az (a ) : N R + 0 sorozat koverges és (a ) =: A R. Bizoyítsa be, hogy (a) A 0, (b) a ( a ) sorozat is koverges és a = A. + Mit lehet modai az ( a ) sorozat határértékér l akkor, ha (a ) = +? F7. Legye m > természetes szám, és tegyük fel, hogy az (a ) : N R + 0 sorozat koverges és (a ) =: A R. Mutassa meg, hogy ekkor A 0, továbbá az ( m a, N ) sorozat is koverges és m a = m A. + Mit lehet modai az ( m a, N ) sorozat határértékér l akkor, ha (a ) = +? F8. Igazolja, hogy ha (a ) = + és létezik olya N N, hogy a b mide N természetes számra, akkor (b ) = +.

12 . Valós sorozatok.3. Sorozatok kovergeciájáak és határértékéek a vizsgálata Deíciók, tételek és megjegyzések Mj5. Sorozatok kovergeciájáak a vizsgálata és határértékéek a meghatározása a deíció alapjá ige sok esetbe em egyszer feladat. A továbbiakba olya alapvet eredméyeket ismertetük, amelyek megköyítik az ilye feladatok megoldását. A deíció egyszer következméyei T7. Tegyük fel, hogy az (a ) és a (b ) olya valós sorozatok, amelyekhez N N idex úgy, hogy a = b N idexre. Ekkor az (a ) sorozatak akkor és csak akkor va határértéke, ha a (b ) sorozatak va határértéke, és ekkor (a ) = (b ). Mj6. Ez az egyszer állítás azt fejezi ki, hogy a határérték szempotjából közömbös, hogy mi va a sorozat elejé, csupá az számít, hogy a sorozat elég agy idex tagjaira mi igaz. A sorozat határértékéek a létezése és agysága em változik, ha a sorozat véges sok tagját megváltoztatjuk, véges sok tagot beiktatuk vagy akár elhagyuk. T8. (A kovergecia egy szükséges feltétele.) Ha az (a ) : N R sorozat koverges, akkor (a ) korlátos. Mj7. A korlátosság tehát a kovergeciáak egy szükséges feltétele. A korlátosság a kovergeciáak azoba em elégséges feltétele, azaz a korlátosságból em következik a kovergecia. Például: a ( ( ) ) sorozat korlátos, de em koverges. K. Ha egy (a ) valós sorozat em korlátos, akkor (a ) diverges (azaz em koverges). D. (Részsorozat.) Legye a = (a ) : N R egy sorozat és ν = (ν ) : N N egy szigorúa mooto öveked sorozat (az ilye ν-t idexsorozatak fogjuk evezi). Ekkor az a ν = (a ν, N) sorozatot az (a ) sorozat (ν ) idexsorozat által meghatározott részsorozatáak evezzük. Mj8. Mj9. Szemléletese szólva: az a = (a ) sorozatból az a ν = (a ν ) részsorozatot úgy kapjuk, hogy az a = (a, a, a 3,...) sorozatból kiválasztjuk a ν < ν < ν 3 <... idex tagokat. Az a ν sorozat -edik tagja tehát a ν, azaz az a = (a ) sorozat ν -edik tagja. Mivel a is és ν is az N halmazo értelmezett függvéyek, ezért az a ν kompozíció is az N halmazo értelmezett függvéy (ui. D a ν = { N ν D a = N} = N), azaz a ν valóba egy sorozat. T9. (Részsorozatok határértéke.) Ha az a = (a ) sorozatak va határértéke, akkor tetsz leges ν = (ν ) idexsorozattal képzett a ν részsorozatáak is va határértéke, és a részsorozat határértéke megegyezik az eredeti sorozat határértékével: a ν = a.

13 .3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 3 K. Ha az (a ) valós sorozatak va két olya részsorozata, amelyek határértéke külöböz, akkor az (a ) sorozatak ics határértéke. Mooto sorozatok kovergeciája és határértéke T0. o Ha az (a ) : N R sorozat mooto öveked és felülr l korlátos [mooto csökke és alulról korlátos], akkor az (a ) sorozat koverges, és (a ) = sup{a N} R [(a ) = if{a N} R]. o Ha az (a ) : N R sorozat mooto öveked [mooto csökke ], akkor az (a ) sorozatak va határértéke, és (a ) = sup{a N} R [(a ) = if{a N} R]. Mj0. Az o alatti állítás szerit a mootoitás és a korlátosság együtt a kovergeciáak egy elégséges feltételele. Jegyezze meg jól, hogy ezek együttese a kovergeciáak em szükséges feltétele, azaz ha egy sorozat koverges, akkor ebb l általába em következik, hogy a sorozat mooto. A ( ( ) / ) sorozat például koverges (0 a határértéke), de em mooto. T. (A BolzaoWeierstrass-féle kiválasztási tétel.) Mide korlátos valós sorozatak va koverges részsorozata. T. Ha egy sorozat felülr l em korlátos, akkor va + -hez tartó mooto részsorozata, ha alulról em korlátos, akkor va -hez tartó mooto részsorozata. A redezés és a kapcsolata T3. (A közrefogási elv.) Tegyük fel, hogy az (a ), (b ) és (c ) valós sorozatokra teljesülek a következ k: (i) létezik olya N N idex, hogy a b c mide N idexre, (ii) az (a ) és a (c ) sorozatak va határértéke és (a ) = (c ) =: A R. Ekkor a (b ) sorozatak is va határértéke és (b ) = A. T4. Tegyük fel, hogy (a ) és (b ) valós sorozatokak va határértéke. Mj. o Ha (a ) > (b ), akkor létezik olya N N idex, hogy a > b teljesül mide N idexre. o Ha va olya N N idex, hogy a b teljesül mide N eseté, akkor (a ) (b ). Felhívjuk az Olvasó gyelmét arra, hogy az el z tétel o része em potos megfordítása a o részek. Az o -be ui. a határértékre a (a ) > (b ) szigorú egyel tleséget tettük fel, a o részbe viszot csak a (a ) (b ) relációra tudtuk következteti. Eél többet még akkor sem állíthatuk, ha az (a ) és (b ) sorozat tagjaira a szigorúbb a > b ( N) feltételt tesszük. Például: az a := +, b := ( N) sorozatokra yilvá a > b ( N) teljesül, de (a ) = (b ) =.

14 4. Valós sorozatok A m veletek és a kapcsolata D3. Az (a ) : N R ullasorozat, ha (a ) = 0, azaz Mj. ε > 0 számhoz 0 N, hogy 0 idexre a < ε. Pogyolá fogalmazva: a tetsz legese kicsi, ha elég agy. T5. o Az (a ) sorozat akkor és csak akkor ullasorozat, ha ( a ) ullasorozat. o Az (a ) : N R sorozatak az A R valós szám akkor és csak akkor határértéke, ha (a A) ullasorozat, azaz (a ) = A R (a A) = 0. 3 o Tegyük fel, hogy az (a ) és (α ) valós sorozatokra teljesülek a következ k: (i) az (α ) : N R + 0 ullasorozat, (ii) létezik olya N N, hogy a α mide N eseté. Ekkor (a ) is ullasorozat. T6. o Ha (a ) és (b ) ullasorozatok, akkor (a + b ) is ullasorozat. o Ha (a ) ullasorozat és (c ) tetsz leges korlátos sorozat, akkor (a c ) ullasorozat. Mj3. o -b l persze következik az is, hogy ullasorozatok szorzata is ullasorozat. Kihagsúlyozzuk azt, hogy az el z tételbe ullasorozatok háyadosáról em modtuk semmit. Eek oka az, hogy két ullasorozat háyadosáál mide lehetséges eset el fordulhat (l. a feladatokat). T7. (M veletek koverges sorozatokkal.) Tegyük fel, hogy az (a ) és a (b ) valós sorozat koverges és (a ) =: A R, (b ) =: B R. Ekkor o az (a + b ) sorozat is koverges, és (a + b ) = A + B; o az (a b ) sorozat is koverges, és (a b ) = AB; 3 o mide λ valós számra a (λa ) sorozat is koverges, és (λa ) = λa; 4 o ha 0 R (b) és B = (b ) 0, akkor az ( a b ) sorozat is koverges, és ( a b ) = A B. T8. (A m veletek és a határérték kapcsolata.) Tegyük fel, hogy az (a ) és a (b ) valós sorozatokak va határértéke és (a ) =: A R, (b ) =: B R. Ekkor o az (a + b ) sorozatak is va határértéke, és (a + b ) = A + B, feltéve, hogy A + B értelmezve va; o az (a b ) sorozatak is va határértéke, és (a b ) = AB, feltéve, hogy AB értelmezve va; 3 o ha b 0 ( N), akkor az ( a ) (a sorozatak is va határértéke, és ) A = b b B, feltéve, hogy A értelmezve va. B

15 Mj4..3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 5 Ha az el z tételbe szerepl m veletek valamelyikéek ics értelme, akkor az egyel ségek bal oldalá álló sorozatok határértékéek a létezésér l általába semmit sem tuduk modai. Ezeket a kritikus határértékeket rövide a (+ ) + ( ) (vagy + ), 0 (± ), ± ± szimbólumokkal szoktuk jelöli. Ezekbe az esetekbe ics általáos szabály. Pl. az A = +, B = esetbe az (a ) és a (b ) sorozat megválasztásától függ e mide el fordulhat. Lehet az, hogy az (a +b ) sorozatak va véges határértéke, vagy va végtele határértéke, de az is el fordulhat, hogy ics határértéke. Hasoló a helyzet a többi kritikus esetbe is (l. a feladatokat). Vaak azoba olya eljárások, amelyekkel az említett kritikus esetek egy jelet s része is kezelhet. Ilye a diereciálhatóság fogalmára épül ú. L'Hospital-szabály, amelyet kés bb foguk ismerteti. A Cauchy-féle kovergeciakritérium D4. Az (a ) valós sorozatot Cauchy-sorozatak evezzük, ha ε > 0 számhoz 0 N, hogy m, 0 idexre a a m < ε. Mj5. Pogyolá fogalmazva: (a ) akkor Cauchy-sorozat, ha a sorozat elég agy idex tagjai tetsz legese közel vaak egymáshoz. T9. (A Cauchy-féle kovergeciakritérium.) Az (a ) valós sorozat akkor és csak akkor koverges, ha (a ) Cauchy-sorozat. Feladatok F9. Bizoyítsa be a m veletek és a határérték kapcsolatára voatkozó T8. tételt. Nevezetes sorozatok F30. Mértai sorozat: Legye q R. A (q ) mértai sorozat határértékére a következ k teljesülek: + q = 0, ha q < =, ha q = = +, ha q > em létezik, ha q. A (q ) mértai sorozat tehát akkor és csak akkor koverges, ha q < vagy q =. F3. (a) Mide a > 0 valós szám eseté az ( a ) sorozat koverges és ( a) =. + (b) Az ( ) sorozat koverges és =. + (c) Az (!) sorozat diverges, de +! = +. F3. Az e szám értelmezése: Az ( + ) ( N) sorozat mooto öveked és felülr l korlátos, tehát koverges. Legye e := ( +. + )

16 6. Valós sorozatok Mj6. Az ( ( + /) ) sorozat határértékére külö szimbólum bevezetéséek idoka a következ. Igazolható, hogy ez a határérték irracioális, s t traszcedes szám. Ez utóbbi azt jeleti, hogy ics olya egész együtthatós poliom, amiek ez a szám gyöke lee. (A szám például irracioális, de em traszcedes szám, mert gyöke az x = 0 egyeletek.) Egy valós számot algebrai számak evezük akkor, ha va olya egész együtthatós poliom, amelyek ez a szám gyöke. ( tehát algebrai szám.) Az e számot Euler vezette be 748-ba. F33. Az e számhoz kovergáló sorozatok: (a) Az ( + ) + ( N) sorozat mooto csökke és alulról korlátos, ezért koverges. A határértéke az e szám: ( + + = e. + ) (b) Az (! ) sorozat koverges, és eek is e a határértéke: +! = e. F34. (a) A ( k= (b) A ( k= k, N ) sorozat mooto öveked és felülr l korlátos, tehát koverges. ) k, N sorozat mooto öveked és felülr l em korlátos, ezért + k = +. (Ez a sorozat tehát diverges.) k= F35. (a) Ha k rögzített természetes szám és a > rögzített valós szám, akkor k + a = 0. (b) Tetsz legese rögzített k N természetes és q < valós szám eseté k q = 0. (c) Mide a R eseté! (d) + = 0. a +! = 0. Mj7. Tekitse például az ( 3 ) sorozatot. Mivel ( 3 ) = ( ) = + ( 3 is és is akármilye agy lehet, ha elég agy), ezért a háyados határértékére voatkozó tétel erre a sorozatra em alkalmazható ( kritikus határérték). A feladat (a) részéb l azoba az következik, hogy 3 0 ( + ), ami azt jeleti, hogy a 3 tört akármilye kicsi lehet, ha elég agy, azaz sokkal agyobb, mit 3, ha elég agy. Rövide azt modjuk, hogy a ( ) sorozat er sebbe tart + -hez, mit az ( 3 ) sorozat. Általába: ha az (a ) és a (b ) sorozatak is + a határértéke (azaz (a ) = (b ) = + ), akkor azt modjuk, hogy (b ) er sebbe (vagy sokkal gyorsabba) tart + -hez, mit (a ), ha a = 0. + b

17 .3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 7 Ebbe az esetbe azt is modjuk, hogy b sokkal agyobb, mit a, ha elég agy; és ezt így jelöljük: a b, ha agy. A most bevezetett jelöléssel a feladat állításait így fejezhetjük ki: ha a > rögzített valós és k rögzített természetes szám, akkor k a! ha agy. További feladatok F36. Az alábbi sorozatok közül melyek az (, N) sorozat részsorozatai: (a) (,, 3,...), (b) (, 4, 6, 8,...), (c) (,, 4, 3, 6, 5,...), (d) (,,,, 3, 3,...). F37. Határozza meg az (/, N) sorozatak az alábbi ν = (ν, N) idexsorozatokhoz tartozó részsorozatait: (a) ν := (,, 3,...), (b) ν := (, 4, 7, 0, 3,...). F38. Tetsz leges ν idexsorozatra igazolja, hogy ν ( N). F39. Bizoyítsa be, hogy hogy ha ν, µ idexsorozatok, akkor ν µ is az. F40. Egy a sorozatról azt tudjuk, hogy az értékkészlete véges halmaz. Mutassa meg, hogy va olya ν idexsorozat, amellyel az a ν részsorozat egy kostas sorozat. F4. Mutassa meg, hogy egy a valós sorozat akkor és csak akkor em korlátos felülr l, ha va olya ν idexsorozat, hogy a ν = +. F4. Számítsa ki az alábbi sorozatok határértékét. Dötse el azt is, hogy a sorozat koverges vagy diverges. ( 3 ) 7 (a) a := ( N), (b) a := ( N), (c) a := ( N), (d) a := 3 + ) ( , (f) (e) ( ( + ) 3 + ( ) (g) ( ( N), ), ) ( ), (h). 3 + F43. Legye P (x) := α k x k + α k x k + + α x + α 0 (x R, α i R, i = 0,,,..., k) egy potosa k-adfokú poliom (azaz α k 0). Mutassa meg, hogy { P () = +, ha α k > 0 +, ha α k < 0. Mj8. A feti állítás azt fejezi ki, hogy egy poliom agy N helyeke való viselkedése csak a f együtthatójáak (azaz α k -ak) az el jelét l függ.

18 8. Valós sorozatok F44. Legye P : R R egy tetsz leges potosa r-edfokú (r N) poliomfüggvéy. Mutassa meg, hogy P ( + ) =. + P () F45. Legye P, Q poliom, és tegyük fel, hogy Q() 0 mide N eseté. Határérték szempotjából vizsgálja meg a ( P ()/Q() ) sorozatot. F46. Kovergesek-e a következ sorozatok? Ha ige, akkor mi a határértékük? (a) ( ) +, ( ) (b) + + 3, (c) ( ) + 3, ( (d) ( + )), (e) a := 3/( ( + ) ( ) ) ( =, 3, 4,...), (f) ( ) ( ), (g) F47. Tegyük fel, hogy az (a ) : N R + 0 sorozat koverges és (a ) > 0. Mutassa meg, hogy ekkor ( a ) =. F48. Tegyük fel, hogy az (a ) : N R + 0 sorozatra (a ) = + teljesül. Vizsgálja meg határérték szempotjából az ( a ) sorozatot. F49. Tegyük fel, hogy az (a ) : N R + 0 sorozatra (a ) = 0 teljesül. Vizsgálja meg határérték szempotjából az ( a ) sorozatot. F50. Koverges-e az a := ( + ) ( N) sorozat? F5. Tegyük fel, hogy az (α ) : N R + olya sorozat, amelyre α = + teljesül. Igazolja, + hogy ( + ) α = e. + α F5. Bizoyítsa be, hogy mide x R számra + ( x ) + = e x. F53. Határozza meg a következ sorozatok határértékét: (a) a := ( ) ( =,,...); (b) a := ( + ) + ( =,,...); (c) a := ( + ) ( ( 6 7) ) 3+ ( =, 3,...); (d) ; (e) a := ( 3 3) 3 ( =, 3,...); (f) a := ( + 5) /6 ( = 8, 9,...); (g) a := ( 4 + 3) ( N); (h) a := ( 4 + 3) 5 ( N); 5 5 (i) a := ( 3 + ) + ( N); (j) a := ( ( + 3)! ) ( N). +! 3

19 .3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 9 F54. Számítsa ki az alábbi sorozatok határértékét. Dötse el azt is, hogy a sorozat koverges vagy diverges. (a) (, N ), (b) ( + 00, N ), (c) a := 3 ( =,,...); (d) a := + ( N); + 3 (e) a := 3 + ( =,,...); (f) a := 3 ( =,,...); (g) a := ( N); (h) a := (i) ( ) ( + + ) ; (j) ; (k) a := + ( + ) + + () ( =,,...); (l) a := ( =,,...); + (m) a := 4 8 ( =,,...). ( N); F55. Legye a 0 és b 0 valós szám. Koverges-e az a + b ( N) sorozat? Ha ige, akkor mi a határértéke? F56. Tegyük fel, hogy az (a ) : N R sorozat koverges, A := a. Mutassa meg, hogy (a) A + < eseté az ( ( + a ) ) sorozat koverges, (b) A + > eseté az ( ( + a ) ) sorozat diverges. Mit lehet modai kovergecia szempotjából az ( ( + a ) ) sorozatról, ha A + =? F57. Határozza meg az a, b, c R paramétereket úgy, hogy legye. ( a + b + c ) = + F58. Mutassa meg, hogy ha az (a ) sorozat koverges és (a ) = A R, akkor az ( a ) sorozat is koverges és ( a ) = A. Igaz-e az állítás megfordítása? F59. Legye (b ) olya ullasorozat, amelyre 0 R (b ) teljesül. Mit lehet modai az (/b ) sorozat határértékér l? F60. Adjo meg olya (a ) és (b ) ullasorozatokat, amelyekre b 0 mide N eseté és = +, vagy ( a ) =, vagy b = c, (c egy adott valós szám) vagy em létezik.

20 0. Valós sorozatok F6. Igaz-e, hogy ha (a) (a ) koverges és (b ) diverges (a + b ), illetve (a b ) diverges, (b) (a ) diverges és (b ) diverges (a + b ), illetve (a b ) diverges, (c) (a ) koverges és (a + b ) koverges (b ) koverges, (d) (a ) koverges és (a b ) koverges (b ) koverges? F6. Keresse olya (a ), (b ) sorozatokat, amelyekre (a ) = + és (b ) = teljesül, és = +, vagy =, vagy (a + b ) = c, (c egy adott valós szám) vagy em létezik. F63. Keresse olya (a ) és (b ) sorozatokat, amelyekre (a ) = 0 és (b ) = + teljesül, és = +, vagy =, vagy (a b ) = c, (c egy adott valós szám) vagy em létezik. F64. Adjo meg olya (a ) és (b ) sorozatokat, amelyekre (a ) = + és (b ) = + (0 R (b)) teljesül, és ( a ) = +, vagy = c, (c 0 egy adott valós szám) vagy b em létezik. F65. Bizoyítsa be, hogy ha (a ) koverges és (a ) = α, akkor Mit lehet modai az α = esetbe? ( a ) {+, ha α > = 0, ha α <. F66. Legye (a ) emegatív, -hez kovergáló sorozat, (b ) pedig egy tetsz leges korlátos sorozat. Mutassa meg, hogy ekkor (a b ) =. F67. Legye (a ) egy olya koverges sorozat, amelyek egyik tagja sem 0. Kovergecia szempotjából mit tud modai az ( a + ) sorozatról? a F68. Tegyük fel, hogy az (a ) valós sorozat koverges. Bizoyítsa be, hogy a σ := a + a + + a ( N) sorozat is koverges és (a ) = (σ ). Adjo példát olya (a ) sorozatra, amely diverges, de a feti (σ ) koverges. Mutassa meg azt is, hogy ha (a ) = +, akkor (σ ) = +.

21 .4. Rekurzív sorozatok határértéke F69. Legye (a ) olya valós sorozat, amelyre a > 0 mide N eseté és Bizoyítsa be, hogy h := a + a + + a ( N). (a) ha (a ) koverges, akkor (h ) is koverges, továbbá (h ) = (a ); (b) ha (a ) = +, akkor (h ) = +. F70. Legye (a ) olya valós sorozat, amelyre a > 0 mide N eseté és g := a a a ( N). Mutassa meg, hogy (a) ha (a ) koverges, akkor (g ) is koverges, továbbá (g ) = (a ); (b) ha (a ) = +, akkor (g ) = +. F7. Legye (a ) : N R + egy tetsz leges sorozat és Igazolja, hogy b := a, b + := a + a ( N), továbbá c := a ( N). (a) ha (b ) koverges, akkor (c ) is koverges, továbbá (c ) = (b ); (b) ha (b ) = +, akkor (c ) = +. Adjo meg olya (a ) sorozatot, amelyre (c ) koverges, de (b ) diverges. F7. Az el z feladat eredméyét felhaszálva adjo újabb bizoyítást arra, hogy + F73. Tegyük fel, hogy (a ) olya sorozat, amelyre a! = e. Mj9. ( a k+ a k, N ) k= sorozat korlátos. (Az ilye (a ) sorozatot korlátos változású sorozatak evezzük.) Mutassa meg, hogy ekkor (a ) koverges. Igaz-e ez fordítva is?.4. Rekurzív sorozatok határértéke Rekurzív módo megadott sorozatok kovergeciájáak vizsgálatáál sokszor (de em midig!) haszálható a következ módszer. Ha sikerül bebizoyítai azt, hogy a sorozat mooto (öveked vagy csökke ) és korlátos (alulról vagy felülr l), akkor ebb l már következik, hogy a sorozat koverges. A sorozat határértékét pedig a rekurzív összefüggésb l yerhet egyelet gyökeib l próbáljuk kiválasztai. F74. Koverges-e az a :=, a + := a ( N) sorozat? Ha ige, akkor mi a határértéke?

22 . Valós sorozatok F75. Mutassa meg, hogy az a := 0, a + := a3 + ( N) sorozat koverges, és számítsa ki a határértékét. F76. Számítsa ki az alábbi sorozatok határértékét: (a) a := 6, a + := 5 6 a ( N); (b) a :=, a + := a + a 3 + ( N); (c) a := 0, a + := a ( N); 9 (d) a := 5, a + := a ( N); 9 (e) a := /, a + := 3 4a ( N). F77. Bizoyítsa be, hogy ha α [0, ], akkor az a := α, a + := a + α sorozat koverges, és számítsa ki a határértékét. ( N) F78. Legye α R +, a R + és a + := αa a + α ( =,,...). Mikor koverges az (a ) sorozat, és mi ekkor a határértéke? F79. Az α > 0 valós paraméter mely értékeire koverges az sorozat, és ekkor mi a határértéke? a := α, a + := α + a ( N) F80. Legye (a) a := α, a + := a + a ( N, α 0); (b) a := 0, a + := α + a ( N, α 0); (c) a := 0, a + := α ( N, α 0); + a (d) a := α, a + := a ( N, 0 α ); (e) a := α, a + := 3 a ( N, α R); a 3 (f) a := α, a + := + 3 ( N, α 0); (g) a := α, a + := 3 3a + ( N, α R). Kovergesek-e a feti sorozatok? Ha ige, akkor mi a határértékük? F8. A emegatív α < β valós számokból kiidulva a következ képpe képezzük az (a ) és a (b ) sorozatot: a := α, b := β és a + := a b, b + := a + b ( N). Igazolja, hogy a sorozatok kovergesek és a határértékük egyel. Léyeges-e az α < β feltétel? (C.F. Gauss yomá ezt a közös értéket az α és a β számok számtai-mértai közepéek evezzük.)

23 .5. Sorozat esz szuperiorja és esz iferiorja 3.5. Sorozat esz szuperiorja és esz iferiorja Deíciók, tételek és megjegyzések D5. Az A R elemet az (a ) valós sorozat egy s r södési helyéek (vagy torlódási helyéek) evezzük, ha A mide köryezete a sorozatak végtele sok tagját tartalmazza, azaz ε > 0 valós szám eseté az { N a k ε (A)} végtele halmaz. Az a = (a ) sorozat s r södési helyeiek a halmazát H a -val fogjuk jelöli: H a := {A R A s r södési helye az a sorozatak} R. Mj30. Az A R elem az (a ) sorozatak em s r södési helye akkor és csak akkor, ha ε > 0 valós szám, amelyre az { N a k ε (A)} halmaz véges. Mj3. Egy sorozatak több s r södési helye is lehet. A s r södési hely lehet véges, de lehet + és is. Érdemes meggodoli például a következ ket: Ha a := ( ), akkor H a = {0}; ha a := ( ( ) ), akkor H a = {, }; ha a := (), akkor H a = {+ }; ha a := ( ( ) ), akkor H a = {+, }. T0. Az (a ) valós sorozatak A R akkor és csak akkor s r södési helye, ha az (a ) sorozatak va A-hoz tartó részsorozata, azaz A H a ν = (ν ) : N N idexsorozat, amelyre a ν = (a ν ) = A. T. Mide (a ) valós sorozatak va s r södési helye, azaz a : N N sorozat eseté H a. D6. Legye a = (a ) egy tetsz leges valós sorozat és H a a s r södési helyeiek a halmaza. A H a halmaz szuprémumát, illetve imumát az (a ) sorozat esz szuperiorjáak, illetve esz iferiorjáak evezzük, és a a, illetve a a szimbólumokkal jelöljük. Azaz: a := sup H a R, illetve a := if H a R. Mj3. Mivel mide a : N R sorozatra H a, ezért a H a halmazak va szuprémuma is és imuma is; tehát mide valós sorozatak va esz szuperiorja is és esz iferiorja is. A deíció yilvávaló következméyei: (a) mide a : N R sorozatra a a; (b) az a : N R sorozat tetsz leges olya a ν részsorozatára, amelyek va határértéke feáll a a a ν a egyel tleség.

24 4. Valós sorozatok Mj33. Mj34. Az a = (a ) sorozat esz szuperiorját, illetve esz iferiorját az (a ) sorozat fels határértékéek, illetve alsó határértékéek is evezzük, és jelölésükre a sup a, sup(a ) illetve if a, if(a ) + + szimbólumokat is haszáli fogjuk. A következ tétel azt modja meg, hogy egy sorozat esz szuperiorját és esz iferiorját hogya lehet a sorozat tagjaiak segítségével jellemezi. T. Legye a = (a ) : N R egy tetsz leges sorozat. Ekkor { (i) L > A számál a sorozatak csak véges sok tagja agyobb, és (a ) = A R (ii) K < A számál a sorozatak végtele sok tagja agyobb; (a ) = A R { (i) l < A számál a sorozatak csak véges sok tagja kisebb, és (ii) k > A számál a sorozatak végtele sok tagja kisebb. T3. Egy a = (a ) : N R sorozatra Mj35. a = a R ha az (a ) sorozatak egyetle s r södési helye va, { ha az (a ) sorozatak va határértéke, és ekkor (a ) = (a ) = (a ). Jegyezze meg jól tehát azt, hogy mide valós sorozatak va esz szuperiorja és esz iferiorja; határértéke azoba csak bizoyos sorozatokak létezik. A esz szuperior és esz iferior több voatkozásba pótolja a határértéket azokba az esetekbe, amikor az em létezik. Feladatok F8. Adjo meg olya valós sorozatot, amelyek potosa 3 s r södési helye va. F83. Adjo meg olya valós sorozatot, amelyik s r södési helyeiek a halmaza az egész számok halmaza. F84. Keresse meg az alábbi sorozatok összes s r södési helyét, és határozza meg a sorozatok esz szuperiorját és esz iferiorját: (a) a := ( ) ( + ) ( N); (b) a := + ( ) + + ( N); + (c) a := 3 + ( 4) ( N); (d) a := + + ( ) ( N). F85. Va-e olya valós sorozat, amelyek mide valós szám s r södési helye? F86. Legye (a ) egy valós soroazat, és képezzük az sorozatokat. Mutassa meg, hogy A : = sup{a k k =, +, +,...} ( N), B : = if {a k k =, +, +,...} ( N) (A ) = (a ) és (B ) = (a ).

25 .5. Sorozat esz szuperiorja és esz iferiorja 5 F87. Igazolja, hogy ha az alábbi m veletek elvégezhet k, akkor (a) (a ) + (b ) (a + b ) (a ) + (b ), (b) (a ) + (b ) (a + b ) (a ) + (b ). F88. Legye a 0, b 0 ( N). Igazolja, hogy ekkor (a) (a ) (b ) (a b ) (a ) (b ), (b) (a ) (b ) (a b ) (a ) (b ). F89. Tegyük fel, hogy a 0 ( N). Igazolja, hogy (a) ha (a ) 0, akkor (a ) =, a (b) ha (a ) 0, akkor (a ) = a.

26 6. Valós sorozatok

27 II. rész Megoldások 7

28

29 . Valós sorozatok 9. Valós sorozatok.. Valós sorozat fogalma. Elemi tulajdoságok M. Az állítás teljes idukcióval igazolható. M. A sorozat els éháy tagjáak felírása utá köye megsejthet, hogy a = A α + B A k ( =, 3,...). Ezutá ezt az összefüggést teljes idukcióval lehet bebizoyítai. M4. Az állítás teljes idukcióval igazolható. k=0 M5. A (q ) alakú geometriai sorozatok között keresse olyaokat, amelyek kielégítik az a + = a + + a ( N) rekurzív összefüggést. Két ilye em azoosa ulla sorozat lesz. Ezek segítségével adja meg az összes ilye tulajdoságú valós sorozatot. Végül válassza ki közülük azt, amelyikre a = a = teljesül. M0. Vegye gyelembe, hogy σ + σ = a + a + + a + a + + = a a a + a + = ( + ) = (a + a ) + (a + a ) + + (a + a ) ( + ) a + a + + a = ( N). M. (a) A sorozat yilvá mooto öveked. A korlátosságot pedig így igazoljuk: k = ( ) = k= ( = + ( + ) 3) ( + 3 ( + + 4) ) = ( N). (Érdemes megjegyezi a bizoyítás sorá alkalmazott ötletet: Az k(k+) alakú törtet két egyszer bb szerkezet tört külöbségekét lehet felíri ( ) k(k + ) = k k +.) (b) A sorozat yilvá mooto öveked. Az, hogy felülr l em korlátos azt jeleti, hogy P R számhoz 0 N, hogy 0 k= k > P. Adott P számhoz 0 = m0+ alakú idex létezését látjuk be. Az alapötlet a következ : a összeget így csoportosítjuk: 0 k= k + + ( ) ( + 5 8) + + ( + k + ) ( + + k + k + + m ) m0 + m0.

30 30. Valós sorozatok Mivel k + + k k + k k k + k =, ezért midegyik zárójelpár közötti összeg. Így mide 0 = m0+ eseté 0 k= k + m 0 +, és ez > P, ha m 0 > P. (Ilye m 0 N szám létezése az archimédeszi-tulajdoságból következik.) A ( ) állítást tehát bebizoyítottuk. M. (a) A mooto övekedés bizoyításához a számtai- és a mértai közép közötti egyel tleséget alkalmazzuk az ( + ) darab, ( + ), ( + ),..., ( + ) számra: ( + ) = ( + )( + ) ( + ) ( + ( + + ) ) + ( ) +. = + + Ez az egyel tleség mide N eseté feáll, ezért az ( ( + ), N ) sorozat valóba mooto öveked. A korlátosság bizoyításához is a számtai- és a mértai közép közötti egyel tleséget alkalmazzuk, de most az ( + ) darab,, ( + ), ( + ),..., ( + ) számra: ( + ) = ( + )( + ) ( + ( ) + ( + ) ) + =, + azaz ( + ) 4 mide N eseté. (b) Alkalmazzuk az ( + ) darab közötti egyel tleséget: + számra és -re a számtai- és a mértai közép ( ) + = ( ( + ) ) + ( + ) +, = + + azaz ( + ) + ( + ) + ( ( + + ) + ( + ) + ) + ( + ) +. Ez mide N számra teljesül, ezért az ( + ) + ( N) sorozat valóba mooto csökke. Mivel a > 0 ( N), ezért a mooto csökkeésb l már a korlátosság is következik... Koverges és diverges sorozatok. Sorozatok határértéke M5. : Tegyük fel, hogy az (a ) sorozat koverges, azaz A R, hogy ε > 0 eseté a k ε (A) köryezete kívül a sorozatak véges sok tagja va. Ha egy köryezete kívül a sorozatak ics tagja, akkor midegyik tag a köryezete belül va, azaz ekkor 0 = jó küszöbidex. Ha a k ε(a) köryezete kívül va tagja a sorozatak, akkor va egy ilye

31 .. Koverges és diverges sorozatok. Sorozatok határértéke 3 tulajdoságú, maximális idex tag is. Legye eek idexe 0. Ekkor mide 0 idexre a k ε (A), azaz a A < ε. : Tegyük fel, hogy az (a ) sorozathoz A R, hogy ε > 0 számhoz 0 N, hogy 0 idexre a A < ε. Ekkor mide ε > 0 szám eseté az A szám ε-sugarú köryezeté kívül csak az a, a,..., a 0 tagok közül bizoyosak lehetek. A számuk tehát véges. M6.. ε > 0 eseté az { N a k ε ( )} = { N a ( ) ε} halmaz véges.. ε > 0 számhoz olya 0 N idex, hogy > 0, N eseté a + < ε. M7. ε > 0, hogy 0 N idexhez > 0, N, amelyre a + ε. A (0, N) sorozat koverges, és a határértéke em / (haem 0). M8. Az (a ) valós sorozat em koverges A R számhoz ε > 0, hogy a k ε (A) = (A ε, A + ε) köryezete kívül a sorozatak végtele sok tagja va. A ( ( ) ) sorozat em koverges, ui. vegyük egy tetsz leges A R számot, és eek tekitsük (például) az -sugarú köryezetét. Három eset lehetséges: ez a köyezet em tartalmazza az potot, em tartalmazza a potot, sem -et sem ( )-et em tartalmazza. Midhárom esetbe a sorozatak végtele sok tagja va a szóba forgó köryezete kívül. M9. Nem. A ( ( ), N ) sorozat diverges, de az A = szám mide köryezete tartalmazza eek a sorozatak végtele sok (mide páros idex ) tagját. M0. Az (a ) sorozatra felírt tulajdoság potosa azt jeleti, hogy a sorozat 0 -ál agyobb idex tagjai mid A-val egyel ek. Bár eek a sorozatak is A a határértéke, azoba más, például az (A + ) sorozatak is A a határértéke. Az állítás tehát em igaz. M. (a) Nem. (b) Nem. M. A R elemhez ε > 0 valós szám, hogy az { N a k ε (A)} végtele halmaz (azaz mide A R elemek va olya köryezete, amelyik a sorozatak végtele sok tagját em tartalmazza). Ez azzal egyeérték, hogy A R elemhez ε > 0, hogy 0 N számhoz 0 idex, amelyre a k ε (A). M3. (a) Azt kell igazoli, hogy mide ε > 0 valós számhoz létezik olya 0 természetes szám, hogy mide 0 idexre < ε. Azt kell tehát megvizsgáli, hogy adott ε > 0 eseté milye N számokra teljesül ez az egyel tleség. Eek megoldása em egyszer feladat, ezért a következ ötletet alkalmazzuk: a bal oldalál egy agyobb kifejezésr l fogjuk megmutati, hogy még az is kisebb ε-ál bizoyos idext l kezdve. Legye tehát ε > 0 egy tetsz leges valós szám. Ekkor a bal oldalt például így övelhetjük: = ( = + ) ( ) = 3.

32 3. Valós sorozatok Mivel 3 < ε, ha 0 := [3/ε] +, ezért tetsz leges ε > 0 eseté az < ε egyel tleség is feáll mide 0 természetes számra. (c) Azt kell bebizoyítai, hogy mide P R számhoz létezik olya 0 N, hogy mide 0 idexre > P. + 3 Legye P egy rögzített valós szám. Feltehet, hogy P > 0. Most a bal oldalál kisebb kifejezésr l fogjuk megmutati, hogy még az is agyobb P-él bizoyos idext l kezdve. A bal oldal például így csökkethet : > + 3 = 4 (ez mide N eseté igaz). Mivel 4 > P, ha 0 = [4P ] +, ezért tetsz leges P > 0 eseté az egyel tleség is feáll mide 0 természetes számra. (e) Azt kell igazoli, hogy mide P R számhoz létezik olya 0 N, hogy mide 0 idexre 3 + < P. + Legye P egy rögzített valós szám. Feltehet, hogy P < 0. Most a bal oldalál agyobb kifejezésr l fogjuk megmutati azt, hogy még az is kisebb P -él bizoyos idext l kezdve. A bal oldal például így övelhet : < > P = + < + = ( N). (Godoljo arra, hogy egatív törteket hogya lehet öveli!) Mivel 0 = [ P ] +, ezért tetsz leges P < 0 eseté a < P egyel tleség is feáll mide 0 természetes számra. < P (< 0), ha M4. Az a kérdés, hogy a sorozat agy idex tagjai közel vaak-e valamilye R-beli A elemhez. A megadott alakokból ezt ehéz láti. Érdemes olya átalakításokat keresi, amelyek elvégzése utá már világosabb képet kaphatuk a sorozat viselkedésér l. Ebb l egy sejtést alakíthatuk ki magukak, amit persze utáa be is kell bizoyítauk. (a) Most osszuk el a számlálót is és a evez t is -tel (a tört értéke ekkor em változik): a = ( N).

33 .. Koverges és diverges sorozatok. Sorozatok határértéke 33 Nagy -ekre a számláló -hez, a evez -höz, a háyados tehát /-hez va közel. Ez alapjá a sejtésük az, hogy =. Bizoyítás: Legye ε > 0 tetsz leges valós szám. Ekkor mide N eseté = ( + + ) < = és ez < ε, ha 0 := [/ε] +, ami a deíció szerit valóba azt jeleti, hogy + A sorozat tehát koverges. (e) Most meg gyökteleítsük, azaz: =. a := + = ( + ) + + = ( N). Ez alapjá a sejtésük: ( + ) = 0, Bizoyítás: Legye ε > 0 tetsz leges valós szám. Ekkor mide N eseté + = < és ez < ε, + + ha 0 := [/ε ] +, ami a deíció szerit valóba azt jeleti, hogy ( ) + = 0. + A sorozat tehát koverges. (g) Mivel mide természetes számra + + = + ezért a sejtés: a sorozat koverges és , + + =. + Bizoyítás: Legye ε > 0 tetsz leges valós szám. Ekkor mide N eseté = + + = + + ( ) = = ha 0 := [/ε] +, ami a deíció szerit valóba azt jeleti, hogy =. + és ez < ε,

34 34. Valós sorozatok (h) Mivel mide természetes számra = = + + ezért a sejtés: a sorozat diverges, de ( ) = +. + Bizoyítás: Legye P > 0 egy tetsz leges valós szám. Ekkor = ha > > > = =, ha > 5, 8, > és 8 > P, ha > (8P ). Azt kaptuk tehát, hogy mide P > 0 valós szám eseté > P, ha 0 = max{5, [64P ] + }, és azt jeleti, hogy ( ) = +. (k) Az ( + ( ) ) sorozatak ics határértéke (a sorozat tehát diverges), mert R mide eleméek va olya köryezete, amelyik a sorozatak végtele sok tagját em tartalmazza. M5. Az a := α+( )d ( N) számtai sorozatra (itt α és d adott valós számok) a következ k teljesülek: (a) a sorozat akkor és csak akkor koverges, ha d = 0, és ekkor (a ) = α; (b) ha d > 0, akkor (a ) = + ; (c) ha d < 0, akkor (a ) =. M6. (a) Idirekt: Tegyük fel, hogy (a ) = A < 0. Ekkor az ε = A > 0 számhoz 0 N, hogy 0 idexre a k A (A). Azoba a k A / (A) a ( A A, A + A ) (3A =, A ), és ez azt jeleti, hogy a < 0 mide 0 eseté, ami elletmod az a 0 ( N) kezdetbe tett feltételükek. (b) Felhaszáljuk a következ egyel ségeket: a A = ( a A ) a + A a + A = a + A (a A ) ( N). Tegyük fel el ször azt, hogy (a ) = A > 0. Ekkor az el z k alapjá azt kapjuk, hogy a A A a A ( N).

35 .3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 35 Mivel (a ) = A, ezért Következésképpe ε > 0 számhoz 0 N, hogy 0 idexre a A < ε A. ε > 0 számhoz 0 N, hogy az a A < A ε A = ε egyel tleség mide 0 idex eseté feáll, ami éppe azt jeleti, hogy ( a ) = A. Tegyük fel most azt, hogy (a ) = A = 0. Ekkor ε > 0 számhoz 0 N, hogy 0 idexre a = a < ε. Ezért a < ε mide 0 eseté, ami azt jeleti, hogy ( a ) = 0 teljesül ebbe az esetbe is. (c) Ha (a ) = +, akkor ( a ) = +. Ui. (a ) = + P R számhoz 0 N, hogy 0 idexre a > P, ezért P R + számhoz 0 N, hogy 0 eseté a > P, ami azt jeleti, hogy a = +. M7. Haszálja fel az a m b m = (a b)(a m + + b m ) azoosságot..3. Sorozatok kovergeciájáak és határértékéek a vizsgálata M9. o Az összegre voatkozó állítás igazolása. Emlékeztetük arra, hogy ha A, B R, akkor az A + B összeg akkor va értelmezve, ha (i) A, B R; { R (ii) A = + és B = +, { R (iii) A = és B =, és ekkor A + B = és ekkor A + B = { + + ; { ; (Tehát csak (+ ) és ( ), valamit ( ) és (+ ) összegét em értelmeztük.) Az (i) esetbe az állítás a koverges sorozatok összegére voatkozó korábbi tételükb l következik. Az (ii) eset igazolása. (a) Tegyük fel el ször azt, hogy (a ) = A = + és (b ) = B R. Megmutatjuk, hogy ekkor (a + b ) = +. Mivel (b ) koverges, ezért korlátos (alulról is!), azaz M R, hogy b M N eseté. A (a ) = + feltételb l pedig az következik, hogy P R számhoz 0 N, hogy a > P M 0 idexre.

36 36. Valós sorozatok Ezért P R számhoz 0 N, hogy a + b > P M + M = P 0 idexre, és ez valóba azt jeleti, hogy (a + b ) = +. (b) Tegyük fel, hogy (a ) = (b ) = +. Ekkor P R számhoz N, hogy a > P idexre, és tehát P R számhoz N, hogy b > P P R számhoz 0 N, idexre, hogy a + b > P + P = P teljesül mide 0 := max{, } idex eseté, ami azt jeleti, hogy (a +b ) = +. Az (iii) eset hasolóa igazolható. o A szorzatra voatkozó állítás igazolása. Emlékeztetük arra, hogy ha A, B R, akkor az A B szorzatot akkor értelmeztük, ha (i) A, B R; > 0 valós + < 0 valós (ii) A = + és B és ekkor A B = = + + =, ; > 0 valós < 0 valós + (iii) A = és B és ekkor A B = = + =, +. (Tehát csak 0-ak (+ )-el és ( )-el való szorzatát és fordítva em értelmeztük.) A szorzatra voatkozó tétel tehát 9 állítást tartalmaz. Az A, B R eset a koverges sorozatok szorzatára voatkozó korábbi tételb l következik. A femaradó 8 állítás közül csak kett t igazoluk, a többit hasolóa lehet beláti. (a) Tegyük fel, hogy (a ) = + és (b ) = B > 0 valós szám. Megmutatjuk, hogy ekkor (a b ) = +. Mivel (b ) = B > 0, ezért a B >0 számhoz N, hogy b > B (> 0) idexre. A (a ) = + feltételb l pedig az következik, hogy P R + számhoz N, hogy a > P B/ (> 0) idexre. Így P R + számhoz 0 N, hogy a b > P (B/) = P (> 0) B/

37 .3. Sorozatok kovergeciájáak és határértékéek a vizsgálata 37 teljesül mide 0 := max{, } idexre, ami valóba azt jeleti, hogy (a b ) = +. (b) Tegyük fel, hogy (a ) = (b ) = +. Ekkor és Ezért P R + számhoz N, hogy a > P (> 0) idexre az számhoz N, hogy b > (> 0) idexre. P R + számhoz 0 N, hogy a b > P teljesül mide 0 := max{, } idex eseté, és ez azt jeleti, hogy (a b ) = +. 3 o A háyadosra voatkozó állítás igazolása. Most is emlékeztetük arra, hogy A, B R eseté az A/B háyadost akkor értelmeztük, ha (i) A R, B R \ {0}; { = + (ii) A R és B =, (iii) B R \ {0} és A = és ekkor A B = 0; { = + =, +, ha B > 0 és A = + és ekkor A B =, ha B < 0 és A = +, ha B > 0 és A = +, ha B < 0 és A = Vegyük észre azt hogy (a ) ( ) ( ) = a b b (azaz az (a /b ) sorozat az (a ) sorozat és az (/b ) reciprok sorozat szorzata). Ezért a szorzatra voatkozó állítás miatt elég igazoli a következ t: ha (b ) {+, }, akkor ( b ) = 0. Tegyük fel pl. azt, hogy (b ) = +. Ekkor Ebb l az következik, hogy ε > 0 számhoz 0 N, hogy b > ε 0 idexre. ε > 0 számhoz 0 N, hogy (0 <) b < ε idexre. Ezzel a (b ) = + esetbe megmutattuk, hogy ( b ) = 0. A (b ) = esetbe az állítás hasolóa igazolható. M30. Mértai sorozat. (a) Legye q <. Ha q = 0, akkor az állítás yilvávaló. Ha 0 < q <, akkor az q > számot írjuk fel az q = +h (h > 0) alakba. A Beroulli-egyel tleséget alkalmazva azt kapjuk, hogy q = ) = ( q ( + h) + h h Ebb l az következik, hogy tetsz leges ε > 0 számra a q h < ε ( N).

38 38. Valós sorozatok egyel tleség mide 0 := [ hε] + idexre teljesül, ami azt jeleti, hogy (q ) = 0. (b) Ha q =, akkor az (, N) kostas sorozatot kapjuk, ami koverges, és a határértéke. (c) Legye q > egy rögzített valós szám. Írjuk fel a q számot q = + h (h > 0) alakba. A Beroulli-egyel tleség alapjá q = ( + h) + h > h amib l következik, hogy (q ) = +, ui. ( N), P R számhoz 0 N, hogy 0 idexre feáll a q > h > P egyel tleség; legye ui. 0 := [P/h] +. (d) Ha q, akkor a ( q ) sorozat páros, illetve páratla idex részsorozataiak külöböz a határértéke (a páros idex részsorozat határértéke +, a páratla idex részsorozaté pedig ), ezért a (q ) sorozatak ics határértéke. (e) A kovergeciára voatkozó állítás a deíció közvetle következméye. M3. (a) (i) Tegyük fel el ször azt, hogy a > rögzített valós szám, és írjuk fel az a ( N) számokat az a = + h (h > 0, N) alakba. Elég azt igazoli, hogy (h ) ullasorozat. A Beroulli-egyel tleség alapjá a = ( + h ) + h ( N), ezért 0 < h a ( N). Ebb l következik, hogy tetsz leges ε > 0 valós szám eseté a 0 < h < a < ε egyel tleség mide 0 := [ ] a ε + idexre teljesül, ami azt jeleti, hogy (h ) = 0, tehát a =. + (ii) Ha a =, akkor az (, N) kostas sorozatot kapjuk, amiek valóba a határértéke. (iii) Ha 0 < a <, akkor a >, ezért (i) és a koverges sorozatokra voatkozó m veleti tétel alapjá a = ( ( + ). a) (b) Írjuk fel az számokat az = + h (h 0, N) alakba. Mivel h 0, ezért a biomiális tétel alapjá ( ) ( ) ( ) ( ) ( ) = (+h ) = + h + h + + h h ( ) = h ( N), 0 amib l azt kapjuk, hogy 0 h ( =, 3,...).

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7 Bodó Beáta 1 Sorozatok 1. Írja fel az a = 1 +4 sorozat 10. és ( + 1)-edik elemét! [a 10 = 4 14, a +1 = 4 +. Írja fel az a = +4 1 sorozat ( + 1)-edik és ( )-edik tagját! [a +1 = +7 +4, a = 11. Vizsgálja

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel? 1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Sorok és hatványsorok vizsgálata Abel nyomán

Sorok és hatványsorok vizsgálata Abel nyomán Sorok és hatváysorok vizsgálata Abel yomá Szakdolgozat Készítette: Vákovics Mária Matematika BSc, Matematikai elemz szakiráy Témavezet : Pfeil Tamás adjuktus Alkalmazott Aalízis és Számításmatematikai

Részletesebben

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12 Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal Simo Iloa: Feladatok valós számsorozatokkal Feladatok valós számsorozatokkal és sorokkal Írta és szerkesztette: Simo Iloa Lektorálta: Dr. Pap Margit.Feladatok valós számsorozatokkal A feladatgyűjteméy

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

6. Számsorozat fogalma és tulajdonságai

6. Számsorozat fogalma és tulajdonságai 6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1 . feladatlap megoldása Aalízis II.. Vizsgálja meg az alábbi sorokat kovergecia szempotjából! a) X Alkalmazva a gyökkritériumot ("egyszer½usített változatát"): Azaz a sor koverges. b) p a!! p < : X 000

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Bevezető analízis II. példatár

Bevezető analízis II. példatár Bevezető aalízis II. példatár Gémes Margit, Szetmiklóssy Zoltá Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Matematikai Itézet 06. ovember 3. Tartalomjegyzék. Bizoyítási módszerek, valós számok 3..

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Taylor-sorok alkalmazása numerikus sorok vizsgálatára Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Alkalmazott Aalízis és Számításmatematikai Taszék Taylor-sorok alkalmazása umerikus sorok vizsgálatára Szakdolgozat Készítette: Témavezet : Walter Petra

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1. Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

BSc Analízis I. előadásjegyzet

BSc Analízis I. előadásjegyzet BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Analízis feladatokban I.

Analízis feladatokban I. Szili László Aalízis feladatokba I. Egyel tleségek, függvéyek, számsorozatok, számsorok A köyvet a szerz ajálotta fel a mideki számára igyees letölthet ség feltételével. Írta: Szili László egyetemi doces

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorokkal kapcsolatos tételek és ellepéldák Szakdolgozat Készítette: Csala Mátyás Matematika Bsc Matematikai elemző szakiráy Témavezető: Gémes Margit

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Végtelen sorok konvergencia kritériumai

Végtelen sorok konvergencia kritériumai Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Végtele sorok kovergecia kritériumai BSc Szakdolgozat Készítette: Gyebár Tüde Matematika BSc, Matematikai elemző szakiráy Témavezető: Bátkai Adrás Alkalmazott

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Végtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8

Végtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8 Végtele sorok (szerkesztés alatt) Dr. Toledo Rodolfo 207. március 25. Tartalomjegyzék. Bevezetés 2 2. A sor fogalma 3 3. Mértai és teleszkopikus sorok 8 4. Abszolút és feltételese koverges sorok 4 5. Sorok

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben